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Le t F be an a rbitrary fi e ld of cha racte ri sti c 7" 2 a nd le t co nj ugation in F be defin ed b y an a rbitra ry 
involutory auto morphi s m (poss ibly the ide ntit y ma ppin g) . A matrix with entri es fro m F is norm al if it 
co mmutes with its conjugate trans pose. Seve ra l condition whi ch a re equi va le nt to normality whe n F is 
the co mplex fi e ld are pro pe rl y nes ted whe n F is an a"b itrary fi e ld. Of these con ditions, no rm alit y is 
the weakes t and unit a ry di ago nali zabi lit y is the s tronges t. 

Wh en the unde rl ying fi e ld is c losed th e unit ari ly diago na lizable matri ces a re th ose whi ch possess 
a s pectra l re present a ti on with He rmiti an ide mpote nt s . These matri ces may be charac teri zed in terms 
of th eir EP pro pe rti es. 

A matri x is indecomposable if it has a s in gle e le mc nta ry di viso r of the form (X - S)i. For i > 1, 
normal indecomposable matrices do not exist when F is the complex fi eld. H o we ve r there exist fi elds 
for wh ic h normal indecomposable ma tri ces of all finit e orde rs ex is t. A matri x is a no rm al indeco mpos­
a ble matri x if a nd onl y if it can be ex pressed as r(B ) whe re r(x) is a polyno mi a l s uch th at r'(O) 7" 0 a nd 
B is a ma trix havin g th e sin gle e le menta ry divi ~ or Xi and sati sfyin g the equ ation B*=sB [or some scala r s. 

Wh e n the in vo lut ory automorphi s m o[ F is the identit y ma ppin g indecomposable norma l matri ces 
of even order ex ist if and onl y if the vec to r s pace F" is hype rboli c , and in thi s case the ma tri ces a re 
sy mmetri c. Moreove r , indeco mposable norm al matrices of odd orde r ex is t if and "nl y if F" is the orthog­
ona l SUm o[ a hype rb oli c s pace and a o ne dim e ns iona l space . a nd in thi s case both symmetric and no n­
symme tri c indecomposable norm al ma t ri ces exis t. 

Key words : Field; matrices; normality; hype rbolic space. 

1. Introduction 

Since Toeplitz [13]1 introduced normal matrices in 1918, there has been considerable effort 
to study their structure and properties. Several conditions equivalent to normality over the complex 
field have been found. In addition a number of generalizations of normality over the complex field 
have been proposed and investigated. Recently there has been an increased interest in the study 
of normal matrices over arbitrary base fi elds. 

According to a classical theorem the following conditions are equivalent over the complex 
field [2]: 

(1) A is normal, that is A* A = AA* 
(2) A* can be expressed as a polynomial in A with scalar coefficients. 
(3) A has a spectral representation with Hermitian idempotents, that is , if 5" 52, . .. , 5k are 

the distinct characteristic roots of A then there exist matrices E I , E2 , • • • , Ek such that: 

(a) 1= 22 E; 
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(c) Et=Ei 

(d) A = L s;£; 
i 

(4) A is unitarily similar to a diagonal matrix. 
Additional conditions which are equivalent to normality over the complex field are given in 

[12, p. 222], [2, 4]. 
Generalizations to normality over the complex field have been proposed by Williamson [14, 

15] and Schwerdtfeger [12]. Williamson observed the equivalence of conditions (1) and (2) above 
and generalized the concept of normality as follows: a matrix is normal with respect to the Hermitian 
matrix H if there exists a polynomial with scalar coefficients, f(x), such-that AH = H f(A *). Schwerdt· 
feger generalized normality by introducing the concept of an EPr matrix: a matrix A is EPr if 
A has rank r and A and A* have the same null space. That this is a generalization of normality 
over the complex field is most easily seen by noting that A is EPr if and only if A is unitarily similar 
to the direct sum of a nonsingular r X r matrix and a zero matrix [6]. 

In [9 , 10] the concept of a normal matrix was extended to an arbitrary field with an involutory 
automorphism. Over an arbitrary field the notions of EPr and normality are independent. Moreover, 
both normality and the EPr property are necessary for A* to be expressable as a unitary multiple 
of A (A * = VA = A V where VV * = l), a condition which is weaker than unitary diagonalizability. 
Katz and Pearl [6] extended the results on normal EPr matrices over arbitrary fields, and found 
necessary and sufficient conditions for such matrices to satisfy the condition that A* be a unitary 
multiple of A. 

In this paper normal matrices will be studied for two extreme but important cases. In section 
4, a characterization of normal matrices which are unitarily similar to a diagonal matrix is given 
for base fields which are closed and of characteristic ~ 2. Conjugation is defined by an arbitrary 
involutory automorphism. In section 5, we study normal matrices which have a single elementary 
divisor of the form (X-S)i. Again the base fields are of characteristic ~ 2, and conjugation is 
defined by an arbitrary involutory automorphism. It is shown in Theorem 10 that matrices of this 
second form are normal if and only if they satisfy condition (2). While condition (4) precludes 
the existence of normal matrices of this second form for i > lover the complex field, there exist 
base fields for which such normal matrices exist for all orders. It is demonstrated in section 6 
that one example of such a field is the complex numbers with conjugation defined by the identity 
automorphism. In section 6 more extensive results for the second case are obtained when conju· 
gation is restricted to be the identity automorphism. 

2. The Structure of Normal Matrices 

Conditions (2), (3), and (4) define several key features of the structure of normal matrices over , 
the complex field. However, when arbitrary base fields with associated involutory automorphisms 
are considered each of these conditions is stronger than that of normality, and consequently can 
not be used to define a structure on the full set of normal matrices. The proof of the following 
theorem is known but is included for completeness. (The conjugate transpose of the matrix M is 
denoted by M*; the conjugate, or automorphic image, of the scalar s is denoted by s). 

THEOREM 1: The following implications hold for an arbitrary base field; 

(4) ~ (3) ~ (2) ~ (1). 

PROOF: (4) ~ (3): There exists a diagonal matrix D and a unitary matrix V such that A = VDV*. 
Consequently we can write A in the form 
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where Imj is the unit matrix of order m j. Let Di denote the diagonal matrix obtained from 

diag (sdmp S2[m2' . .. , Sd"'k) by replacing Si by 1 and Sj by 0 for j ¥ i. If we define £i= UDjU* 

then condition (3) is readily verified. 

(3) :::;. (2): It is readily verified that p(A) = !,p(si)E i for any polynomial p(x). If we define Pi(X) = 
(X-Sl)(X-S2) ... (X-Sh·)/(X-Si) then we obtain Pt{A)=Pi(Si)Ei. Consequently, Ei is expressible 
as a polynomial in A , and since A* = !'S;Ei it follows that A* is expressible as a polynomial in A . 

(2) :::;. (1): Trivial. Q.E.D. 

Counterexamples for the converse implications are given in Examples 1, 2, and 3. 
EXAMPLE 1: Matrix satisfying (1) but not (2). Let the base field be GF(7) with the identity 

automorphism. (Example taken from reference [9].) Let 

(1 3 0 2) 
B= 2 -1 0 4. 

3 2 0 -1 
o 0 0 0 

It is readily seen that B2 = 0 and hence the only polynomials in B are of the form p[ + qB. By con­
sidering the elements in the (1, 1) and (4,4) positions of B, it is seen that if (2) holds, then P = 0 and 
q= 1 which in turn implies that B is symmetric. Since B is not symmetric (2) cannot hold. Condition 
(1) is verified by computation. 

EXAMPLE 2: Matrix satisfying (2) but not (3). Let the base field be GF(3) with the identity 
automorphism. 
Let 

The matrix C is symmetric and consequently satisfies condition (2). However C is nilpotent and 
consequently not diagonalizable. It remains to observe that any matrix with a spectral representa­
tion (with or without Hermitian idempotents) is diagonalizable [2]. Hence C cannot satisfy 
condition (3). 

