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Methods are developed for calculating the normal coordinate vibrations of isolated helical homo-
polymers and of the antiparallel sheet structures formed by some helical polymers in the solid state.
The dynamical equations are expressed in Cartesian displacement coordinates starting from an internal
coordinate harmonic force field. As an example of the method the dynamical equations of the honey-

comb lattice are derived.
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1. Introduction

An essential feature of many polymeric crystals is
layered structures which are held together primarily
by interchain hydrogen bonding. Examples of poly-
meric materials which form this type of structure
include some nylons, synthetic polypeptides, and
fibrous proteins. Interchain bonding is expected to
influence vibrational properties especially in the low
frequency region and thereby affect the infrared and
Raman spectra, the inelastic neutron scattering, and
thermodynamic properties such as the low temperature
specific heat.

With the availability of commercial Fourier trans-
form infrared spectrophotometers and low light
scattering Raman spectrometers low frequency vibra-
tional studies on polymeric systems are now practical
and several such studies have recently appeared in
the literature [1-3]. The assignment of vibrational
spectra obtained from solid state samples has been
based mainly on normal coordinate calculations of
isolated chain models [4—7]. Interchain effects have
been either totally ignored or treated in part by pertur-
bation methods [4, 8, 9] because the vibrational secular
equation may become quite large. For example, the
normal mode frequencies of polyglycine, (CH.NHCO),,
in the fully extended conformation, polyglycine I,
may by calculated from an isolated chain model with
Csy symmetry by solving a secular equation of dimen-

“: sionality twenty-one. For the more realistic two-
gdimensional pleated sheet model the dimensionality
kof the secular equation is 84 since four glycine residues

comprise the two-dimensional unit cell. To calculate
* the vibrational frequency as a function of the phase
differences (phonon dispersion curves) requires the
b solution of a secular equation which is twice as large

| because the matrix elements are, in general, complex.
»

The phonon dispersion curves are useful for com-
parisons with the inelastic neutron scattering data
[7, 10] and with the low temperature specific heat [7].

In this paper a method is introduced for calculating
the normal coordinates in terms of the Cartesian dis-
placement coordinates of isolated helical homo-
polymers. This method is extended to antiparallel
sheet structures with four chemical repeat units com-
prising the two-dimensional unit cell. The method is
demonstrated for the honeycomb lattice shown in
figure 1.

2. Method for Calculating the Normal
Coordinates of an Isolated Chain

The adaption of the Wilson GF method [11] to the cal-
culation of the normal coordinates of helical infinite
polymers was first described by Higgs [12] who utilized
symmetry adapted internal coordinates. Miyazawa and
coworkers [13] extended Higgs’ method by defining the

FIGURE 1.

Honeycomb lattice unit cell is indicated by dotted lines.

The polymer chains lie along the z axis. The interchain bonds are parallel to the x axis.

|4 351



internal coordinates in terms of the helical parameters.
This method is rather cumbersome especially for com-
plicated chemical repeat units. Small, et al. [6] have
developed a method by which the vibrational secular
equation may be set up from the internal coordinates of
one chemical repeat unit defined in the Cartesian co-
ordinate system. The dynamical matrix in terms of
the internal coordinates in nonhermitian so as to re-
quire two separate matrix diagonalizations. Further-
more, there are usually redundant internal coordinates
introduced so that the dimensionality of the secular
matrix is larger than 3M where M is the number of
atoms in the chemical repeat unit. Both of these dis-
advantages are removed by expressing the vibrational
problem in Cartesian displacement coordinates. An
expression for the vibrational secular equation for
helical polymers in the symmetrized Cartesian dis-
placement coordinate basis set will now be developed
following the method devised by Small, et al. [6], for
the internal coordinates.
The kinetic energy in terms of the Cartesian dis-
placements is
3M .
> Xrm X7
JdF

r=—N/2+1 j=1

N/2

2T = (1)

where X7 is the jth displacement coordinate of the
rth chemical repeat unit for a polymer of N total repeat
units with reentrant boundary conditions and m; is
the mass of the atom undergoing the X]T displacement.

