## Distance Coordinates With Respect to a Triangle of Reference

## Karl Goldberg

## Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

## (July 21, 1972)

With respect to a triangle of reference  $A_1A_2A_3$ , each point P in the plane of the triangle, has unique area coordinates:  $P = (b_1, b_2, b_3)$  with  $b_1 + b_2 + b_3 = 1$ . Distance coordinates are introduced such that  $P = [d_1, d_2, d_3]$ , with  $d_k$  the distance from P to  $A_k$ . It is shown that there is an explicit function  $f(x_1, x_2, x_3)$  such that  $f(d_1^2, d_2^2, d_3^2) = 0$  is necessary and sufficient for  $P = [d_1, d_2, d_3]$ , each  $d_k$  nonnegative. The partial derivatives  $f_k(x_1, x_2, x_3) = \partial f(x_1, x_2, x_3) / \partial x_k$  are such that  $b_k = f_k(d_1^2, d_2^2)$  $d_{2}^{2}, d_{2}^{2}$  for each k. Other results relating the  $b_{k}$  and the  $d_{k}$  are given. The use of  $f(x_{1}, x_{2}, x_{3})$  in solving geometric problems is shown.

Key words: Area coordinates; distance coordinates; Plane Geometry; radical center; triangle of reference.

We are given three noncollinear points  $A_1, A_2, A_3$  and all other points are in the plane of the triangle of reference  $A_1A_2A_3$ .

Notationally, two distinct points X, Y determine an infinite line XY, with the finite line segment XY having length |X, Y|. If X, Y are centers of circles with radii x, y respectively, the radical axis of those circles is a line perpendicular to XY, at a point which is  $(|X, Y|^2 + x^2 - \gamma^2)/2 |X, Y|$  from X in the direction of Y. Given a third point Z, not on XY, as the center of a circle, the three radical axes meet in a common point called their radical center. The area of the triangle XYZ is denoted by |X, Y, Z|. The function

(1) 
$$F(x_1, x_2, x_3) = 2(x_1x_2 + x_1x_3 + x_2x_3) - x_1^2 - x_2^2 - x_3^2$$

has the well-known property

(2) 
$$16 |X, Y, Z|^2 = F(|X, Y|^2, |X, Z|^2, |Y, Z|^2).$$

Let  $\Delta = |A_1, A_2, A_3|$  denote the area of the triangle of reference. With respect to this triangle every point P has unique area coordinates  $b_1, b_2, b_3$ , which are real numbers restricted by

(3) 
$$b_1 + b_2 + b_3 = 1.$$

We write

$$P=(b_1,b_2,b_3),$$

with  $A_1 = (1, 0, 0), A_2 = (0, 1, 0), A_3 = (0, 0, 1).$ 

AMS Subject Classification: Primary 5010.

<sup>&</sup>lt;sup>1</sup> Also called "normalized barycentric" or "areal" coordinates [1].<sup>2</sup> <sup>2</sup> Coxeter, H.S.M., Introduction to Geometry (Wiley, 1961).

The area coordinate  $b_1$  is defined as the ratio  $\pm |P, A_2, A_3|/\Delta$  with  $b_1 > 0$  if  $\overline{A_1P}$  does not intersect  $A_2A_3, b_1 \leq 0$  if it does. Similarly for the other  $b_k$ , so that the diagram of signs is



Conversely, any three real numbers  $b_1$ ,  $b_2$ ,  $b_3$ , restricted by (3), define a unique point  $P = (b_1, b_2, b_3)$  with respect to  $A_1A_2A_3$ .

If a point P is at a distance  $d_1$  from  $A_1$ ,  $d_2$  from  $A_2$ , and  $d_3$  from  $A_3$ , we call these the *distance* coordinates of P with respect to  $A_1A_2A_3$ , and write

$$P = [d_1, d_2, d_3],$$

or, when more convenient,

$$P = \langle d_1^2, d_2^2, d_3^2 \rangle$$
.

For clarity,  $d_k = |P, A_k|$  for all k = 1, 2, 3.

Note that the triangle  $PA_2A_3$  has side lengths  $a_1$ ,  $d_2$ ,  $d_3$  so that

(4) 
$$16\Delta^2 b_1^2 = F(a_1^2, d_2^2, d_3^2)$$

with similar equations for the other  $b_k$ . Also note that P is the radical center of circles with centers  $A_1, A_2, A_3$  and radii  $d_1, d_2, d_3$  respectively.