EXAMPLE 3: Matrix satisfying (3) but not (4). Let the base field be GF(5) with the identity 
automorphism. 
Let 

D=( ~ ~)-

It is readily verified that the matrices: 

satisfy the conditions for the spectral representation and are symmetric. The matrix D has eigen­

values 3 with an associated eigenspace generated by ( ~ ) and 1 with an associated eigenspace 

generated by ( _ ~ ). Since neither eigenspace has a vector with unit length, there cannot exist a 

unitary transform which carries D into a diagonal matrix. 
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It should be noted that the reason the matrix D of Example 3 is not unitarily diagonalizable is 
because the base field is not large enough. If, in fact , the base field were algebraically closed this 
type of situation could not occur. 

THEOREM 2: Let F be an algebraically closed field of characteristic # 2 and A a matrix over F. 
Then condition (4) and condition (3) are equivalent. 

PROOF: That (4) implies (3) was shown above. Assume that A has a spectral decomposition 
with Hermitian idempotents. Then A must be diagonalizable : A = BDB -1. Assume that D= diag 
(st! ml' S2/ m., .• . , sd mk ) and define , as in Theorem 1, Di to be the matrix obtained by using 1 in 

place of Si and 0 in place of Sj for j # i. If we let Ei= BDiB - J we obtain a spectral representation. 
Since the principal idempotents are uniquely determined, [2] the Ei must be Hermitian. Hence: 

Consequently, the matrix B*B mUSI commute with Di for each i. Thus , B*B has a block diagonal 
form with the ith block corresponding to , and having the same dimension as , D i • The m i vectors of 
B which correspond to the ith block of B*B define the eigenspace associated with Si. Since there 
exists an orthogonal basis to this eigenspace, [8] we can assume that the m i vectors of B in question 
are orthogonal. There is no loss of generality in assuming that B*B is diagonal by applying the above 
arguments to each eigenspace. The matrix B is nonsingular, so that each of the diagonal elements of 
B*B must be nonzero. Since the base field is assumed to be large enough to contain the square 
roots of each diagonal element of B*B , the eigenvectors can be assum ed to be normalized so that 
B is unitary. Q.E.D. 

In order to gain insight into the structure of normal matrices over an arbitrary field two prob­
lems are treated. The first is studied in section 4, namely, to charac terize the normal matrices 
which are unitarily diagonalizable. Since this is a stronger condition than (1), (2), or (3) we already 
have several necessary conditions; if we assume the base field is closed and of characteristic 
# 2, then condition (3) also becomes sufficient. It thus appears that the set of unitarily diagonalizable 
matrices over a closed field of characteristic # 2 is sufficiently small to permit meaningful analysis 
and sufficiently large to include as a special case the normal matrices over the complex field . 
The concept of EPr has proven to be a useful tool in the analysis of normality, and will be a key 
element in the study. 

At the other extreme , normal matrices need not be diagonalizable , no less unitarily diagonaliza­
ble (see Example 2). The second problem, treated in section 5 , is a characterization of the most 
fundamental matrices of this extremity, namely, those matrices which are normal and similar to a 
single Jordan block. It is shown in section 5 that when conjugation is defined by the identity such 
matrices have a well-defined structure dependent on the parity of the order: those matrices which 
are of even order must be symmetric; those of odd order may be nonsymmetric but must adhere 
to a specified form. In addition the existence of such matrices yields interesting conclusions 
about the geometry of the underlying vector space. 

3. EP Matrices 

A matrix A which satisfies the condition : 

Ax=O if and only if A*x=O 

is called an EP matrix. If A has rank r, then A is an EPr matrix. 
It has been shown that the EP condition is necessary for unitary diagonalizability [12]. However, 

every nonsingular matrix is EP. Consequently, this condition is not sufficient. In this section the 
known results on EP matrices are reviewed and a more restrictive class of matrices , the universal 
EP matrices , will be defined. Finally, the known characterization of normal EP matrices will be 
reviewed and a characterization of normal universal EP matrices will be given. 
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THEOREM 3 [6 , 7]: The following statements are equivalent over an arbitrary field: 
(1) A is an EP matrix. 
(2) A is congruent to the direct sum of a nonsingular matrix D and a zero matrix. 
(3) There exists a matrix N such that A * = NA. 
(4) There exists a nonsingular matrix N such that A * = NA. 
(5) A can be represented as: 

_ (0 OX*) *_ (I O)(D 
A- P XD XDX* P - P X 1 0 ~) (~ ~*) P* 

where P is a permutation matrix and D is a square nonsingular matrix. 
(6) A and A * have the same range space. 
From the definition of EP and condition (2) of Theorem 3 it follows that: 
THEOREM 4: Let F and K be fields, F ~ K, and let A be a matrix with entries from F. Then 

A is EP with respect to F if and only if A is EP with respect to K. 
When normality and EP are combined the following is obtained: 
THEOREM 5 [10]: A necessary and sufficient condition that A be a normal EP matrix is that 

there exists a nonsingular matrix M such that: 

A*=MA=AM. 

It is convenient to use the following variant of EP: 
DEFINITION 1: Let A be a matrix with entries from a field F which contains a ll the character­

istic roots of A . If every polynom ial in A with coefficien ts from F is an EP matrix, the n A is a uni· 
versal EP matrix. 

Example 4 demonstrates that universal EP is more restrictive than EP. However, from con· 
dition (2) of Theorem 3 it is readily seen that universal EP is still necessary for unitary diago naliz· 
ability. 

EXAMPLE 4: Matrix EP but not universal EP. Let the base field be the algebraic closure of 
GF(5) with iden tity automorphism. 

The matrix E is nonsingular, hence EP. However, E + I is not EP. 
The followin g theorem characterizes the normal universal EP matrices: 
THEOREM 6: Let A be a normal matrix with entries from a field F which contains all of the 

characteristic roots St, S2, ... , Sk of A. If each of the polynomials 

A-sJ i= 1,2, ... ,k 

is an EP matrix then A is a universal EP matrix. 
PROOF: Let 

p(x) = PmX'" + Pm_lX",- t + ... + Po 

be an irreducible polynomial and set 

p (x) = p",x lll + Pm_tXIll - t + ... + po. 

Then 
[p (A) ] * = p(A *). 
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CASE 1: Let p(x) = c(X-Si)1 for some i , 1 ~ i ~ k, c € F, c 0/= O. Then 

p(A)=c(A-sd) 

[p (A)]* = c(A* - Sil)o 

By Theorem 5, there exists a nonsingular matrix Mi such that 

A*-s;/=Mi(A -Si1) = (A -s;l)Mi. 

Clearly 

[p(A )]* = cc-1MiP(A) = p(A )cc-1Mi• 

Set Mp=cc-1Mi. Then Mp commutes with A and 

[p(A)]* =Mpp(A) = p(A)Mp. 

CASE 2: Let p(x) not be a multiple of any of the polynomials x - Si, i = 1, 2, ... , k. Then 
p(A) is nonsingular. Set 

Mp = [p(A)] *[p(A) ] - 1. 

Since A is normal 
[p(A)]* =Mpp(A) = p(A)Mp 

and M TJ commutes with A. 
Now let fix) be any polynomial and express fix) lj.S a product of irreducible polynomials 

Then 

Defining M,,; as in Case 1 we obtain 
[f(A)] *=Mff(A) 

where 
Mf = M elMe2 M er 

P I P2· •• Pr" 

Clearly M f is nonsingular and fiA) is ail EP matrix. Q.E.D. 

4. Unitarily Diagonalizable Matrices 

In this section criteria are given which, when combined with the universal EP property, form 
necessary and sufficient conditions for unitary diagonalizability over an arbitrary algebraically 
closed field of characteristic 0/= 2. 

Let A be a square matrix of order n with entries from F, and let m(x) be the minimal poly­
nomial of A. Express m(x) as 

(4-1) 

where PI (x), P2 (x), . . . , Ps(x) are distinct irreducible polynomials . Let us denote the vector 
space of all n dimensional column vectors with entries in F by Fn and let N(B) denote the column 
null space of the matrix B, that is , 

N(B) = {xix E F", Bx=O}. 
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According to the Primary Decomposition Theorem [5] 

For ve ctors x and y belonging to F" , we say that x and yare orthogonal if x*y=O. Two sub­
space~U and V of £II are orthogonal if x*y = 0 for allx E U, y E V. When U and V are orthogonal 
and have a zero intersection, we write 

U 1. V. 