The potential energy assuming harmonic forces is

V=23 2 X fp Xy (2)
P gD G U
where

frp=0V/]oXraxXy

are force constants in terms of Cartesian displacement
coordinates.
In matrix notation eqs (1) and (2) become

and ~
AV = 2 Xrir, p&p

r,p

(4a)

where the tilde means the transpose vector. The
potential energy, eq (4a), may be rewritten as

2V=2 i Xrg resXr+s (4b)

r s=—k

where the index s labels the neighboring units of the
rth unit and fr+s=0 for |s| > k.

The symmetry coordinates, X(0), are linear com-
binations of equivalent coordinates. Unlike the internal
coordinates which are invariant of unit location and
equivalent, the Cartesian coordinates depend on unit
location but may be made to form an equivalent set
through the rotational operator H”(¢). The matrix
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H"(¢) is comprised of M 3X3 blocks along the
diagonal where each block is of the form

cos(ry) — sin(ry) 0
(sin (ry) cos () 0> (5)
0 0 1

and ¢ is the helical angle.

The matrix H"(y) rotates the x,y coordinates of
the Oth unit into those of the rth unit. The form of trans-
formation given in eq (5) assumes a right-handed helix
with helical axis Z and with r > 0 labeling units reached
by clockwise rotations plus translations.

The normalized symmetry coordinates X(6) are
defined as

X(0) =1/VN Y exp(—irQ) H-"(¥)X".  (6)

Solving eq (6) for X" and substituting into eq (4b) yields
2V=3% explir(6' — )]

r,s 0,0
X (0)H-" () frresHr () H($)X (0')exp (is8')  (7)

From the definition of the transformation matriy
H"(¢) and the covariance of £77+5 it follows that

g—r(lp)gr,r-m__H_r(dj) = ;‘0,8
With this result eq (7) becomes

2V =" X (0)f>H+($)X(6) exp (isd).  (8)

s,0

The potential energy may also be expressed in the
internal coordinate basis set as

2V =3 REFRe

t,q

)

where R¢ is the column vector of internal coordinates
in the gth chemical repeat unit and

Ft9= 92V/aR R}

are the internal coordinate force constants.
The internal coordinates are defined through tl
B matrices [6],

Re= 2 BarXr
2

so that eq (9) becomes
¥V = 2 E Xrgt,rgt,ng,po
(e q p,vr
which yields upon comparison with eq (4a)

gr,p = 2 Bt,rEt,ng,p.

t,q

o

i



Utilizing the expression [6]
gq,p = ]é‘),l)—qg—q(q,)

and the fact that Ft¢= F%%-¢ we have
f0s = 2 ﬂt(d,)go,-tgo,rgo,s—t—rﬂ(lp)—(t+r) (10)
t, r

Where the summations are over positive and negative
values. We find by substitution of eq (10) into eq (8)
the potential energy in terms of the Cartesian displace-
ment symmetry coordinates and the internal coordinate
force matrix:

2V22

r, 8,t

XOH~)Bo exp (—ith)F o

exp (ir0) B *H: () exp (s0)X (8). (1)
Defining
B(#)=> exp (is0)BsHs (1)) (12)
and i
F@0)=Y exp (iro)F*r (13)
Equation (11) becomes
0)B(O)E (6)B(©)X(0). (14)

3 2V=2 X (0
0

The kinetic energy, eq (3), becomes in the Cartesian
symmetry coordinates

2T = 2 X (0 ) MX ()
or in the conjugate momenta
2T=3 P@O)M-1P (). (15)
0

From eqs (14 and 15), we find through Hamilton’s
equations the eigenvalue equation

M-'B@O)E®)B @) Lx(6)=Lx(0)A(6) (16)

shere A(0) is the diagonal matrix of the squares of
he eigenfrequencies and Ly is the matrix of eigen-

ectors. Equation (16) may be symmetrized in the
‘Hrm
A-12B(O)F©)B@O)M-1"L;(6) =L (0)A(6)  (17)

vhere Ly(0)=M?2Ly is the matrix of eigenvectors
n the mass-reduced symmetry coordinates.