Now consider the general case of circles with centers  $A_1, A_2, A_3$  and radii  $r_1, r_2, r_3$ . Denote their radical center by

 $P_0 = [\delta_1, \delta_2, \delta_3].$ 

(5)

In what follows there is no loss of generality in assuming that  $P_0$  is in the interior of  $A_1A_2A_3$ . Near  $A_1$  we have



Let  $\alpha_1$  denote the interior angle at  $A_1$ . Then  $|H_2, H_3| = \delta_1 \sin \alpha_1$ .<sup>3</sup> The formula for  $\cos \alpha_1$  in the triangle  $A_1H_2H_3$  is

(6) 
$$2\left(\frac{a_2^2+r_1^2-r_3^2}{2a_2}\right)\left(\frac{a_3^2+r_1^2-r_2^2}{2a_3}\right)\cos\alpha_1 = \left(\frac{a_2^2+r_1^2-r_3^2}{2a_2}\right)^2 + \left(\frac{a_3^2+r_1^2-r_2^2}{2a_3}\right)^2 - (\delta_1\sin\alpha_1)^2.$$

In order to simplify this equation we shall need a few definitions and formulas. Define

 $c_3 = a_1^2 + a_2^2 - a_3^2.$ 

(7)  
$$c_1 = a_2^2 + a_3^2 - a_1^2$$
$$c_2 = a_1^2 + a_3^2 - a_2^2$$

Note that

(8) 
$$c_1 = 2a_2^2 - c_3 = 2a_3^2 - c_2$$

and that

$$2a_2a_3\cos\alpha_1 = c_1$$

Since

(10) 
$$a_2 a_3 \sin \alpha_1 = 2\Delta$$

we have

(11) 
$$c_1^2 + 16\Delta^2 = 4a_2^2a_3^2.$$

Now return to eq (6). Multiply through by  $4a_2^2a_3^2$ , and use eqs (7) through (11) to simplify. We get  $16\Delta^2 f(r_1^2, r_2^2, r_3^2) = 16\Delta^2(r_1^2 - \delta_1^2)$ , where

(12) 
$$16\Delta^2 f(x_1, x_2, x_3) = \sum_{k=1}^3 a_k^2 c_k x_k - a_1^2 a_2^2 a_3^2$$

$$-\frac{1}{2}\left\{c_1(x_2-x_3)^2+c_2(x_1-x_3)^2+c_3(x_1-x_2)^2\right\}.$$

Generally:

(13) 
$$f(r_1^2, r_2^2, r_3^2) = r_k^2 - \delta_k^2. \quad k = 1, 2, 3.$$

If  $f(r_1^2, r_2^2, r_3^2) = 0$  then  $r_k = \delta_k$  for all k = 1, 2, 3 so that  $P_0 = [r_1, r_2, r_3]$ . Now notice that

(14) 
$$\sum_{k=1}^{3} a_{k}^{2} c_{k} = F(a_{1}^{2}, a_{2}^{2}, a_{3}^{2}) = 16\Delta^{2},$$

<sup>&</sup>lt;sup>3</sup> The circle with diameter  $\overline{A_1P_0}$  goes through  $H_2$  and  $H_3$ . Thus  $\overline{H_2H_3}$  is a chord with opposite angle  $\alpha_1$ .

so that

(15) 
$$f(x_1-t, x_2-t, x_3-t) = f(x_1, x_2, x_3) - t \quad \text{all } t.$$

Let  $x_k = r_k^2$  for all k = 1, 2, 3 and let  $t = f(r_1^2, r_2^2, r_3^2)$ . Since (13) implies  $x_k - t = \delta_k^2$  for all k = 1, 2, 3, we have  $f(\delta_1^2, \delta_2^2, \delta_3^2) = 0$ . As we pointed out before, any point  $P = [d_1, d_2, d_3]$  can be a radical center. The above shows that  $f(d_1^2, d_2^2, d_3^2) = 0$ .

Combining this with our remarks following eq (13), we have proved the first part of the following theorem:

THEOREM. Let  $d_1$ ,  $d_2$ ,  $d_3$  be any real nonnegative numbers. Then there is a point  $P = [d_1, d_2, d_3]$  if and only if  $f(d_1^2, d_2^2, d_3^2) = 0$  (f defined in (12)). In that case  $P = (f_1(d_1^2, d_2^2, d_3^2), f_2(d_1^2, d_2^2, d_3^2), f_3(d_1^2, d_2^2, d_3^2))$  where  $f_k(x_1, x_2, x_3) = \partial f(x_1, x_2, x_3) / \partial x_k$  for all k = 1, 2, 3.