LEMMA 1: Let A be a normal matrix, Let r(x) and q(x) be relatively prime polynomials and Let 
q(A) be an EP matrix. Then 

N[r(A)] 1. N[q(A)]. 

PROOF: Since r(x) and q(x) are relatively prime, it is clear that 

N[r( A) ] n N [q( A) ] = 0. (4-2) 

It remains to s how that N [r( A) ] and N [q (A) ] are orthogo nal. Let x E N [r (A) ] , y E N [q( A) ]. 
Then 

0= x*[q(A)y] = [x*q(A )]y= [q(A) *x]*y. 

Thus q(A)*N[r(A)] is orthogonal to N[q(A)]_ Since A is a normal matrix, it follows that N[r(A)] is 
A *-invariant and hence 

q(A) *N [r(A)] = q(A*)N[r(A)] C N [r( A) ]. (4-3) 

Since q(A) is an EP matrix there exists a nonsingular matrix M such that 

q(A) *=Mq(A) . 
Thus , 

q(A) *N [r(A)] = Mq(A)N[r(A) J. (4-4) 

However, because N [r(A)] is A-invariant , we have 

q(A)N[r(A)] C N[r(A)]. (4-5) 

Also, it follows from (4-2) that 

dim {q(A)N[r(A)]} = dim {N[r(A)]}. (4-6) 

Combining (4-5) and (4-6) we have 

q(A)N[r(A)] =N[r(A)]. (4-7) 

Substituting (4-7) into (4-4) yields 

q(A) *N [r(A)] = MN[r(A)]. (4-8) 

Since M is nonsingular it follows that 

dim {MN[r(A)]}=dim {N[r(A)]}. (4-9) 
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Finally, combining (4-3), (4-8) and (4- 9) we have 

q(A) *N[r (A ) ] = N [r(A) ]. 

and hence N[r(A)] is orthogonal to N[q(A)]. O.E.D. 
An immediate consequence of Lemma 1 is: 
THEOREM 7: Let A be a normal, universal EP matrix whose minimal polynomial is given by 

(4 - 1) . Then 

(4-10) 

EXAMPLE 5: Normal EP matrix for which Theorem 7 is false. The matrix E of Example 4 is 
readily verified to be normal EP with minimal polynomial m (x) = (x - 3) (x - 4). The null spaces 

of the two irreducible factors are spanned by the isotropic vectors (~) and (~) respectively. 

Clearly, these null spaces are not orthogonal. 
Since F" is nonsingular and (4-10) is an orthogonal decomposition of Fn, each of the subspaces 

N[pi(A)ei], i = 1,2, ... , s is also nonsingular [1]. Hence, ifF is a field of characteristic "'" 2 then 

each N[Pi (A) ei] has a basis of mutually orthogonal nonisotropic vectors. If we form the matrix 

U by taking for its columns the vectors of the bases for the subs paces N[Pi (A) ei], i = 1, 2,. . . , s, 

then UU* = U* U is a nonsingular diagonal matrix and 

where Bi is a square matrix whose order is equal to dim N[pi(A)ei] and whose minimal polynomial 
is Pi(X)ei. In order that U be a unitary matrix it is necessary to be able to normalize each of the 
vectors in the bases of the subs paces N[pi (A )"i]. If A is diagonalizable then each Bi has unit 
dimension, and A is unitarily diagonalizable. 

THEOREM 8: Let F be an algebraically closed field of characteristic"", 2 and let A be a square 
matrix with entries from F. Then a set of necessary and sufficient conditions that A be unitarily 
similar to a diagonal matrix is: 

(1) A is similar to a diagonal matrix. 
(2) A is normal. 
(3) A is universal EP. 
PROOF: The sufficiency follows from the above arguments. The necessity of (1) and (2) is 

clear. Since a diagonal matrix is an EP matrix, and since the EP property is invariant under con­
gruence, it follows that every polynomial in A is an EP matrix. Q.E.D. 

For a matrix A with entries from the complex field, Schwerdtfeger [12] has called the matrix 
A * A the Gram matrix of A, and has shown that the Gram matrix of A always has the same rank as 
A. When the entries of A are from an arbitrary field, it is possible for A to have a greater rank 
than its Gram matrix (see Example 2). 

We are now able to characterize the unitarily-diagonalizable matrices over suitable base 
fields without hypothesizing diagonalizability. 

THEOREM 9: Let F be an algebraically closed field of characteristic"", 2, and let A be a square 
matrix with entries from F. Then a set of necessary and sufficient conditions that A be unitarily 
similar to a diagonal matrix is: 

(1) A is universal EP 
(2) For every c E F, A - cI has the same rank as its Gram matrix. 
PROOF: The necessity of (1) was shown in Theorem 8; the necessity of (2) is clear. 
Let A be a matrix satisfying (1) and (2). Each of the polynomials Pi(X) of (4-1) is linear since 

F is algebraically closed. Let SI, S2,. • ., Sk be the characteristic roots of A. By Theorem 3 there 
exists, for each i, a nonsingular matrix Mi such that: 
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Hence: 
(A - s;l)*(A - s;l ) = Mi (A - s;l)2. 

Conseque ntly, by (2) , the matrices (A - sJ)2 and (A -sJ) have the same rank. Thus Si is a simple 
characte ris ti c root of A, and each of the expon e nts ei of (4-1) is one. He nce A is diagonalizable, 
and F" has a basis consisting of c haracteristic vectors of A. However, if x is a characteris tic vector 
of A correspondi ng to any characteris ti c root s the n: 

(A*-s/)x = (A-sJ)*x = O. 
Thus : 

AA*x = sAx=ssx=A*(sx) = A*Ax 
from which we have: 

(AA*-A*A)x = 0 
and consequently A is norm al. Q.E.D. 

5. Normal Matrices Similar to a Single Jordan Block 

In this section normal matrices having a single ele me ntary divisor of th e form (x - s) i are 
characterized a nd studied. The base field, F , is of characteristic '" 2, and has an arbitrary involu ­
tory automorphism definin g conj ugation. 

DEFINITION 2: A matrix, A, is indecomposable if A has a sin gle eleme ntary divisor of the form 
(x - s) i. Thati s, if A is si milar to a single Jordan block of the followin!! form: 

K= 

s 1 0 0 

o s 1 0 

0 0 s 1 

0 0 o s 

o 0 0 0 

o 0 0 0 

000 0 

000 0 

0 0 0 

~\ 0 0 0 

0 0 0 

0 0 0 0 

(5-1) 

s 1 0 0 

o s 1 0 

o 0 s 1 

o 0 

Note th at in the above definition of indecomposability the matrix A not only has a single ele­
mentary divisor over the base field but also has a single elementary divisor over all exte nsion 
fi elds. This is, therefore , a more restrictive definition than is sometimes found where indecompos­
abili ty assumes only a single elementary divisor over the base field [11]. 

EXAM PLE 6: Normal indecomposable matrix. Let the base field be GF(5) with indentity auto­
morphism. Let 

; 0 3 4 2 1 \ 

2 1 342 

F = 1 3 4 0 0 

2 1 0 1 3 

1 3 03 4 

001 3 

o 2 3 4 

o 1 4 1 0 
I 

00031 2 

1 o 0 0 oj 
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00100 

00010 

00001 

o 0 0 0 0 

o 1 3 4 - \ 

2 3 4 4 

1 4 1 0 

o 0 0 3 

1 0 0 0 0 



The normality of F is readily verified. 
THEOREM 10: Let A be an indecomposable matrix over F. Then the following are equivalent: 
(1) A is normal. 
(2) There exists a polynomial with scalar coefficients such that A * = peA). 
PROOF: That condition (2) implies (1) is clear. It remains to prove the converse. Let K be the 

upper Jordan block corresponding to A, and let H be a similarity transform which carries A to K: 

H - IAH=K. 