The form of eq (17) is identical to that given pre-
icusly [14] for translational symmetry (i.e. H"(y)
: the unit matrix). The essential feature in this deri-

tion is that the dimensionality of B(f) equals the

.umber of independent coordinates in the chemical
peat unit and that only the internal coordinates

of one chemical repeat unit in terms of Cartesian dis-
placement coordinates need be specified.

3. Two-Dimensional Lattice of
Antiparallel Chains

Consider a two dimensional lattice, figure 1, in the
X, Z plane with two chains passing through the unit
cell and helical axes parallel to Z. The helical angle,
Y, is 180° and there is a two-fold screw rotation axis
along X. The latter symmetry operation reverses the
sense of the two chains to produce the antiparallel
structure. The translational unit cell contains four
chemical repeat units numbered (0,0), (0,1) in the
« chain and (1, 0), (1, 1) in the B chain.

The four units are related by the two-fold screw
axes along Z and X. For the two-dimensional lattice
we have [14]

£(, 0)=B(¢, O)E(¢, O)B(, 6) (18)
where
B($.0) 22 Brsexp [i(r¢p+s0) ]
F (¢, 0)=3 Fr* exp [i(r¢+56)]
with )
d): l_(‘\' o E\
0=kz -tz

The quantities ty, tz are the lattice vectors directed
along the X and Z axes and ky, k7 are the wavevectors.
The quantities ¢ and 6 are the phase differences
between identical displacements in neighboring unit
cells. The dimensionality of the matrix f(¢, 6) is
3m X 3m where m is the number of atoms in the two-
dimensional unit cell whereas the dimensionality of
F (¢, 6) equals the number of internal coordinates
which is usually greater than 3m since redundant
coordinates are included.

The basis set used to express the quantities in
eq (18) are linear combinations of equivalent chemical
repeat units:

Ny—-1Nz -1

(b, 0)=1/VNxN, 2

r=90

exp [—i(r¢p+1t6)] X!

t=0

(19)

where j, [=0, 1 label the chemical repeat unit and
r, t the unit cell. The symmetry coordinates, eq (19),
may be related to those of eq (6) as follows. The
chemical repeat units are renumbered so that X7 ¢
equals X{P;i)/2,(a-0/2 with j, /=0 or 1 for p, ¢ even or
odd. A generalization of eq (6) yields the symmetry
coordinates
2Nx—1 2Nz-1

X(¢'.6)=12VNN; 3

pP=0

exp [—i(pp’ +qb") H-» —1Xpa

q=0

(20)
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where H?:¢ is the transformation matrix representing p 2-fold rotations about X and g 2-fold rotations about
Z. The matrix H”- 7is comprised of m 3 X 3 blocks with each block given by

<(—1)a 0 0
0 (=1)a+» 0 )
0 0 =1

Using the relationship between X?:¢ and Xjr /> eq (20) may be rewritten as

X (¢, 60)=1/2VNxN;y { > X exp[—i(pg'+qb')] Xpz 2

P, even q, even

+ 3 Y exp [—i (pp’ +4qb")] H ' Xp/3 (a- 12

P, even q, odd

+ > Y exp[—i(pp +qb)] Ht. 0X 50z, a2

P, odd g, even (21)

+ 3 Y exp [—i(pd'+q6')] HL1X(pyD/2 (a-1))2

P, odd ¢, odd

X (¢, 0)=1/2 [Xo,0 (29", 26') + H"'X,, ', (2", 26") exp (—i0)
+HV X0 (2¢',20') exp (—ip')+H" X, (2¢', 20') exp(—i(8'+¢'))].

Functions orthogonal to X(¢. 0) are X(¢p. 0+ 7). X(p+ 7. 0). and X(b+ 7. 6+ ) which are related to those
of eq (19)

X (¢, 0) I e-i0Fo:1 e~ 1.0 e O 1 Xo,0 (26, 26)
X(, 0+ ) 1|1 —e#HOT  ewHLY  —erolia| [ X, (26, 26)
X(p+, 0) 2 |1 eHO 1 — e itH10 —eoolgnt| (X, (26,20 @@
X(¢+, 0+ 1) I —eHot  —eHL0 ol X, (26, 26)
or
X (.0 | Xo,0 (20, 20) |
X (¢, 0+m) Xo,1 (2¢, 26)
=U (¢, 0) (23)
X (¢p+, 0) Xi,0 (2¢,26)
_X (p+m, 0+ 'n')_J _31,1 (29, 20)—

where I is the identity matrix.

