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A simpufied analysis is given of a problem situation, previously treated in the uterature, which 
pertains to the delay· minimizing allocation of servicing times among N incoming streams requiring 
"processing" of some kind by a single "server" (e.g., a time·shared computer). The original problem is 
generauzed to permit different "weights" for the delays suffered by different streams. 
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1. Introduction 

A 1967 paper by Rangarajan and Oliver [1)1 contains a formulation and analysis of the two 
problems described below, which pertain to the allocation of servicing times among N incoming 
streams requiring "processing" of some kind by a single "server." The server might for example 
be a switching point or a congestion point (e.g., a tunnel entrance) in a transport network, in which 
case "processing" an item (vehicle) simply means letting it through. Or, the server might be a 
computer handling reservations from several ticket offices, or exercising real-time control over 
vehicle movements on several network links, or performing some other tasks on a time·shared basis. 

The streams are treated as continuous flows. During each service cycle, of duration T, the 
server handles stream 1 for time Ct , switches (with associated known switch-over or "dead" time) 
to handle stream 2 for time C2 , etc. The arrivals in each stream are assumed nonrandom, with a 
known uniform rate (possibly different for different streams). The server's processing rate, when 
serving a particular stream, is also assumed nonrandom and constant (possibly different for different 
streams). Each Ci is constrained to be at least large enough so that no queue remains in the i th 
stream when one of that stream's service periods ends. 

The two problems formulated and analyzed are these: 
PROBLEM 1: For given cycle time T, what allocation Ct , C2·, ••• , CN of service times among 

the various streams is optimal, in the sense of minimizing total waiting time per cycle? 
PROBLEM 2: What value of the cycle time T will minimize average waiting time? 
Subsequently Horn [2] showed that the more general case, in which all streams are served 

equally often (possibly more than once) per cycle, can be reduced to PROBLEM 1. This provides 
additional reason for offering an alternative analysis, which is more self-contained and (at least to 
the writer) simpler than that of reference [1]. In addition, a mild generalization will be introduced 
by permitting the penalties for delay to be different for different streams. 
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2. Formulation 

The data for PROBLEM 1 are 

T= cycle time, 
N = number of streams, 
ai = arrival rate for ith stream, 
Si = service rate limit when processing ith stream (Si > ai), 
di = dead time in switching from ith stream to next one, 
Pi = penalty factor for delays to ith stream. 

Note that our (ai, Si , di) are the (Ai, J-ti , T;) of reference [1] , which in effect ass urnes all Pi = 1. 
Under the assumption of first-in-first-out service within each stream, the waiting time per cycle 

for the ith stream is found as in reference [1] to be 

= aisi(T- Gi)2!2(Si- ai). (1) 

(The factor 1/2 was omitted from the analogous equation in reference [1]; also our (1) differs from 
that formula by a fac tor T because we work with total rather than time-averaged delay.) Thus the 
function to be minimized is 

N 

WO= "2.,PiaiSi(T-G;)2/2(Si-ai). (2) 
1 

The condition, that each stream have its queue disappear before its service period ends, is 
expressed by 

Gi(Si-a;) ~ (T-Gi)a; or equivalently GiSi ~ Tai , 

which is equivalent to 
(T- Gi)Si "'" T(S i - ai) . (3 ) 

The remaining constraint on the Gi 's is the obvious identity which can be expressed, in terms of 
total service time and total dead time 

and 

in the form 
G+D=T. (4) 

We simplify by introducing the new variables 

Xi= (T-Gi)(T, 
and also 

W = 2Wo(P (5) 

as the new minimand, equivalent to the previous one since T is fixed for PROBLEM 1. Furthermore, 
let 

bi = (Si-ai) (Si >0, 

Ci = pia;/b; = PiajS;( (Si - ai) > 0, 
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qi = I /c; = bd pjaj > 0, 

B = N -I + (D/T). 

Then from (2) and (5), we see that PROBLEM 1 requires th e minimization of 

N 

W (T ) = W = L CiX; (6) 

subject to the conditions (3) , whi c h are equivalent to 

O ~Xi~ bj, (7) 

and to condition (4), which is equivale nt to 

N 

L Xj= B. (8) 

From (7) and (8) we obtain the condition 

(9) 

which is both necessar y a nd s ufficie nt for the consis te ncy of th e co ns traints, and is ass umed to 
hold in what follows. 

3. Solution of PROBLEM 1 

Since the proble m requires minimizing a contin uo us s tri ctly convex fun ction over th e closed 
bounded subset of x-s pace de fin ed by (7) and (8), there must exis t a unique relative minimum v,hi ch 
is in fact the unique absolute minimum. Hence we need only derive enough necessary conditions, 
for a local minimum , to sin gle out just one point in x -space. 