The normality of A implies that 

(HKH- l) * (HKH- l) = (HKH- l) (HKH- l) * 

which can be written as 

[(H*H) - IK*(H*H)]K = K[ (H*H) - IK*(H*H)]. 

Hence the matrix (H*H) - lK*(H*H) commutes with the Jordan block matrix K and equivalently 
commutes with the matrix U having l's on the first superdiagonal andO's elsewhere. However, 
the only matrices which commute with U are upper triangular and constant on the diagonal and all 
superdiagonals [3]. Such a matrix has the following form: 

a b c d 

o a b c 

o 0 a b c 

o o 0 a b 

o 0 0 0 o o 
o 
o 

00000 0 

o 0 0 0 0 0 0 

But a matrix of the form (5-2) also has the form of a polynomial in the matrix K where: 

a= peA) b= pi (A) 
p"(A) 

c=~ 

Thus the matrix (H*H) - IK*(H*H) is expressible as a polynomial in K: 

(H*H) - IK*(H*H) = p(K). 

From eq (5-3) we obtain: 

A*= peA). 

etc. 

(5-2) 

(5-3) 

Q.E.D. 

EXAMPLE 7: Polynomial transform for normal indecomposable matrix. The matrix F of Ex­
ample 6 satisfies the following equality: 

F*=F4+P+2F2-F. 

On the basis of Theorem 10 we can characterize the indecomposable normal matrix A by the 
polyno~i~l transformation which carries A into A *. To a certain extent matrices have long been 
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characterized by this transformation; symmetric and skew-symmetric matrices are those in which 
the polynomial is the identity and negative identity, respectively. The following generalization of 
symmetry and skew-symmetry will be useful in the ensuing disc ussion: 

DEFINITION 3: A matrix A is unit-symmetric if A = uA * for some scalar u 7"= o. 
If the matrix A is not the zero matrix then A = uA * implies A = (uil)A and consequently the 

scalar u must have unit modulus . 
If the automorphism is the identity then a unit-symmetric matrix is either symmetric or skew­

symmetric since the only scalars with unit modulus are + 1 and -1; if, however, the automorphism 
is not the identity then the scalar u can lie anywhere on the " unit circle." 

While the indecomposable matrix A can have as its eigenvalue an arbitrary scalar in the field, 
it will be convenient to always assume that the eigenvalue is O. The next le mma shows that any 
results obtained under this assumption can be readily translated to the case where the eigenvalue 
is arbitrary. 

LEMMA 2: Let the matrix A be indecomposable and let a be an arbitrary scalar in the field. Then 
A is normal if and only if (A -aI) is normal. Consequently, A * is expressible as a polynomial in A if 
and only if (A -aI)* is expressible as a polynomial in (A -aI). 

PROOF: The proof consis ts of verifying the equivalence of the two equations: 
(1) A *A =AA* 
(2) (A - al) *(A - al) = (A - al) (A - al) *. 
The next le mma es tabli s hes a relatively weak but important set of necessary conditions on the 

polynomials whi ch transform a normal indecomposable matrix with 0 eigenvalue into its conjugate 
transpose. 

LEMMA 3: Let A *= p(A) where A is an n X n normal indecomposable matrix with 0 eigenvalue. 
Then the polynomial p(x) has the following form: 

where al 7"= O. 
PROOF: Since An= 0 it is not necessary to consider any term in the polynomial beyond x"- I • 

Since the eigenvalue 0 is in the fixed field of the involutory automorphism, the matrix A is similar to 
A *. Consider A * in the following form: 

A*=p(A) = p(HKH- I) = Hp (K)H - 1 (5-4) 

where K is the upper Jordan block corresponding to A, and H is the similarity transform which car­
ries A into K. Since A * is similar to A, it follows from equation (5-4) that p(K) is also similar to A. 
Hence, p(K) is indecomposable with 0 eigenvalue. The matrix p(K) has the upper triangular form 
shown in (5-2). Since the eige nvalue of p (K) is zero it follows that the diagonal element is zero. 
But the diagonal element of p(K) assumes the value p(O). Then 

p(O)=O. 

Since p(K) is indecomposable it has rank n-l , and consequently the element defining the first 
superdiagonal is nonzero. But this superdiagonal is defined by p' (0). 

p' (0) 7"= o. Q.E.D. 

DEFINITION 4: A polynomial p (x) which is of the form 

where al 7"= 0 is called an nth order admissible polynomial, or where the order is understood , 
simply an admissible polynomial. 
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It should be kept in mind that the term nth order refers to the dimension of the matrix A upon 
which the polynomial acts, and that an nth order admissible polynomial has degree at most (n - 1). 
The identity polynomial is an nth order admissible polynomial for all n. If p (x) is admissible then 
p (x) is also admissible where p (x) is obtained from p (x) by taking the conjugate of each coefficient. 

It is possible to modify the usual concept of composition of polynomials in such a way that it 
is unchanged on the class of admissible polynomials, but it is better behaved as an algebraic 
structure. This is the basis of the next definition. 

DEFINITIQN 5: Let p(x) and q(x) be the nth order admissible polynomials. Then the n modular 
ctJmposition of p(x) and q(x) is defined to be the polynomial obtained by first taking the ordinary 
composition of p(x) and q(x) as polynomials over the base field, and then dropping all terms of degree 
greater than (n-I). The modular composition of p(x) and q(x) is denoted by (p(x) ·q(x» or 
(p . q) (x). 

It is clear from the definition that the modular composition of two nth order admissible poly· 
nomials is again an nth order admissible polynomial. Moreover, if p(x) and q(x) are nth order 
admissible polynomials, and if A is an n X n indecomposable matrix with 0 eigenvalue then: 

p(q(A» = (p. q) (A). 

THEOREM 11: For any integer n > 1, the nth order admissible polynomials under the operation 
of n modular composition form a group. 

PROOF: It has already been noted that the admissible polynomials are closed under the modular 
composition. Associativity follows from the associativity of polynomials under ordinary composi· 
tion. The polynomial x acts as the identity and is admissible. Let p(x) and q(x) be admissible 
polynomials: 

PI #0 

ql # o. 

In order that q(x) be the left inverse of p(x) the following equation must hold: 

(5-5) 

where the symbol == refers to a congruent equality in which all terms above (n - i) are ignored. 
Equation (5-5) is equivalent to the system of (n -1) equations: 

qlPI = 1 

i=2, . .. , (n - I) (5-6) 

where f; is a well-defined function of Qj, Pi for j < i. 
From the form of eq (5-6) it is clear that for a given polynomial q(x), the polynomial p(x) 

is uniquely determined by a simple recursive relationship. Conversely, given p(x) , then the poly­
nomial q(x) is uniquely determined. Thus the left and right inverses of a given admissible poly­
nomial exist and are unique. Hence the set of admissible polynomials under modular composition 
form a group. Q.E.D. 

EXAMPLE 8: Group of admissible polynomials. The following is the group table of the third 
order admissible polynomials over CF(3). 
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x 2x X2+X x2+2x 2X2+X 2X2+2x 

x x 2x X2+X x2+2x 2X2+X 2X2+2x 

2x 2x X 2x2 +2x 2X2+X x2+2x X2+X 

X2+X X2+X x2+2x 2X2+ X 2X2+2x x 2x 

x2+2x x2+2x X2+X 2x x 2X2+2~ 2X2+X 

2X2+X 2X2+X 2X2+2x x 2x X2+X x2+2x 

2X2+2x 2X2+2x 2X2+ X x2+2x X2+X 2x x 

Since this group is nonabelian it is isomorphic to 53. In general, the group of jth order admissible 
polynomials over GF (n) has order ,,) - 2 (n - 1) . 

The admissible polynomials, having been structured as a group, can now be partitioned accord­
ing to the following equivalence relationship: 

DEFINITION 6: The admissible polynomials p(x ) and q(x ) are equivalent admissible poly­
nomials if there exists an admissible polynomial r(x) such that 

f(X) - 1 . p(x) . rex) = q(x). 