We now derive an expression similar to eq (22) for the internal coordinates so that £(¢. 0). eq (18). may
be transformed to the new symmetry coordinates. It is convenient to list the internal symmetry coordinates
of the lattice as [Ro.o (. 0), Ry 1 (¢p. 0). ro (¢. 6). R, o (¢. 0). R, .| (. 0).1rs (b. 6)] where R/ (¢, 0)
are intrachain coordinates of the j. [ repeat unit. r, (¢. 6) and rg (¢. 6) are interchain coordinates associated
with the a and 8 chain respectively. In a manner analogous to that which lead to eq (22) we find
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_E(cb, 6) ] (1 e 0 e~id e-i0+0) 0 B _50,0(2¢>, 26) |
R (¢, 6+ ) 1 —ei 0 e—it e=id+6) 0 Ro,:(2¢,26)
r(d, 0) 0 0 V2 0 0 V2e-it ra(26, )
-3 29
R(¢+m, 0) 1 e 0 —eib —e-idi0) R, 0(26, 26)
R(¢+m, 6+ ) 1 —ei 0 —e-it i) 0 R, (25, 26)
r(¢+m, 0) 0 o V2 o 0 —\/§e-ii ra(24 6) |
_Bu,n(z(l), 20)_
Ro,1(2¢, 20)
ra«(2¢, 0)
=Wi(¢, 0) (25)
Ri0(2¢ 26)
Ry.1(26,20)
| rs(2¢, 6)

The H?: % matrices do not enter into W(¢. 0) since the internal coordinates are invariant to position within
the unit cell. Using eqs (23).(25).£(¢p. 0) is transformed to

(¢, 0) =B'(, 0)F' (¢, 0)B' (¢, 6)
where
B'(¢,6)= W(¢, 0)B(2¢,20)U(¢, 0) (26)

and

l=1

(¢, 0) = W(d, OF (244 20)U (¢, 0).

In the absence of interchain interactions £' (¢. ) consists of four noninteracting blocks. two of which
correspond to intrachain phase difference 6 and the other two to 6+ . It will be shown that with certain types
of interchain interactions f' (¢, 0) contains nonzero elements only between the blocks (¢, 6) and (¢ + 7, 6+ )
and between (¢, 6+ 7), (¢ + 7, 6) so that the dimensionality of the dynamical matrix has been reduced by a
factor of two.

Let

ol
Q
|
~
©

B (2¢, 26)
B/ (¢, 6)=1/V2 U (¢, 6) (27)
1 —e it Bf (26, 20)

where B¢ (24, 26), BP (2¢4. 260) are the B matrices associated with coordinates r.. rg respectively. These B

matrices may be expanded in terms of contributions from each of the four residues in the unit cell.
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B:(26,20) | |B:, Bz, B:,  Be

0,0 20,1 =20 =111
BP (24, 26) B, BS, BI, B,
Letting,
Be (¢, 6) =B7(2¢,260) U(4,9)
we find upon substitution of eq (28)
1= )
B (¢, 9)=§ > expli(jp+k6)] B H-J. -k (29a)
- k=0 T
and
I .. .
B (4.0)=5 3 exp [i(io+ ko) BS Ho (29b)
o

Substitution of the expression for B (2¢, 20)9(4), 0) into eq (27) yields

B (¢,0) B*(¢.6) B+(b,0 B (h,0)
B/ (¢, 0)= ) (30)
B-(6,6) B (¢,0) B (6,60 B (¢,0)
where
B* (¢, 0) =1/ V2 [B*(¢, 0) £ exp (—id)BA (¢, 0)] 31)
and
0=0+m, d=¢+ .

