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A nonequilibrium (kinetic) theory of polymer molecular weight (MW) fractionation is formulated
and applied to binary and multicomponent polyethylenes crystallized from unstirred xylene solutions.
Hich MW components crystallize more readily than do low MW components. This fractionation effect
is enhanced as the crystallization temperature is raised. At low crystallization temperatures (high
undercoolings) the polymer tends to fractionate according to the volume fraction distribution of its
MW components and thus. the number average MW of the crystal that is formed is approximately equal
to the weight average MW of the polymer in solution. It is shown that MW fractionation does not
depend on the details of nucleation. but rather on the rates for post-nucleation crystal growth. The
effects of MW polydispersity on crystalline properties is considered and in particular it is shown
that polydispersity tends to mask the intrinsic dependence of crystal thickness on MW. The vari-
ables which govern and influence fractionation are also discussed.
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1. Introduction

There is a growing body of experimental evidence
that indicates that when a polymer polydispersed in
molecular weight (MW) begins crystallizing, the high
MW components preferentially crystallize first. This
phenomena has been observed in both stirred [1-3]"
and unstirred [1, 4, 5] solutions of polyethylene
and xylene. It is also thought to occur during crystal-
lization from the melt and would appear to affect the
resulting crystalline morpholog». Fractionation has
been invoked to explain spherulitic growth habits
[6, 7] and is believed to accompany the formation of
extended-chain crystals [8—12]. For monomeric
materials. crystallization from solution or from the
melt (zone refining) is a standard procedure for achiev-
ing high purity and one wonders what the limitations
are for polymeric materials.

Polymer MW fractionation during crystal growth is
also of interest for other reasons; an important one is
the fact that all polymers are polydisperse in MW to
some degree. For example. in crystallization studies
one sometimes tries to follow the variation of a crystal
property with MW (average) by working with sharp
MW fractions. A knowledge of the amount of frac-
tionation that is occurring gives one a better idea of
whether the distribution is sharp enough for the experi-
ment in question; i.e., in crystallization experiments
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the very notion of a “sharp” MW fraction is intimately
tied up with the amount of fractionation that occurs.

Moreover, MW fractionation implies that the central
regions of a cyrstallite can have a MW composition
that is different than the peripheral regions since the
solution becomes depleted of hich MW components as
the crystal grows in lateral size. Thus, there is a com-
position heterogeneity in the crystal and a concomitant
spatial variation in all those properties that are a
function of composition. It has been suggested that
isothermal thickening of polymer crystals is caused
by this variation in crystal composition [13, 14].

Heretofore, theoretical studies of MW fractionation
have essentially been equilibrium theories [4, 5, 15, 16].
However, equilibrium treatments of fractionation
have a limited range of applicability [15] since polymer
crystals are formed under nonequilibrium conditions.
The undercooling is typically 20 to 30 °C and as will
be demonstrated, fractionation is a sensitive function
of undercooling.

In a previous publication [17], hereafter referred to
as paper I, we developed a kinetic theory of polymer
crystal growth from dilute solution for a monodisperse
polymer. In a second paper [18], paper 11, we applied
the theory to polyethylene (PE) crystallized from xylene
solutions. These works provide a foundation on which
we can build a nonequilibrium theory of fractionation
in unstirred solutions. This is done in section 2. In
section 3 we apply the theory to the PE-xylene system
and in section 4 the conclusions of the study are
discussed.
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2. Theory

2.1. Relation to Papers | and Il

It is perhaps best to begin by recalling the experi-
mental situation on which our model is based. In
dilute solution, thin (ca. 100 A) plate-like lamellar
crystals grow to large lateral size by accretion of the
polymer molecules to the outer edges of the crystal
The polymer molecules composing the crystals are
oriented with their molecular axes perpendicular to
the basal plane of the lamella [19, 20]. Since the con-
tour length of the molecule is larger than the lamellar
thickness the molecules must fold. Cleavage experi-
ments show that the molecules tend to fold parallel to
the growing edge [21] and crystallographic properties
indicate more or less tight folds on the surface of the
crystal [20]. The molecules can thus be viewed as
lying down in parallel growth strips (fold planes).
The growth rate is of the order of strips per second
[22]. The smoothness of the growing edge is a measure
of the rate of nucleating a strip compared to the rate
of filling in the nucleated strip. Smooth surfaces cor-
respond to rare nucleation events, but one cannot make
a quantitative statement without recourse to theory.