EXAMPLE 9: Equivalence classes of admissible polynomials. The following equivalence classes 
result from the third order admissible polynomials over GF(3) (see Example 8). 

(1) {x} 
(2) {2x, x2 + 2x, 2X2 + 2x} 
(3) {x2+x ,2x2+x}. 

If a polynomial is to transform an indecomposable matrix with 0 eigenvalue into its conjugate 
transpose it must be admissible. However, this necessary condition can be strengthened con­
siderably; that is, the group of admissible polynomials includes many polynomials which are 
incapable of transforming such a matrix into the conjugate transpose. 

LEMMA 4: Let the n X n matrix A be indecomposable with 0 eigenvalue and let p(x) be a poly­
nomiaL such that A * = peA). Then the polynomial (p . p)(x) is the identity polynomial. Consequently 
p'(O) has unit modulus. 

PROOF: SinceA *= peA) itfollows that A= p (A * ). Hence: 

A = p (p (A)) = (p . p) (A). 

This same polynomial identity holds for all matrices similar to A. In particular, it holds for the upper 
Jordan block matrix U consisting of 1 's on the first superdiagonal and O's elsewhere: 

U= (p. p) (U). (5-7) 

From eq (5-7) it is seen that the first order term of (p . p) has a unit coefficient and that all higher 
order terms are zero; hence, (p . p )(x) = x . Since p(O) = 0 (Lemma 3) it follows that: 

(p . p) I (0) = P I (0) . p' (0) . 

Hence p' (0) has unit modulus. Q.E.D. 
THEOREM 12: Let the n X n matrix A be indecomposable with 0 eigenvalue and let p(x) be a 

polynomial such that A *= peA). Then p(x) is equivalent to the polynomial r(x) = X/p'(O) where p'(O) 
has unit modulus. 
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PROOF: Define a polynomialq(x) as follows : 

q(x) = p(x) + p' (O)x. 

Since the first order term of q(x) has the coefficient 2p' (0) "" 0 it follows that q(x) is admissible. 
From Lemma 4 it is known that (p. p)(x) = x. Hence: 

(q(x) - p' (O)x) . (p(x» = x. 

Applying the left distributive law which follows from this distributive property of polynomials, we 
obtain: 

q(x) . p(x) =x+ (p' (O)x) . (p(x» = (P1O)x) . (q(x». (5-8) 

Hence: 

p(X)=(q(X» - I. (p'(O)X)' (q(x». Q.E.D. 

EXAMPLE 10: Equivalence of transforming polynomial to polynomial of form X/p' (0). The 
transforming polynomial of Example 7, p (x) = X4 + Xl + 2x2 - x, is equivalent to the polynomial- x: 

EXAMPLE 11: Examples of normal indecomposable matrices corresponding to polynomials of 
form X/p' (0). For base field GF (3) the only polynomials equivalent to polynomials of the form 
X/p' (0) are in equivalence classes (1) and (2) of Example 9. Matrices corresponding to these four 
polynomials are: 

G'~G 
0 

D~G 
1 

:) G 
1 

DG 
1 !f 2 2 0 2 Gf=G1 

2 0 0 0 2/ 

~~G 
2 

D~G 
1 

DG 
1 

DG 
1 

~r 0 2 0 2 G~= -G2 

1 0 0 0 

~~G 
1 

D~G 
2 

DG 
1 

DG 
2 }' 2 0 0 0 ~ G~= G5+ 2G3 

0 1 0 1 

G·~G 
2 

D~G 
2 

DG 
1 

DG 
2 

}' 1 1 0 1 ~ G!=2G!+2G4. 

0 0 0 0 

In the above development, a normal indecomposable matrix with 0 eigenvalue is characterized 
by the polynomial which transforms the given matrix into the conjugate transpose. In the following 
development the attention is switched to the matrix itself. 

LEMMA 5: Let A be an n X n matrix and p(x) be an nth order admissible polynomial. 
(1) If A is indecomposable with 0 eigenvalue then peA) is also indecomposable with 0 eigen­

value. 
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(2) If A is normal then p(A) is also normal. 
PROOF: If A is indecomposable with 0 eigenvalue then A is similar to the matrix U having l's 

on the first superdiagonal and O's elsewhere. Hence peA) is similar to p(U) where p(U) has the 
form shown in (5-2). Since p (0) = 0 it follows that the diagonal of p (U) is zero and that the only 
eigenvalue of p(U) is zero. Since p ' (0) ~ 0 it follows that the first superdiagonalofp(U) is nonzero 
and consequently, that p(U) is indecomposable. Finally, since peA) is similar to p(U) it follows 
that p (A) is also indecomposable with 0 eigenvalue. 

If A is normal then it is readily verified thatp(A) is normal for any polynomialp(x). Q.E.D. 
LEMMA 6: Let the n X n matrix A be indecomposable normal with 0 eigenvalue. Then there 

exists an n X n unit-symmetric indecomposable matrix B with 0 eigenvalue and an admissible poly­
nomial r(x) such that A= r(B) and B= r-1(A). 

PROOF: Define the admissible polynomial q(x) as in Theorem 12: 

q(x) = p(x) + p' (O)x 

wherep(x) is the polynomial which transforms A intoA*. Evaluatingeq(5-8) atx=A the following 
is obtained: 

q(p(A)) = pr(O)q(A) . (5-9) 
Define the matrix B as follows: 

B= q(A). 

Since q (XI) is admissible the matrix B is indecomposable with 0 eigenvalue and normal by Lemma 
5. The actual form of B* can be evaluated as follows: 

B*= q(A *) = q(p(A)). (5-10) 

From eqs (5-9) and (5-10) and the definition of B it follows that: 

B*=p'(O)B. 

Hence B is unit-symmetric. 
Since q(x) is admissible and the matrices B and A are indecomposable with 0 eigenvalue, it 

follows that q-l (x) can be applied to both sides of the equation defining B to obtain 

The lemma is proved if we define the polynomial rex) = q- I (x). Q.E.D. 
EXAMPLE 12: Transformation of normal indecomposable matrix into unit-symmetric inde­

composable matrix. The matrix F of Example 6 can be obtained from or transformed to the following 
skew-symmetric indecomposable matrix: 

0 3 4 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 -I 

2 0 0 0 0 2 0 2 0 0 0 1 0 0 0 2 0 2 0 

H= 1 0 0 3 4 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 

0 0 2 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 

0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 

The transformations are as follows: 

F=H3+ H2+H 

H=F3-P+F. 
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The results of Lemma 6 can be readily extended to obtain a complete characterization of normal 
indecomposable matrices with arbitrary eigenvalues. 

THEOREM 13: Let the matrix A be indecomposable. Then A is normal if and only if A can be 
represented in the form A = r(B) where the matrix B is unit·symmetric indecomposable with 0 
eigenvalue and r' (0) 0/= O. 

PROOF: Assume first that A is normal indecomposable with eigenvalue s. Then (A -sf) is 
normal indecomposable with 0 eigenvalue. By Lemma 6 there exists a unit·symmetric indecompos· 
able matrixB with 0 eigenvalue and an admissible polynomialq(x) such that: 

(A-sf)=q(B). 

Hence: 

A= q(B) +sI= r(B). 

Since q(x) is admissible it follows that q' (0) 0/= o. Hence r' (0) 0/= o. The converse follows from the 
fact that any polynomial in a normal matrix is again normal. Q.E.D. 

On the basis of Theorem 13 we can readily obtain all the indecomposable normal matrices from 
the set of indecomposable unit·symmetric matrices with 0 eigenvalue. 

If the involutory automorphism which defines conjugation is the identity, then the problem is 
greatly simplified. For this special case the only unit-symmetric matrices are those which are either 
symmetric or skew·symmetric. Section 6 of this paper treats this case in detail. 

6. Indecomposable Normal Matrices With Entries From a Field in Which 
Conjugation Is Defined by the Identity Mapping 

In this section the results of section 5 are extended for the special case in which the involutory 
automorphism defining conjugation is the identity mapping. To distinguish the present results 
from those obtained for an arbitrary involutory automorphism the transpose of a matrix will be 
denoted by At rather than by A *. 