If a diagonal valence force field is assumed for the interchain interactions

F@) 0 0 0 0 0
0 F@® o 0 0
0 0 F° 0 0 0
F'(¢,0)= (32)
0 0 0 F@) 0 0
0 0 0 0 F@® o0
0 0 0 0 0 F°

where F(0) is the isolated chain force matrix. eq (13), and K is the valence field force matrix for interchain
interactions. From eqs (30-32) we have

(10 +fi(d+0)  £i(d.0:6.0)  fi(.0:5.0)  fi(¢.0: 5. 8) |
F@O /(6.8  fi(. 55,0  fi(b 80
£ (¢, 0) = (33)
clel £+(0) +1i(d,0)  fi(d, 6; ¢, 6)

/@) +i(3.0)]

where f,(0) is the symmetrized force matrix for the isolated chain [from eq (16), £+(6) = B(6)F (0)B(6)],
fi($,0;6,0)=B* (¢, 0) E°B* (¢, 8) + B~ (¢, 0) E°B~ (¢, ) (33b)
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and

fi(¢, 0) = fi($, 6; $, 0)
The vibrational secular equation for the two-dimensional lattice is
|£~1/2£1 (d)’ 0)&—1/2_w21|=o_ (34)

A relationship exists between B*(¢. 6) and B (¢. 6) which is helpful in the further simplification of £’ (¢, ).
The quantities quk(d) 0), Bf,\, (¢, 6) which appear in eqs (29 a. b) are sums of B matrices multiplied by phase
factors.

B¢, (2¢,20) = Z exp [2i(lp+no) B0 " (35a)
and ,
B, (24, 20) =;1exp [2i(lp+n6)]BE " (35b)

where the superscripts /, n label the unit cell. As the internal coordinates given by Qf o(@. 0) and Qj",,(d), 0)

are equivalent it follows that

and from eq (35b)
BS, (26,20)=exp [-2i G—1)¢]1Be, , , (26,—20) H".

Substituting the above expression into eq (29b) yields

BE(c, 0) = exp [i(d+0) 1B(¢p, — ) HO- 1
and from eqs (31) and (33b)

(¢, 056", 6) =B (6, 0) F'B(¢', ') +exp [—i (6—¢'+6—6)] H" 1
B (¢, —0) F'B® (¢',—6') H"1.  (36)

The secular equation may be constructed from the B and F matrices for the isolated chain and the inter-
actions between the two chains in the unit cell. Under certain conditions as shall now be shownf’ (¢, 6) reduces
to block form.

We assume the polymer possesses a plane of symmetry and that the two chains in the unit cell are coplanar.
If the internal coordinate cennecting the two chains is a bond stretch directed along the x axis as in figure 1
B«(¢.,—0) is independent of 6 and

f; (6. 0:0',6')=[1+exp [—i (6—¢'+0—06')]] B (¢,0) F'B (¢',0'). (37)

The quantity f; (¢. 0;¢".0')=0if (¢'. 0')=(dp+7.0) or (¢'.0")=(¢.0+7) and £'($. 0), eq (33a) becomes

upon rearrangement

(£ (0)+fi(6,0) £ (6.6: $.0) 0 o ]
£ (@) +f ($,8) 0 0
f'(¢,0)= -~ -~ ~ (38)
i £ (0)+£ ($,0) ]
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Hence, for interchain interactions directed along the x axis (perpendicular to the chain axis) the chain
modes given by ¢. 6 interact with those of the other chain in the unit cell given by ¢+ 7. 6+ 7 with the inter-
action given by 2B (¢. 0) E’Bo(p+ar, 0+ ).

A dynamical matrix of the form of eq (38) is retained for interchain interactions which couple x and z mo-
tions if the chain possesses local C, symmetry about the interchain bond as in the case of the honeycomb lattice,
ficure 1. Consider the internal coordinates which are deformations of the angles formed by the interchain bond
in figure 1. The two angles with common apex atom are equivalent because of the local C, symmetry. Under the
two-fold screw rotation about x these internal coordinates are carried into an equivalent pair in the second
chain. These four internal coordinates are therefore equivalent and if the equivalent ones in Bf are renumbered
it follows that

Ejﬁ,,’i, n— glaljjfllzli’ n+k

from which it can be shown that
BY (¢,60)=exp [i (p—0)1 B* (¢,6) H-1 .
For in-plane internal coordinates

BE (¢, 0) =—exp [i (6—6)] B (¢, 0)
and eq (38) follows.