For clarity, we write out the  $f_k$ :

$$16\Delta^2 f_1(x_1, x_2, x_3) = a_1^2 c_1 + c_3(x_2 - x_1) + c_2(x_3 - x_1)$$
  
(16)  
$$16\Delta^2 f_2(x_1, x_2, x_3) = a_2^2 c_2 + c_3(x_1 - x_2) + c_1(x_3 - x_2)$$
  
$$16\Delta^2 f_3(x_1, x_2, x_3) = a_3^2 c_3 + c_2(x_1 - x_3) + c_1(x_2 - x_3).$$

Note that (14) implies

(17) 
$$f_1(x_1, x_2, x_3) + f_2(x_1, x_2, x_3) + f_3(x_1, x_2, x_3) = 1.$$

Also note that

(20)

(18) 
$$f_k(x_1-t, x_2-t, x_3-t) = f_k(x_1, x_2, x_3)$$
 all  $t; k = 1, 2, 3$ .

In the process of proving the last part of the theorem, we shall need the following computations. The locus of points with  $b_3 = 1$  is a line through  $A_3$  parallel to  $A_1A_2$ . Naturally if  $P = (b_1, b_2, b_3)$  then  $b_1 + b_2 = 0$  (see (3)). Suppose  $b_1 \le 0$ .



The area of  $PA_2A_3$  is  $\Delta \cdot |-b_2|$ . It is also  $\frac{1}{2}a_1d_3 \sin \alpha_2$ . Therefore

$$(19) d_3 = a_3 b_2.$$

Using the cosine formula in that triangle yields

$$d_2^2 = d_3^2 + a_1^2 - 2a_1d_3 \cos \alpha_3$$
$$= a^2b^2 + a^2 - b_2c_3$$

Using the cosine formula in the triangle  $A_1A_3P$  we have

(

$$l_1^2 = d_3^2 + a_2^2 - 2a_2d_3 \cos(\alpha_2 + \alpha_3)$$
148

$$=a_{3}^{2}b_{2}^{2}+a_{2}^{2}+b_{2}c_{1}$$

Now use eq (18) with each  $x_k = d_k^2$  and  $t = d_3^2 = a_3^2 b_2^2$ . For k = 1 we have (using (20) and (21)):

$$16\Delta^2 f_1(d_1^2, d_2^2, d_3^2) = 16\Delta^2 f_1(a_2^2 + b_2c_1, a_1^2 - b_2c_2, 0)$$
  
=  $a_1^2c_1 + c_3(a_1^2 - a_2^2 - b_2(c_1 + c_2)) - c_2(a_2^2 + b_2c_1)$ 

(using (16)). Since  $a_1^2c_1 + c_3(a_1^2 - a_2^2) = c_2a_2^2$  (note  $c_1 + c_3 = 2a_2^2$ ,  $c_2 + c_3 = 2a_1^2$ ), and since

(22) 
$$c_1c_2 + c_1c_3 + c_2c_3 = 16\Delta^2,$$

 $(c_1 + c_2 = 2a_3^2)$ , then add the three symmetric formulas, and use eq (14)), we have

$$f_1(d_1^2, d_2^2, d_3^2) = -b_2 = b_1$$

as desired.

Similar computations prove  $f_2(d_1^2, d_2^2, d_3^2) = b_2$  and (as a check),  $f_3(d_1^2, d_2^2, d_3^2) = 1 = b_3$ . The case  $b_2 \le 0$  is handled similarly to prove the last part of the theorem for the case  $b_3 = 1$ .

Return to eq (12) and solve  $f(x_1, x_2, x_3) = 0$  for  $x_1$ . An intermediary stage is the equation

(23) 
$$16\Delta^2 \{f_1(x_1, x_2, x_3)\}^2 = 2a_1^2(x_2 + x_3) + 2x_2x_3 - a_1^4 - x_2^2 - x_3^2.$$

The r.h.s. is recognized to be  $F(a_1^2, x_2, x_3)$ . Let  $x_k = d_k^2$  for all k = 1, 2, 3, and use (4), to get  $\{f_1(d_1^2, d_2^2, d_3^2)\}^2 = b_1^2$ . Generally

$$f_k(d_1^2, d_2^2, d_3^2) = \pm b_k \qquad k = 1, 2, 3$$

Set  $f_k = f_k(d_1^2, d_2^2, d_3^2)$  for all k = 1, 2, 3. Equations (3) and (17), showing  $\Sigma b_k = \Sigma f_k = 1$ , imply that we cannot have  $f_k = -b_k$  for all k. Suppose  $f_3 = b_3$ . Then

$$f_1 + f_2 = 1 - f_3 = 1 - b_3 = b_1 + b_2.$$

If  $f_1=b_1$  then  $f_2=b_2$ , and conversely. The only open case is  $f_1=-b_1$ ,  $f_2=-b_2$ . This implies  $b_1+b_2=0$ , whence  $b_3=1$ . We have already covered this case, so the proof of the theorem is complete.