The analog to Theorem 12 assumes the following form: 
THEOREM 14: Let the matrix A be indecomposable with 0 eigenvalue and let p(x) be a poly­

nomial such that AI = p(A). Then p' (0) is either + 1 or - 1. If p' (0) = - 1 then p(x) is equivalent to 
the negative identity polynomial, - x. Ifp' (0) =+ 1 then p(x) is the identity polynomial, x. 

PROOF: From Lemma 4, p' (0) has unit modulus. Since the automorphism is the identity the 
only scalars with unit modulus are + 1 and-I. 

If p' (0) =-1 then p(x) is equivalent to the negative identity by Theorem 12. If p' (0) =+ 1 
then p (x) is equivalent to the identity by the same theorem; however, the only polynomial which 
is equivalent to the identity polynomial is the identity itself. Q.E .D. 

The characterization of the normal indecomposable matrices in terms of unit·symmetric 
matrices assumes the following form: 

THEOREM 15: Let the matrix A be indecomposable. Then A is normal if and only if one of the 
following conditions is satisfied: 

(1) A is symmetric. 
(2) There exists a skew-symmetric indecomposable matrix B with 0 eigenvalue and a poly­

nomial r(x) where r' (0) 0/= 0 such that: 

A=r(B). 

Conditions (1) and (2) cannot be simultaneously satisfied. 
PROOF: Assume first that A is normal. By Theorem 13 there exists a unit· symmetric inde· 

composable matrix B with 0 eigenvalue and a polynomial r(x), r' (0) 0/= 0, such that: 

A =r(B). 
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Since the automorphism is the identity, the matrix B is either symmetric or skew-symmetric. If 
B is symmetric then A is symmetric; if B is skew-sym metri c then condition (2) is satisfied. 

The converse follows from the fact that a polynomial in a normal matrix is again normal. 
It remains to show that conditions (1) and (2) can not be simultaneously satisfied. Suppose the 

matrix A satisfies both conditions. If A has order n then Bn= 0 and we can assume that r(x) has 
degree less than or equal to n -1: 

A=rn_,Bn- '+ .. . +r2B2+r,B'+ro/ . (6-1) 

Since A is symmetric and B skew -symme tri c the following equation is ob tained by taking the 
trans pose of eq (6-1): 

(6-2) 

If n is an odd integer subtract eq (6-2) from (6-1); if n is an even i;lteger add the two equations to 
obtain: 

(6-3) 

Since B is indecomposable with 0 eigenvalue its minimal polynomial is given by xn. But eq (6-3) 
implies that B is annihilated by a polynomial of degree n - 2. Contradiction. Q.E.D. 

It should be noted that any skew-symmetric indecomposable matrix has zero eigenvalue when 
conjugation is defined by the identity. For if B is skew-symmetric indecomposable with eigenvalue s, 
then Bt also has eigenvalue s. But Bt= - B, and consequently Bt has eigenvalue - s. Hence s = O. 

The polynomials which relate a normal indecomposable matrix with 0 eigenvalue to its trans­
pose are completely defined by the following set: the identity polynomial plus the set of polynomials 
in the equivalence class of the negative identity. A more explicit representation of this set of poly­
nomials is desirable but has not been obtained. 

THEOREM 16: Let A be normal indecomposable. If A is not symmetric then A is of odd order. 
Symmetric indecomposable matrices exist for both odd and even orders. 

PROOF: The existence of symmetric matrices of odd and even orders and nonsymmetric 
matrices of odd order is shown by Examples 13, 14, 15. If A is normal indecomposable but not sym­
metric then b y Theorem 15 there exis ts a skew-symmetric indecomposable matrix with 0 eigenvalue, 
say B, of the same order. The rank of B is clearly one less than the order since it is similar to a 
matrix having all O's except 1's on the first superdiagonal. It remains to observe that any skew­
symmetric matrix has even rank [11]. Q.E.D. 

EXAMPLE 13: Example of symmetric indecomposable matrix of even order. Base fi eld CF(5). 

EXAMPLE 14: Example of symmetric indecomposable matrix of odd order. Base field CF(5). 

EXAMPLE 15: Example of skew-symmetric indecomposable matrix of odd order. Base field. 
CF(5). 

o 0)-' 
04· 

1 0 
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Theorem 16 indicates a fundamental difference between the symmetric and nonsymmetric 
normal indecomposable matrices. Since any polynomial of a symmetric matrix is clearly sym­
metric , polynomial transforms are not useful for studying the interrelationship between the sym­
metric and the nonsymmetric matrices. More complex tools are needed for any coexistence theorems 
for these two classes. 

Theorem 16 also demonstrates a fundamental difference between normal indecomposable 
matrices of odd and even order. Since this parity effect is one which is often apparent in geometric 
structures, a study of the geometric implications of the underlying vector space is indicated. Several 
definitions and preliminary results are needed for the discussion of geometric properties. 

DEFINITION 7: For a vector space V, the radical of V, rad V, is the subspace of all vectors of 
V which are orthogonal to V. If U* denotes the subspace of V orthogonal to U then rad U = un U*. 
We say that V is nonsingular if rad V = O. If rad V = V then V is isotropic. 

DEFINITION 8: A 2-dimensional nonsingular vector space which contains an isotropic vector 
is called a hyperbolic plane. An orthogonal sum of hyperbolic planes is a hyperbolic space. 

A hyperbolic space is nonsingular and has even dimension. As in section 4, we will use the 
symbol V ..1 W to denote the orthogonal sum of the spaces Vand W. 

THEOREM 17 [1]: Let V be nonsingular and U any subspace of V. Write U = rad U ..1 Wand 
let NJ , N2 , • • . , N,. be a basis of rad U. Then we can find in V vectors M I, M 2, • . ., Mr such that 
each N \, Mj is a hyperbolic pair and such that the hyperbolic planes P j=(N h M j) are mutually 
orthogonal and also orthogonal to W. V will therefore contain the nonsingular space: 

which, in tum , contains U. 
THEOREM 18: If n is an even integer then the following statements are equivalent: 
(1) Fn is a hyperbolic vector space. 
(2) There exist n X n symmetric indecomposable matrices over F. 

Ifn is an odd integer, the following statements are equivalent: 
(1 ') yo contains an n -1 dimensional hyperbolic subspace. 
(2 ' ) There exist n X n symmetric indecomposable matrices over F. 
(3') There exist n X n skew-symmetric indecomposable matrices over F. 
(4') There exist n X n normal indecomposable matrices over F. 
PROOF: We will show first that the existence of any normal indecomposable matrix implies 

(1) for n even, or (1 ') for n odd. Let A be a normal indecomposable matrix. If A is symmetric with 
ei genvalue s then A - sI is indecomposable symmetric with 0 eigenvalue. If A is not symmetric then 
there exists, by Theorem 15, an indecomposable skew-symmetric matrix B which must have 0 
eigenvalue. In either case we are assured of the existence of an indecomposable normal matrix with 
o eigenvalue. 

Let p (x) denote the polynomial transformation that carries the matrix B into Bt. Since B is 
either symmetric or skew-symmetric, the polynomial p (x) will be correspondingly either the iden­
tity or the negative identity. 

If H is the similarity transformation which carries B into the single Jordan block K: 

B=HKH- l 

then the following is readily obtained: 

Hence: 

(HtH)p(K) = Kt(HtH) . 
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The matrix (HtH) is the Gram matrix of the matrix H. Let L denote this Gram matrix so that 
the above assumes the form: 

Lp(K) =KtL. 

Note that since H is a similarity transform it must be nonsingular; consequently the Gram matrix L 
is also nonsingular. 