In papers I and II we described and calculated
the growth rates of such crystals from a monodisperse
polymer solution. One of the interesting aspects of
this treatment is that the rate of nucleation S* of a
strip is a rare event compared to the rate of filling in
of the strip, S’, under most growth conditions. This
means that the overwhelming number of molecules
that comprise the grown strip, and therefore the crys-
tal, are non-nucleating molecules. Under these condi-
tions one can write the growth rate G for the change
of a lateral dimension with time as [17]

G=G(S*,S',N) 2.1)
where N is the number of nucleation sites. In the more
general case G is a function of the forward and back-
ward rate constants for nucleation as well as the for-
ward and backward rate constants for filling in.

This formula remains valid even if we have a poly-
disperse system, the S* and S’ merely need be inter-
preted as total growth rates:

S*=3 5S¢
§=25

S/ is the net rate at which molecules of type i are being
added to an already nucleated strip. Since most
molecules of a growth strip are of the fill-in type the
fraction of species i incorporated into the crystal is

given by
fi=8; |35

Nucleation must be viewed as the compound event of
attaching a molecule (or cilium) to the crystal edge
followed by the subsequent stabilization of this mole-
cule by other molecules. S¥ is the rate at which

2.2)
2.3)

(2.4)

molecules of type i initiate the growth of a strip. The
fraction of growth strips whose initial molecule is
type i is a calculable quantity but it is uninteresting.
In paper I we pointed out that the functional form
of eq (2.1) for the growth rate G is unknown, except in
two limiting cases. We argued that for polymer
crystallization the following limiting case
G ~ S* (2.5)
is valid when S*<S’. We wish to point out that the
composition of the crystal does not depend on the
functional form of G and the prescription for cal-
culating the composition remains valid even if S* is
sufficiently close to S” so that eq (2.5) is no longer a
useful approximation. Hillig has given an alternate
expression for G which might be a useful approxima-
tion in some regions of growth [23]. His method can
be easily adapted to our two dimensional growth
problem. The result is
G ~ (S*S')2, (2.6)
Equation (2.5) is expected to hold when the number of
nuclei per N sites is the order of one or less (i.e.,
S'/S*N>1) and results in a smooth edge, while eq
(2.6) holds when S"/S*N is small and results in a rough
(highly reentrant growth) edge. As was pointed out
in the appendix of paper I the effective value of N
may be considerably smaller than the number of sites
on an edge due to defects of various types which
destroy the continuity of the crystal along the edge.

2.2. LDP Kinetic Theory

Lauritzen, DiMarzio, and Passaglia (LDP) have
formulated a theory to describe the steady state rate
of growth and composition of a chain growing in a
multicomponent system [24]. A chain in the system
grows by the sequential addition of any of the n com-
ponents (species) of the system to one end of the chain.
Only nearest neighbor interactions are considered;
the rate constants o'/ for adding species j to a chain
ending in species i and BU for removing species j from
a chain ending in (i) are assumed to be independent
of chain length (this restriction can be relaxed, [25]
but it is not necessary to do so in the present applica-
tion of the theory). Initiation of a new chain by species
J is governed by the unique rate constant pair (o}, B7).

If Sj is the current or rate at which chains v units
long ending with species j are produced, Si the
current for chains v units long ending with the pair
(i) etc., then LDP showed that

lim S§/Nj= SU/Ni=...=\

p—>x

(2.7

where N} is the number of chajns (occupation number)
v units long that end with species j in the ensemble of
chains and V¥ and higher order occupation numbers
are similarly defined. The ratios of currents to their
corresponding occupation number in the limit of large
chain lengths become a function of the terminal
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species only. Also the currents and occupation num-
bers become independent of v for large v. The quan-
tities A are defined by a set of nonlinear equations:

n jl)\l
Z (0%

(2.8)

where n is the total number of components in the sys-
tem. The net rate at which chains are initiated is given
by