4. Example: Honeycomb Lattice

The preceding method will now be applied to the honeycomb lattice shown in figure 1. The in-plane intra-
chain internal coordinates of the honeycomb lattice are R?. bond stretch and R). angle bend: one of the set
of two equivalent interchain coordinates consists of r”. bond stretch and r2>=>. angle deformations. Let 2e be
the intrachain angle. s=sin €, c=cos € and r, R the intrachain and interchain bond distances respectively.
The intrachain coordinates are

(o) = (armer) 5 (o) X0+ (5 o ) X

and the interchain coordinates

re 0 0 0 o —1 0
7 s/rclr 0 0 s/r —(c/r+1/R)
rdl={ 0 0 |X%7+| 0 0 |X»'+|s/r c/r+1/R X%
rs 0 0 sir cfr 0 1/R
\rd 0 0 0 0 0 —1/R
0 0 1 0 0 0
0 0 0 1/R 0 0
+l=str —clr |X804| 0 —UR Xes+| 0 0 |xe9
0 0 —s/r — (c/[r+1/R) 0 0 |
0 0 —s/r (c/[r+1/R) slr —cfr

From eqs (12 and 13) the dynamical matrix for the isolated chain is. assuming a valence force field.

I

4 cos? 0/2(frc2+ 4s2fc[r? cos? 6/2) 2isc sin O(fr —4f/r? cos? 0/2)]
—2isc sin 0(f, —4fe/r? cos? 6/2) 4f,s? sin? 6/2+ 4fc/r2c? sin2 0
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where f,. fc are the bond stretch and angle deformation force constants respectively. The interaction matrices

are found through eqs (28). (29a). and (37) to be

2/ sin2 (/2) + 8fss?/r2 cos? 6/2
f,6:9.0 = 4ife5/r sin (8) [c/r+ cos? (3/2)/R]
63 5 [ if sin ¢
U= | —265/7R sin ¢ sin 0

—difss/r sin (6) [c/r+ cos? (¢/2)/R]

8f5(c2/r? sin? (6/2) + 1/R? cos? (¢/2) +2¢/rR
cos? (¢/2) sinZ (6/2))

—2fss/rR sin ¢ sin 6
—4ifs/R sin (d))(l/R—f—c/r):'

where fg, f5 are the interchain force constants for bond stretch and angle bend respectively. From f(¢. 6; ¢. 0)
and f(¢. 0; ¢. 0) the first block of £ (¢. 0). eq (38). may be constructed. The resultant secular equation may
be solved for values of 0 < ¢ < 7/2 and 0 < 0 < 7 to obtain the phonon dispersion curves over the z-extended
zone. The variation of phonon energies with k. for a particular value of k, are found by folding the phonon

dispersion curves about §=90°.

5. Summary

Utilizing the unit cell symmetry, the dynamical
matrix (eq (33a)) of the antiparallel chain lattice has
been derived. The elements of this matrix are ex-
pressed in terms of the dynamical matrix for the
isolated chain and the B and F matrices for the inter-
chain coordinates. The dynamical matrix of the isolated
chain and hence that of the lattice may be determined
by specifying the internal coordinates of one chemical
repeat unit. It was found that with certain types of
interchain forces the dynamical matrix of the anti-
parallel chain lattice may be reduced to block form
for arbitrary values of the intrachain and interchain
phases. All normal modes may be determined by
solving one of the two blocks of resulting secular
equation for 0 < ¢ < 7/2 and 0 < 6 <7. The reduction
in the dimensionality of the secular equation with
certain types of interchain forces can lead to a sig-
nificant reduction in computation time especially for
more complicated homopolymers such as polyglycine.

The methods used to derive the dynamical matrix
of the antiparallel chain lattice may also be applied
to other polymeric crystal structures.
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