An interesting implication for  $P_0$  is immediate. Use eq (18) with  $x_k = r_k^2$  for all k=1, 2, 3 and  $t = f(r_1^2, r_2^2, r_3^2)$  as before. The result is  $f_k(\delta_1^2, \delta_2^2, \delta_3^2) = f_k(r_1^2, r_2^2, r_3^2)$  for all k=1, 2, 3. In other words the area coordinates for the radical center of three circles with centers at  $A_1, A_2, A_3$  and radii  $r_1, r_2, r_3$  respectively are given by

(24) 
$$P_0 = (f_1(r_1^2, r_2^2, r_3^2), f_2(r_1^2, r_2^2, r_3^2), f_3(r_1^2, r_2^2, r_3^2)).$$

Of course, the distance coordinates are given by

(25) 
$$P_0 = \langle r_1^2 - f(r_1^2, r_2^2, r_3^2), r_2^2 - f(r_1^2, r_2^2, r_3^2), r_3^2 - f(r_1^2, r_2^2, r_3^2) \rangle.$$

If we wish to find the (0 to 8) circles simultaneously tangent to the three circles used above, we can do so through f, to obtain four quadratic equations whose solutions solve the problem. The point is that a circle of radius r which is simultaneously tangent to all three circles has a center

(21)

$$P = [r_1 + \epsilon_1 r, r_2 + \epsilon_2 r, r_3 + \epsilon_3 r],$$

with each  $\epsilon_k = \pm 1$  depending on whether the tangency is "outside" ( $\epsilon = 1$ ) or "inside" ( $\epsilon = -1$ ). Simplifying

(27) 
$$f((r_1 + \epsilon_1 r)^2, (r_2 + \epsilon_2 r)^2, (r_3 + \epsilon_3 r)^2) = 0,$$

we get a quadratic equation in r (with constant term  $f(r_1^2, r_2^2, r_3^2)$ ). If r is a negative root of that equation, we simply "assign" -r to  $-\epsilon_1, -\epsilon_2, -\epsilon_3$  since  $\epsilon_k r = (-\epsilon_k)$  (-r), k = 1, 2, 3.

Thus we can cover all solutions with just four triples of  $\epsilon$ 's, no two of which are negatives of each other.

We end this note with a list of formulas connecting the area and distance coordinates of a point

$$P = (b_1, b_2, b_3) = [d_1, d_2, d_3].$$

The formulas are given without proof, but are easily derived, with extensive use of the formula for the distance between P and  $P' = (b'_1, b'_2, b'_3)$ :

(28) 
$$2 | P, P' |^{2} = \sum_{k=1}^{3} c_{k} (b_{k} - b'_{k})^{2}.$$

First we complete the connection between the coordinates, begun in the last formula of the theorem, with

$$d_1^2 = a_3^2 b_2^2 + c_1 b_2 b_3 + a_2^2 b_3^2$$

(29) 
$$d_2^2 = a_3^2 b_1^2 + c_2 b_1 b_3 + a_1^2 b_3^2$$

$$d_3^2 = a_2^2 b_1^2 + c_3 b_1 b_2 + a_1^2 b_2^2$$

or

(26)

(30) 
$$2d_k^2 = (1 - 2b_k)c_k + \sum_{n=1}^3 b_n^2 c_n \qquad k = 1, 2, 3.$$

Let R denote the circumradius of  $A_1A_2A_3$ , and  $\rho_P$  the distance from P to the circumcenter. The latter has area coordinates  $a_k^2c_k/16\Delta^2$ , k=1,2,3. Also  $4\Delta R = a_1a_2a_3$ .