Since p (x) is either the identity or the negative identity, the matrix p (K) consists of all O's 
except + 1 or -Ion the first superdiagonal. Hence the first column of Lp (K) is identically 0, and 
the first column of KtL consists of 0 in the first place and Li-1, 1 in the ith place , i > 1. Thus: 

L1, 1 =L2 ,1 = . .. =Ln - 1, 1=0. (6-4) 

Since L is nonsingular, Ln, 1 is nonzero. 
Examining the second column of Lp(K) it is found that eqs (6-4) imply that there are O's in 

the first n -1 places. Comparing this to the second column of KtL the following is obtained: 

Continuing through the n-lst column we obtain: 

(HtH)i,j = Li,j = 0 whenever i + j ~ n. (6-5) 

If we consider a basis of Fn defined by the columns of the similarity transform H, hi , i = 1, 
2, ... , n, then the length square of the basis vector hi is given by the ith element along the 

diagonal of the Gram matrix L. If n is an even integer then eq (6-5) implies that the first ; vectors 

\ of this ordered basis are isotropic. If n is an odd integer then the first (n; 1) vectors of this ordered 

basis are isotropic. 

If we define the subspace U to be generated by the first ; vectors in the basis hi en; 1) if 

n Odd), then the space Fn is seen to be hyperbolic (contain an n -1 dimensional hyperbolic sub· 

space if n odd). 
Next assume that n is even and Fn is a hyperbolic space. Then there exists ; orthogonal 

hyperbolic planes, say Pi, i= 1,2, . . . , ; . Associated with each Pi there is a basis of two isotropic 

vectors whose product is unity; let one of these vectors be designated hi and the other designated 

~ hn + I-i. When we run through the ~ planes we obtain an ordered basis of n vectors, hj, j= 1, 

2, . . . , n , with the special property that for each j the vector hj has a unit product with hn+l - j 

and is orthogonal to the remainder of the basis. If a matrix H is formed by letting hj be the jth 
column of H then the following is obtained: 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 

0 0 0 0 0 1 0 0 

0 0 0 0 1 0 0 0 

HtH= 

0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 

0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 
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i.e., the Gram matrix HtH has 1's on the second diagonal and O's elsewhere. 
If K is an n X n single Jordan block then the following identity is readily obtaine d: 

Hence: 

HKH- l= (HKH- l)l . (6- 6) 

The matrix HKH- l is symmetric and inde composable. 
Finally, assume that n is an odd integer and that there exists an n - 1 dimensional hyperbolic 

subspace of Fn. Call this subspace U, and let U* denote the space of vectors orthogonal to U. 
Since Fn is nonsingular it follows that: 

dim U + dim U* = dim Fn = n. 

Hence U* is generated by a single vector k. The subspace U is also nonsingular since it is hyper­
bolic; consequently, U andU* must be disjoint. Thus we can write: 

Fn = U .1 k 

Suppose the vector k has length square c; that is , ktk = c. As in the first part of the proof 

we separate the space U into a system of orthogonal hyperbolic_ planes , Pi, i = 1,2, ... , (n; 1) 

Associated with each plane there is a basis of two isotropic vectors whose product is unity; let 
one of these vectors be designated hi, and multiply the second vector by the scalar c and designate 
the resultant vector by h n + 1 - i • Finally define the vector h(n+l) /2 to be the vector k, so that we 
obtain an ordered basis, hj , j = 1, 2, ... ,n, with the special property that for each j the vector 
hj has a product with h n + 1 - j equal to the scalar c, and is orthogonal to the remainder of the basis. 
The matrix H is defined to have thejth column equal to the basis vector hj so that the Gram matrix 
HtH consists of c's on the second diagonal and O's elsewhere. Equation (6-6) continues to hold, 
and the matrix HKH-l is symmetric and indecomposable. 

To obtain a skew-symmetric indecomposable matrix we modify the matrix H used immediately 

b . h f 11 . 1 (n + 1) . h h h h dd 1 a ove m teo owmg way: negate co umns 2 L were i runs t roug teo integers ess 

than (n; 1). Call this new matrix M. Then the Gram matrix MtM consists of an alternation of I 
+c, -c, +c, -c, ... along the second diagonal and O's elsewhere: 

0 0 0 0 0 0 0 ±c 
0 0 0 0 0 0 =t=c 0 
0 0 0 0 0 ±c 0 0 
0 0 0 0 =t=c 0 0 0 

MtM= 

0 0 0 =t=c 0 0 0 0 
0 0 ±c 0 0 0 0 0 
0 =t=c 0 0 0 0 0 0 

\ ±c 0 0 0 0 0 0 0 
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If K is a single Jordan block with O's along the diagonal then the following holds: 

Hence the matrix MKM-I is skew-symmetric indecomposable. Q.E.D. 
COROLLARY: The existence of any normal indecomposable matrix over F implies the existence 

of both symmetric and nonsymmetric normal indecomposable matrices of odd order over F. 
PROOF: Let B be the given normal indeco mposable matrix. If B is of odd order then the 

existence of symmetric and nonsymmetric normal indecomposable matrices follows from the 
equivalence of conditions (2'), (3') and (4'). If B is of even order, say 2n, then F2n must be 
hyperbolic. Consequently, P,,+1 contains a 2n dimensional hyperbolic subspace. The existence 
of symmetric and non symmetric normal indecomposable matrices of order 2n + 1 now follows 
from the equivalence of conditions (1'), (2'), and (3'). Q.E.D. 

If n is an even number we have shown that normal indecomposable matrices must be sym­
metric (Theorem 16), and that such matrices exist if and only if the underlying vector space is 
hyperbolic (Theorem 18). 

If n is odd we have demonstrated that a normal matrix B with eigenvalue s must satisfy one of 
the following (Theorem 14): 

(1) B is symmetric 
(2) (B - sl) t = p (B - sl) for some polynomial p equivalent to the negative identity. 

Furthermore there exist matrices satisfying (1) if and only if there exist matrices satisfying (2) if 
and only if the underlying vector space is the direct product of a one dimensional space and a 
hyperbolic space (Theorem 18). 

It remains to show that condition (2) above is the most restrictive condition which can be placed 
on the nonsymmetric normal indecomposable matrices of odd order. This is proven in the following 
theorem. 

THEOREM 19: If for some polynomial equivalent to the negative identity, say p(x), there exists 
an indecomposable matrix with 0 eigenvalue, A, such that N= p(A), then for any polynomial 
equivalent to the negative identity there exists such an associated matrix. 

PROOF: Let q(x) be an arbitrary polynomial in the equivalence class of-x. Then q(x) and 
p(x) are equivalent, and there exists an admissible polynomial r(x) such that: 

p(x) = (r - I. q·r ) (x). 

Evaluating at A we obtain: 

Or equivalently: 

r(At) = (q'r) (A). 

The left side of the above equation is equal to (r(A» t and the right side is equal to q (r(A) ). 
Hence we obtain: 

where B= r(A). Since r(x) is admissible the matrix B is indecomposable with 0 eigenvalue. Q.E.D. 
The preceding discussion demonstrates that if there are any normal indecomposable matrices 

over F then there is an abundant supply of such matrices: the corollary to Theorem 18 proves the 
existence of nonsymmetric normal indecomposable matrices, and Theorem 19 proves the existence 
of the full spectrum, in terms of the transposing polynomials, of such matrices. 
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On the basis of Theorem 18 we are also able to establish the existence of normal indecompos­
able matrices of higher order by considering the orthogonal sum of hyperbolic spaces_ Suppose 
that there exist n X n symmetric indecomposable matrices and m X m symmetric indecomposable 
matrices over F where both nand m are even integers_ Since Fn and Fm are hyperbolic, it follows 
that Fn .1 Fm is hyperbolic. Since the space Fn.l Fm is isomorphic to Fn+m it follows that there 
must exist (n+m) X (n+m) symmetric indecomposable matrices over F. If the integer n is even 
but m is odd then the vector space Fn .1 Fm must contain a hyperbolic subspace of dimension 
n + m -1, and consequently there must exist normal indecomposable matrices of this order. 