The streams will be numbered (in analogy with p. 76 of ref. [IJ) , so that 

(10) 

Observe first that at a local minimum , 

CiXj < CjXj implies Xj= ° 
for otherwise we could further decrease the objective fun ction (6) without violating the constraints 
(7) and (8), by decreasing Xj and increasing Xi by the same sufficiently small positive quantity. 
Since Xj=O in this situation would lead to a contradiction of the condition Xi ~ 0, we in fact have 

CjXj < CjXj implies Xi = bj • (11 ) 

In analogy with eq (4a) of refere nce [1] , let r be the s mallest index for which x,. = b,. in the locally 
optimal solution under consideration. (If Xj < bi for i = 1, 2 , .. . , N, then take r= N + 1. ) W e next 
show that 

xi= bi if i ~ r , (12) 
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i.e., that streams 1 through r-l are precisely those served longer than needed to eliminate their 
queues. That Xi < bi for i < r, follows from the definition of r. To rule out the possibility that Xi < bi 
for some i > r, note thatbici ~ brcr, so that 

which by (11) implies Xi = b;, a contradiction. 
In particular, the solution is fully determined (each X;= bi) if r= 1, which by (12) and (9) can 

N N 
occur iff JB='L bi. Thus in what follows we temporarily assume B < 'L bi, so that r > 1. 

I 1 

Next, (11) and (12) imply the existence of some K > 0 such that 

c;xi=K foralli<r, 
or equivalently 

x;=qiK for all i < r. (13) 

It follows from (8), (12), and (13) that 

r-I N 

B=K'L qi+'Lbi, 
1 r 

implying 
N 

(B- 'L bi) 
K= r 

r-l 
(14) 

'Lq; 
1 

From (13) and the fact that Xr-l < br- h we have 

(15) 

If r ~ N, then it follows from Xr-l < br- 1 and (11) ... with i = r-l and j= r ... that 

(16) 

We next dispose of the case r=N+ 1. By (8) and (13), if r=N+ 1 then 

q;B 
X·=--

I N (all i), 

'Lqj 
1 

(17) 

B 
K=-N-' 

'Lqi 
1 

Using (15), we see from (18) that r= N + 1 implies 

(19) 

Conversely if r < N + I, then (14) and (16) would both hold, yielding 
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r-I N r - I N N 
B=KL qi+ L. b;;3 brcr L q;+ L (b;Ci)qi;3 bNcN L qi, 

1 r 1 r 1 

contradicting (19). So (19) is a necessary and sufficient condition for r = N + 1. 
Suppose now that 1 < r < N + 1. Using (14), (IS), and (16), we have 

r-I N r - I N 

brcr L qi + L bi ::;; B < br- 1cr- 1 L qi+ L bi 
1 r 1 r 

as the test for determining r. With r known (1 < r < N + 1), the optimal solu~ion is given by (12), 
(13), and (14). Since br- 1cr-Iqr-1 = br- I, the test can be rewritten 

Br::;; B < Br- I, (20) 
in terms of the quantities 

k-I N 

Bk= bkCk L q;+ L bi. (21) 
1 k 

With the convention BN +1 = 0, the test remains valid when r= N + 1, according to the discussion 
surrounding (19). And with the convention Bo=oo, it remains valid for r= 1 as well (necessarily 
with B = B d. The test is satisfied for at most one value of r since BN+1 < BN and for 1 < k < N + 1, 

k-I 

Bk- I - Bk= (bk-1Ck-l - bkCk) L qi;3 0; 
1 

it is satisfied for at least one value or r since BN+1 < B ::;; B I . 

We conclude this section by stimmarizing the solution process, in terms of the problem data 
(assuming the ordering (10)): 

Step 1: Calculate the total dead time per cycle, D. 
Step2: CalculateB=N-1+ (D/T). 
Step 3: Calculate the quantities bi= (Si - ai)/si and their sum BI. 
Step 4: If B > B 1, then stop; the problem is infeasible. If B = B .. the optimal solution is 

Gi = Ta;/s; for all i. If B < BI, continue. 
Step 5: Beginning with BI and with Qo=O, calculate quantities QI, B2, Q2, B3 , etc. by the 

formulas 

Stop as soon as Bk ::;; B is attained, set r= k, and go to Step 6. If B < BN is encountered, the optimal 
solution is 

for all i. 
Step 6: Calculate 
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The optimal solution is given by 
Gi = T - TKqi (i < r), 

4. Solution of Problem 2 

Recall the relation 
D/T=B-N+1 (22) 

between Band T, which yields 
dB/dT=- DIP. (23) 

The decreasing sequence {B,J1 defined by (21) yields, through (22), an increasing sequence {Td~ 

of break-points in "T-space." The feasibility condition B::% BI is equivalent to T ~ TJ, and the 
interval Bk ::% B < Bk- I on which r= k corresponds to the interval Tk- I < T::% Tk. 

Let W min (T) be the minimized value of W(T), as determined in section 3. Then by (5) , we have 
the expression 

for the minimum delay per cycle, so that 

VO (T) = TW min (T) (24) 

is twice the minimized time-averaged delay per cycle. Thus our objective in PROBLEM 2 is to 
choose T, subject to T ~ TJ, so as to minimize VO (T). 