Define

$$G_P = R^2 - \rho_P^2.$$

Then  $G_P$  can be found using only the  $b_k$ :

(32) 
$$G_P = a_1^2 b_2 b_3 + a_2^2 b_1 b_3 + a_3^2 b_1 b_2$$

(33) 
$$= \frac{1}{2} \sum_{k=1}^{3} (b_k - b_k^2) c_k;$$

or only the  $d_k$ :

(34)  $G_P = R^2 - (c_1(d_2 - d_3)^2 + c_2(d_1 - d_3)^2 + c_3(d_1 - d_2)^2)/32\Delta^2$ 

$$(35) \qquad = R^2 - \left(a_1^2(d_1^2 - d_2^2)\left(d_1^2 - d_3^2\right) + a_2^2(d_2^2 - d_1^2)\left(d_2^2 - d_3^2\right) + a_3^2(d_3^2 - d_1^2)\left(d_3^2 - d_2^2\right)\right) / 16\Delta^2$$

(36) 
$$= (2a_1^2a_2^2a_3^2 - \sum a_k^2c_kd_k^2)/16\Delta^2;$$

or symmetric combinations:

(37) 
$$G_P = \sum_{k=1}^{3} b_k d_k^2$$

(38) 
$$= \sum_{k=1}^{3} (a_k^2 - 2d_k^2 + b_k^2 c_k)/4$$

(39) 
$$= \sum_{k=1}^{3} \left( a_k^2 - 2d_k^2 + b_k c_k \right) / 6$$

(40) 
$$= \sum_{k=1}^{3} (a_k^2 - d_k^2 - b_k a_k^2)/3$$

(41) 
$$= 2 \left\{ b_1 a_2^2 a_3^2 + b_2 a_1^2 a_3^2 + b_3 a_1^2 a_2^2 - \sum_{k=1}^3 a_k^2 d_k^2 \right\} \left/ \sum_{k=1}^3 a_k^2 a_k^2 \right\}$$

(42) 
$$= \left\{ b_1 b_2 b_3 \sum_{k=1}^3 a_k^2 + \sum_{k=1}^3 b_k^2 d_k^2 \right\} \left| 2(b_1 b_2 + b_1 b_3 + b_2 b_3) \right|$$

(except at a vertex). Other relations are

(43) 
$$d_1^2 = b_2 a_3^2 + b_3 a_2^2 - G_P \quad \text{etc.}$$

(44) 
$$b_1c_1 = 2G_P - a_1^2 + d_2^2 + d_3^2$$
 etc.

(45) 
$$(1-b_1)G_P = b_1d_1^2 + b_2b_3a_1^2$$
 etc.

(46) 
$$2a_2^2a_3^2b_1 = c_1G_P + a_2^2d_2^2 + a_3^2d_3^2 - a_1^2d_1^2 \quad \text{etc.}$$

The pedal triangle of P, which has side lengths  $a_k d_k/2R$ , k=1, 2, 3, has area  $\Delta |G_P|/4R^2$ ; i.e.,

(47) 
$$16\Delta^2 G_P^2 = F(a_1^2 d_1^2, a_2^2 d_2^2, a_3^2 d_3^2)$$

(48) 
$$= 4a_2^2a_3^2d_2^2d_3^2 - (a_2^2d_2^2 + a_3^2d_3^2 - a_1^2d_1^2)^2 \qquad \text{etc.}$$

If P does not lie on the triangle  $A_1A_2A_3$  then the lines  $A_1P$ ,  $A_2P$ ,  $A_3P$  intersect the circle of radius  $\rho_P$ , concentric with the circumcircle, in P and in points  $A'_1$ ,  $A'_2$ ,  $A'_3$  respectively which have (opposite) side lengths  $\lambda_P |b_k| d_k$  for k=1, 2, 3;  $\lambda_P = 4\Delta \rho_P / d_1 d_2 d_3$ . The area of  $A'_1A'_2A'_3$  is  $\Delta \lambda_P^2 |b_1b_2b_3|$ . Thus

(49) 
$$16\Delta^2(b_1b_2b_3)^2 = F(b_1^2d_1^2, b_2^2d_2^2, b_2^2d_2^2).$$

Finally, suppose  $d_k^2 = g_k(t)$ , a differentiable function of t, for k=1, 2, 3. The  $b_k$  will also be differentiable functions of t, (by the last statement of the theorem), and  $b'_k$  will denote the derivative. We have

(50) 
$$\sum_{k=1}^{3} b_k g'_k(t) = 0$$

and

(51) 
$$g_1'(t) + c_1 b_1' = g_2'(t) + c_2 b_2' = g_3'(t) + c_3 b_3' = \sum_{k=1}^3 c_k b_k b_k'.$$

(Paper 76B3&4-367)