(X(J)')\jNo
B+ N

2.9)

ST=ESJ'=Z )\J'NJ'=2
J J

where Njis the number of sites where chain initiation
can occur. The fraction f; of component j in the chain
is given by

f;= NNi[S; NiN3 2.10)

where the occupation numbers N/ are obtained from
the recursion relation

aliNj_,
2 BJI + )\1

Jj

2.11)

where Ni= aiNo/(Bi+ \i). For large v eq (2.11) becomes
odiNi
2 S 2.12)

In the present application of the LDP theory, the
components of the system are the various molecular
weight species present in a polymer heterogeneous in
molecular weight and the ‘“‘chain” referred to above is
a growth strip on a crystal face. As we pointed out in
section 2.1, polymer single crystal growth is two-
dimensional (2-D) in character; however, because of
the relative rates of nucleation and growth the crystal
grows essentially by the sequential addition of 1-D
growth strips (fold planes). This crystal growth feature
allows one to employ a 1-D theory like the LDP theory
to describe the formation and composition of these
growth strips.

In paper I we showed that when the crystal growth
strip was composed only of polymer molecules of de-
gree of polymerization P; which added one crystal stem
at a time, then there emerges effective rate constants
for adding the molecule as a unit. These forward and
backward rate constants for the whole molecule were
denoted as Ao, B; for the nucleation step and as A;, B,
for post-nucleation growth. Thus, in a system contain-
ing molecules of various lengths we can assign forward
and backward rate constants (Ag, B{) and (A{,Bg) to

each size molecule and evaluate these rate constants
as was done in paper I and paper II. This assumes that
adding a molecule of length j to the crystal is inde-
pendent of the molecules already in the crystal, i.e.,

ali=o2i= ., . . :anj:Aj
1
(2.13)
1j= (2j = =QRni= Ri
pu=pgu=. . . =pu=g.
The identification a(J;=A(J; and [3{=B{ completes the
specification of the rate constants. This set of rate con-
stants leads to a simplification of the LDP theory
equations:

M=N=,  .=pa=)
and
AN
=2 Bl (2.14)
Moreover,
AINNo
Sr=yn : 2.15)

4 Bf+>\

At this point we should identify the nucleation rate
S* and the post-nucleation rate S’ of section 2.1 with
the LDP equations so that the full physical significance
of these quantities become apparent:

S* A‘J;)\ S*=3;8*=8¢/N,
f_B{+>\’ o (2.16)
and
, Aj\ , ,
Sj:B/,'+)\’S =38 =\ 2

Thus, from eq (2.4) the fraction of species j that is
incorporated is given by

A}
Bi+x

fi= (2.18)

Since A is only a function of the post-nucleation rate
constants (44, BJ), f; is independent of the nucleation
rate constants (4§, B{). Also note that eq (2.18) can
be derived directly from eqs (2.10) and (2.12).

2.3. Energetics and Thermodynamics

a. General Considerations

The LDP kinetic theory does not require a deter-
mination of the free energy of mixing of the components
in the crystalline phase as is required by equilibrium
theories of the fractionation phenomena [5, 16].
From LDP theory, we have

aii[Bi = exp [(u

— €ij)[kT] (2.19)
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where w; is the chemical potential of species j in
solution and €;; is the interaction energy associated
with adding species j to a chain ending in species i.
The free energy change (u; — €;;) that is required to
evaluate the rate constants does not require or presume
a knowledge of the free energy change associated
with the mixing of species in the chain. In fact, the
net change in chemical potentials caused by the
mixing is calculable from the theory. For example,
in a n component system where the components are
similar in size and the €;; are not too dissimilar, the
total mixing entropy would be given to an excellent
approximation by

AS ik = — kEJ'-'Nj In (NV;/Z:iN;) (2.20a)

or

ASnix/2iN;i = — kXf; In f; (2.20b)
where N; is the number of elements in the chain of
species j and fj is the mole fraction of species j in the
chain. If the components vary in size, then In f; would
be replaced by Inv; where v; is the volume fraction of
species j in the chain. Now the change in chemical
potential Au; caused by mixing is given by

