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The normal emissivity of an isothermal cylindrical cavity (with top), with a diffusely reflecting
interior of reflectivity much less than 1, is calculated approximately as a function of the inside radius
of the cylinder by the DeVos method. The calculation is analytical, and considers the singly and doubly
reflected radiation escaping from the cavity aperture. The results of the analysis indicate that, for
cylinders whose length-to-lid aperture ratio is much larger than 1: (a), for a given cylinder length and
lid aperture, the configuration with the inside diameter approximately 0.64 the length has the smallest
normal emissivity; (b), as the inside diameter increases or decreases from the configuration of smallest
normal emissivity, the normal emissivity increases monotonically.
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1. Introduction

It is often important to establish design criteria for
cavity radiators. A frequently used configuration is
the cylindrical cavity with top (fig. 1). If the interior
of the cavity is isothermal, the normal emissivity of
the cylinder may be defined as the ratio of the normal
radiance of the cylinder aperture to the normal
radiance of a blackbody at the temperature of the
interior. If the bidirectional reflectance characteristics
of the cylinder interior are known, the DeVos method
[1]' theoretically enables the normal emissivity of an
isothermal cylinder to be computed from the sum of:
(a), the radiation emitted parallel to the cylinder axis
by the area of the base defined by the projection of the
aperture (parallel to the axis) onto the base; (b), the
radiation emitted by the interior of the cylinder which
is incident upon the projection of the aperture onto
the base, and then reflected out the cavity aperture
parallel to the axis; (c), multiply reflected radiation
which escapes from the cavity aperture in a direction
parallel to the axis. That is, a DeVos analysis is a
series expansion of the normal emissivity of a cavity
in terms involving successively greater numbers of
interreflections within the cavity. This series converges
rapidly if the reflectance, r, of the cavity interior is
much less than 1; therefore, the reflectance of the
cylinder interior is assumed to satisfy this condition.
To simplify the analysis further, it is also assumed
that the interior of the cylinder reflects and emits
diffusely.? (Many cavity radiator materials are approxi-

'Figures in square brackets indicate the literature references at the end of this paper.
2In this paper, the terms “diffuse” and “diffusely” refer to reflection or emission that
follows Lambert’s cosine law [3].

mately diffuse in their reflecting and emitting
characteristics.)

Let ecy be the normal emissivity of the cylinder
and e the diffuse emissivity of the cylinder interior.

Then ecy may be written,
e(‘N:e[1+rA1+72Az+ .. .], (1)

where 4., 4., etc., are coefficients which depend only
on the cylinder configuration. From Kirchhoff’s law
[2] and the assumption that the cylinder walls are
opaque, it is clear that

ren=1—ecx, (2)
and that
r(‘N=rBl+rZBz+. o og (3)
where
B1 =] —Al,
Bngl —Az,
etc.

Quinn has shown [4] that, for the cylindrical cavity
of figure 1 with length L, aperture radius R,, and
inside radius R»,

Bi=2[L[2+2+ L(L*+4)°5]1, (4)
where

E=L/R1. (5)

Quinn also shows that

(M _
B.=16R: f dY (M2 —Y2)
0
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FIGURE 1. Cross section and top view of cylindrical cavity: L,

length of cylinder; Ri, radius of aperture; R., inside radius of
cylinder; Z, height of differential element above base of cylinder.

X[((M+Y)2+R3+1+ ([((M+Y)2+Rz+1)2
_4R§)o,s]—1

XIM-Y:+R+1+ ([(M-Y)2+Rz+1]2
_4E§)o.5]—1

X[([(M+Y)2+R3+1]2—4R32)05]-1

X[([(M—Y)2+Rz+1]2—4R2)%5]-1,  (6)

where ~
Rg = Rz/R1, (7)
M =1L1/2, (8)
Y=Z2-M (see fig. 1). 9)

2. Analysis

It is now assumed that M is much greater than 1;
that is, the cylinder length L is much greater than the
lid aperture, 2R,. It is desired to compute B for
the two cases: (a), R» equals R;; (b), R» much greater
than R].

2.1. Calculation of B, for R, Equals R;

Since M is much greater than 1, it is convenient
to expand B» as a series in powers of (M)-!. For R,
equal to R, it is found that

B.=4-1(M)-3+2-(M)~*+ . .., (10)

to order (M)~4; that is, terms of order (M)-5 or higher
are discarded.

2.2. Calculation of B, for R Much Greater Than R,

If R, is much greater than R, Quinn shows [4]
that B, may be approximated with fractional error

roughly 2(MR3)~! by

1
B;=4§g(n‘4)—zf0 71— 72)

X[(1+7)2+83]2[(1— )2+ 83]-2,  (11)

where

S, =R./M, (12)
V=ZIM-1 (see fig. 1). (13)
B’ has the closed form solution,
B, = S,[16M2(S3 + 1)3]-!
X[4(1 — S%) + S2(St+ 353 +6) In (1+4/S32)
+252(3 — 82) cot! (S,/2)].  (14)
It is useful to define the function
F = B,M2, (15)
which is independent of M.
It is seen from eq (15) that
Shﬂ B,=4-18,(M)-2 = 4-1R,(M)-3, (16)
and that o
Jim B, = (2/3) (S§M?) . (17)

Thus B’ approaches 0 as S» approaches 0 and as S
becomes infinite; hence B, must have at least one
maximum as S» varies from 0 to infinity. Direct com-
putation of B}, (see table 1) establishes a maximum at

Sy 5 (18)
The physical symmetry of the problem suggests that
there is only 1 maximum of B} as S. varies from 0 to

infinity; however, this has not been proved mathe-
matically.

TABLE 1. The normalized, approximate second order DeVos
reflection coefficient, F(S.), for a diffusely reflecting cylindrical
cavity with length much greater than the aperture (see fig. 1):
Jfor values of the ratio of the aperture to the length, S, between 0.1
and 1.0

o

F(S:)

1 [0.034350
2 .070853
4 166720
.6 .208828
.644 | .210088
8 197426
0 160336

(Maximum)

3. Conclusions

From eq (3) for rcy, eq (4) for By, and the preceding
analysis of B, it is seen that:

a. B is independent of Ro. .
b. Since M is much greater than 1, to order (M)=2,

Bz = le == 4_1R2(M)_3.
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c. As R, varies from R, to 0.64R,M (for M > 1),

B, increases monotonically to its maximum value,

Bomax = Boyax= 0.210(M) 2.

d. As R, varies from 0.64R M to infinity (for M > 1),

B decreases monotonically to 0.

e. Since ris much less than 1 and M is much greater

than 1, rcyis approximately,

ren ~4-1r(M)=2 (1 + 4rByM?).

f. As R varies from R, to 0.64R.\M (for M >1,

r<<1), rey increases monotonically to its maximum

value, ~
renmax) =~ 471r(M )=2(1+0.840r).
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g. As R, varies from 0.64R M to infinity (for M > 1,
r<1), rcy decreases monotonically to its minimum
value.

T'eN(MIN) =2 4_1’(1‘_4) =%
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