Of particular interest are those fields which contain 2-dimensional isotropic vectors. Examples 
of such fields are GF(5) and the complex numbers (with, of course, identity automorphism). 
Since there exists a 2-dimensional isotropic vector there must exist 2 X 2 symmetric indecomposable 
matrices, for if (a, b) is isotropic then such a matrix is given by the following: 

Consequently, there must also exist 3 X 3 normal indecomposable matrices. Thus the vector 
space F2 is hyperbolic and F3 contains a 2-dimensional hyperbolic subspace. Now let n represent 
an arbitrary integer greater than 1. If n is even then the vector space Fn is hyperbolic since it is 
expressible in the form F2 .1 F2 .1 ... .1 F2; consequently, there exist n X n normal indecompos­
able matrices over F. If, on the other hand, n is odd then the vector space Fn contains an n-l 
dimensional hyperbolic subspace since it is expressible in the form F2 .1 F2 .1 ... .1 F2 .1 F; 
consequently, there again exist n X n no!'mal indecomposable matrices over the given field. Since 
any matrix of order 1 is normal indecomposable the following holds: If the base field has a 2-
dimensional isotropic vector then there exist normal indecomposable matrices of all orders. 

It should be noted that while the existence of normal indecomposable matrices of order 2n 
implies the existence of such matrices of order 2n+ 1, the converse is not true. As a counter­
example let F be a field for which there exists 3-dimensional isotropic vectors but there do not 
exist 2-dimensional isotropic vectors (e,g., GF(7)). Since there are no 2-dimensional isotropic 
vectors over F, the space of 2-dimensional vectors is not hyperbolic, and according to Theorem 18 
there exist no 2 X 2 normal indecomposable matrices. However, since there do exist 3-dimensional 
isotropic vectors, the space of 3-dimensional vectors does contain a hyperbolic plane. Conse­
quently, there must exist 3 X 3 normal indecomposable matrices (Theorem 18). Example 16 is a 
3 X 3 normal indecomposable matrix over GF(7). 

EXAMPLE 16: Normal indecomposable matrix of order 3 where no such matrix of order 2 
exists. Let the base field be GF(7). 

(0 3 5) (3 
4 0 6 = 1 
2 1 0 5 

2 0)\(0 
1 0 10 
o 6 0 

1 ())'(3 
o 1 .. !1 1 
o 0 \5 

2 0)-1 
1 0 . 
o 6 

While the existence of normal indecomposable matrices of even order imply the existence of 
such matrices of the next highest odd order, we are unable to go from odd order to the next highest 
even order. In other words, given that there exist normal indecomposable matrices of order n, it 
is not necessarily true that there exist such matrices of order m for m > n. As a counterexample 
we can again consider GF(7). The vector space F4 contains the following two independent, iso­
tropic, orthogonal vectors 
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- -- -----~ 

Consequently F4 is hyperbolic and there exist 4 X 4 and 5 X 5 indecomposable normal matrices. 
However, there do not exist any 6 X 6 normal indecomposable matrices over GF (7). The proof of 
this is lengthy and has been put in section 7. Since F7 can be expressed as the orthogonal sum of 
F4 (which is hyperbolic) and P (which contains a 2-dimensional hyperbolic subspace), it follows 
that F7 contains a 6-dimensional hyperbolic subspace; consequently, there do exist 7 X 7 normal 
indecomposable matrices over this field. 

7. Proof of Nonexistence of 6X 6 Normal Indecomposable Matrices overGFI(7) 

If there exist normal indecomposable 6 X 6 matrices over GF(7) then GF(7)6 is hyperbolic and 
contains three independent, isotropic, orthogonal vectors. The following modifications of such a 
triplet of vectors does not affect the independence, orthogonality, or isotropicity: 

(1) Addition of a multiple of one vector to a second vector. 
(2) Permutation of the elements of each vector, always using the same permutation. 
(3) Multiplication of any vector by a nonzero constant. 

Using modification of types (1) and (2), the existence of any such triplet ensures the existence of 
three isotropic, orthogonal vectors having the following form: 

o 
Y2 
o 

(7- 1 ) 

where x h Y2, and Z3 are nonzero. Since each of the three vectors are nonzero and since the spaces 
of one and two dimensional vectors over GF(7) contain no isotropic vectors, each of these vectors 
must contain at least three nonzero elements. 

LEMMA 7: At most one vector of the triplet (7-1) contains exactly three nonzero elements. 
PROOF: Assume X6=O, and suppose Y6 also equals zero. Since x'z=y-z=O the following 

homogeneous equations hold: 

Consequently, (X4, xs) and (Y4, Ys) are linearly dependent (z contains at least three nonzero 
elements so that Z4 and Zs cannot be simultaneously zero). Thus: 

O=x·y=s(x!+x~) 

for some scalar s. But this is impossible since there are no 2-dimensional isotropic vectors over 
this base field. Hence Y6 "" O. Similarly Z6 "" O. 

Since X'Y= X4'Y4 + XS'Ys = 0 where X4 "" 0, Xs "" 0, and since Y4 and Ys cannot be simultaneously 
zero, it follows that Y4 and Ys must be nonzero. Similarly, Z4 and Zs are nonzero. Q.E.D. 

LEMMA 8: No vector of the triplet (7-1) has exactly three nonzero elements. 
PROOF: Assume X6=0. Since x'y=x'z=O the following homogeneous equations hold: 
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Hence (Y4, Y5) and (Z4, Z5) must be dependent. We can thus consider the three vectors (7-1) to be 
in the following normalized form: 

Xl 

rf' 
0 

0 0 
0 Z3 

1 1 (7-2) 

\ !, 
1 
X5 

0 y., Zs 

where the orthogonality of X and yand of X and Z have been explicitly accounted for. 
Since the vector x is isotropic the following holds: 

xi+ 1 +x~=O. 

Hence: 
x~=6-xi· 

. Since the only squares over GF(7) are 1,2,4 it follows that x~ must assume the value 2 or 4. 
From the orthogonality of y and Z we obtain: 

Substituting the two possible values of x~ we obtain: 

Ys • Z6 = x~. 

CASE 1: x~ = 2. 

Since y and Z are isotropic the following equations hold: 

y~+1+4+y~=0 

Z~ + 1 + 4 + z~ = o. 

Hence: 

y~=2-y~40. 

Z~ = 2 - z~ #0. 

Again using the fact that the only squares are 1,2,4 it follows that y~ = z~ =1. Hence Ys' z6=±I=x~. 

Contradiction. 
CASE 2: x~ = 4. 
In a similar way we obtain: 

y~=4-y~ # 0 

Z5 = 4 - z~ # O. 

Hence y~ = z~ = 2, and as a resul~: Y6 • Z6 = ± 2 # x~. Contradiction. Q.E.D. 
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As a result of the above lemma if there are to exist three independent, isotropic, orthogonal 
vectors over GF(7), they can be assumed to be of the form (7-1) where all tprms written with 
letters are, in fact, nonzero. Assume that these vectors are normalized so that Xl = Y2 = Z3 = 2. 
Then the following vectors are orthogonal, and have iength 3: 

(::) , (~:), (;:). 
Xs Y6 Zs 

The following is a complete list of 3·dimensional vectors over GF (7) having length 3 : 

(±1) (±2) (±2) (±3) 
!~ , !~ , !; , !~ . 

It can be shown that there do not exist three orthogonal vectors in this set. 
Hence there do not exist three orthogonal, isotropic, independent vectors over GF (7) 6, and 

consequently there do not exist any 6 X 6 normal indecomposable matrices over GF (7). 

8. Some Open Questions 

1. Identify the group of the jth order admissible polynomials with entries from the field GF (nk). 
2. Find the polynomials conjugate to - x . It can be shown that if 

is conjugate to - x then 

p,=-l, 
P3=-P;, 
P5 = 2p~ -- 3p2P4, 
p7=-13p~+ 18pgP4 -4P2P6' 

We conjecture that all odd numbered coefficients can be expressed in terms of the preceding 
even numbered coefficients. 

3. Characterize the normal matrices over an arbitrary field of characteristic"" 2 which are 
expressable as a polynomial in their conjugate transpose. 

4. Characterize the normal matrices over an arbitrary field of characteristic "" 2 which are 
neither unitarily similar to a diagonal matrix nor have a single elementary divisor. 
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