First consider the behavior of VO (T) on the interval (TN/X) corresponding to the range B < BN. 
By (17) and (6), 

N 2 

W min (T) = (B/QN)2 L Ciqi, 
1 

so that (24) yields 
VO (T) = (B2T) X (pOS. const.). (25) 

Using (23), we have 
(d/dT) (B2f) =B2 + 2BT(dB/dT) =B2 - 2B(D/T) 

= B[2(N -1) - B] > B[2(N -1» - BN], 
and since 

N 

BN::% B1=L hi::%N < 2(N- 1) 
1 

(assuming of course that N> 1), it follows that (TN, (0) is an interval on which VO (T) is increasing, 
hence not an interval on which the minimum of VO (T) can occur. 

Next, consider the behavior of VO(T) on the interval (Tr- 1 , Tr). Minimizing VO(T) over this 
interval is equivalent to minimizing 

r-I 

Vr(T) = VO (T) L qi. (26) 
1 

Using (12) and (13) to substitute the opt1mal solution to PROBLEM 1 into (6), we obtain 

r - I N 

Wmin(T) = K2 L Ciq; + L c;b; 
1 
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1' - 1 .V 

= K 2 2: q; + 2: c;b 7 ' 

which by (14) can be rewritten 

(27) 

It follows from (24) and (26) that 

This formula, (22) and (23) yield 

(28) 

(29) 

Suppose in particular that r ;,: 3. It will be shown that 

dV,./dT ;,: 0 (right derivative at T = T,. _,) , (30) 

which by (29) implies that (T,. _" T,.) is an interval on which V,.(T) and he nce VO(T) is increasing, 
hence not an interval on which the minimum of VO(T) can occ ur. 

By (21) and (28) , the expression in (30) whose sign is to be determined is 

This has the same sign as 

N r-I N 

Dr- I = 2N - 2 - 2 2: bi - br- ,Cr- I 2: q; + (br- ,cr- ,) - I 2: c;bf · 
r 1 r 

Since 
r-I r - l 1'-1 

br- 1cr- , 2: qi :s; 2: b;C;qi = 2: bi, 
1 1 1 

we have 
N r-I N 

Dr- I ;,:2N-2-2 2: b;-2: bi+ (b,.- ,Cr-.) - ' 2: c;b~' 
r 1 r 

Because each b; < 1, the two subtracted terms in the right-hand side total less than 

2(N-r+l) + (r-1)=2N-r+1, 

which is no greater than 2N - 2 for r ;,: 3. Thus Dr- I > 0 for r ;,: 3, verifying (30). 
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We have shown that the minimum of VO(T) over (TI , (0) is given by its minimum over [TI , 

T2 ]. That is, as noted in reference [1], in an optimal solution one has r = 1 or r = 2, so that for all 
but at most one stream one has GdT= ai/si, i.e., all " slack time" (if there is any) is concentrated 
in the period allotted to a single stream. 

The minimum over [TI' T2] is determined as follows. Using (27) with r = 1 and r = 2, it is readily 
verified that W min (T) is right-hand continuous at T1• Thus the problem is equivalent to that of 
minimizing V2 (T) over [TI' T2]. 

By (29), the minimum will occur at TI if (30) applies there, and by (28) this condition reads 

bl (2N - 2 - bl - 2 ± bl) + ql ± cib; ~ 0, 
2 2 

or equivalently 
N 

Plad2N - 2 - 2BI + btl + L Piaibi ~ o· (31) 
2 

If (31) does not hold, then dV2/dT= 0 occurs at a unique value T*, where T* > Tt, and the 
optimum occurs at T* or T2 according as T* ~ T2 or T* > T2. Specifically, from (28) and (22) we 
have 

or equivalently 

yielding 

{( N)2 N }-1/2 
T* = D N - 1 - + bi + ql + Cib~ . (32) 

The solution process for PROBLEM 2 can be summarized as follows, assuming the ordering 
(10): 

Step 1: Calculate the total dead time per cycle, D. 
Step 2: Calculate the quantities bi = (Si - ai)/si, their sum Bl, and the quantity 

If BI ~ N - 1, stop; the system is infeasible. 
Step 3: If (31) holds, set T= D/ [B I - (N -1)] and Gi= Ta;fsi for all i. 
Step 4: Otherwise, calculate T2 = D/ [B2 - (N -1)] and 

If T* > T2 , set T= T2 and 

If T* ~ T2, set T= T* and 

G1 = T* [B 1 - bl - (N - 2)] - D. 

In both cases, set Gi= Tai/si for i > 1. 

116 



5. References 

[1] Rangarajan, R., and Oliver, R. M., Allocations of servicing periods that minimize average delay for N time-shared 
traffic streams, Transp. Sci. 1 , 74-80 (1967). 

[2] Horn, W. A., Allocating service periods to minimize delay time, J. Res. Nat. Bur. Stand. (U.S.), 728 (Math. Sci.), No. 
3, 215- 227 (1968). 

(Paper 76B3&4-365) 

117 


	jresv76Bn3-4p_109
	jresv76Bn3-4p_110
	jresv76Bn3-4p_111
	jresv76Bn3-4p_112
	jresv76Bn3-4p_113
	jresv76Bn3-4p_114
	jresv76Bn3-4p_115
	jresv76Bn3-4p_116
	jresv76Bn3-4p_117
	jresv76Bn3-4p_118