)
A[.Lj = a—]v_ (_ TASmix) (221)
J
A}Lj = kT In fj

where the mole fractions f; can be determined from
eq (2.18).
In general, when the interaction energies €;; cannot

be ignored then [26]

AS ik [ENi=—k 2 ; fiy In (fi;/ i) (2.22)

where fi; is the fraction of (i, j) pairs in the chain and
from LDP theory is given by

fi=aMNi[(Bi+ N)Sr. (2.23)
In the special case where there is no correlation be-

tween components, as in the present application,
then fij=fif; and eq (2.22) reduces to eq (2.20b).

b. Evaluation of u;—€;;

If the free energy change wu;—e€; required in eq
(2.19) refers to the crystallization of the entire mol-
ecule, then (ignoring for the moment surface effects)

mi—€j=pl—uf+RTIn q; (2.24)
where u? is the chemical potential of pure species j
in a melt at temperature T (the standard state);
S in the chemical potential of species j in a homo-
geneous crystal of species j and a; is the activity of
species j in solution.

The term RT In a; is the difference in chemical
potential between a pure melt of species j and a
polymer solution containing all species; it is given
by [27]

Ina;=In vj— (x;—1) +v2x;(1 — 1/ %) + x;x(1 —v2)2
(2.25)

where vJ is the volume fraction of species j in solu-
tion; v, =2}'.'v;_{ is the total volume fraction of polymer;
xj in the ratio of the molar volume of species j to
that of the solvent; ¥» is the number average of
x; is the solution phase and x is the polymer-solvent
interaction parameter which in general is a function
of the molecular weight of species ;.

The term uf—puf is the difference in chemical
potential between a homogeneous melt and a homo-
geneous crystal of species j and is given by

wf— s =P; AGY(T, j) (2.26)
where P; is the degree of polymerization of species
Jj and AGY(T, j) is the difference in free energy be-
tween a monomer unit (belonging to species j) in a
melt and one embedded in a crystal. Different ap-
proximations can be employed for AGY; however,
for polyethylene (PE) the following approximation
is best: [18]

AGY(T, j) =AH(T)—T)(1+T/T})/2T), (2.27)
where AH, is the enthalpy of fusion per mole of mono-
mer at the equilibrium melting point 7. Of course,
T9, is a function of molecular weight, T9=T9 (j).
It is convenient to define a “psuedo” equilibrium
dissolution temperature T¢ for species j by setting
eq (2.24) equal to zero. Using eqs (2.26) and (2.27)
yields.

TO=T5() [r+ (1+r2)12] (2.28)

where

r=RTY In a;/AH,P;. (2.29)

In Paper II it was shown that if the partial molar
heat of mixing molten polymer with solvent was small
compared to the molar heat of fusion, then eq (2.24)
can be expressed as

N T
M)~ €= PJ[Acﬁ(T, i

- AGY(T?, j)] (2.30a)
TJ'

and from eq (2.27), we have
pi—e5=P;[AH(T9—T) (1+TTY/TS)/2T¢].
(2.30b)

In summary eq (2.30) represents the change in free
energy associated with removing species j from a
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solution containing ali species and placing it in a
crystal containing only species j. Of course, if the
polymer molecule is in a chain-folded configuration,
surface free energies must be added.

If the solution consisted only of solvent and species
j-then T becomes the equilibrium dissolution tempera-
ture 7Y for the monodisperse polymer-solvent system.
The ‘“‘psuedo’ equilibrium dissolution temperature
79 differs from T4 in that it includes in its definition
(thmu"h In a;) the entropy of mixing of the various
molecular weight species in sulutl(m however, as
one might expect there is very little difference (usually
less than 1°) in the two temperatures.

¢. High Undercooling Limit

In eq (2.25) the volume fraction v} of species j

is required. From the definition of volume fraction it
can be readily shown that

’» (MJP;/M::)U’

(2.31)

where p; is the probability or mole fraction of species
j in solution, M; is its molecular weight (MW) and
M,=3; pjM; is the number average MW. Note that
v} # pjv» and that the volume fraction is a weight
average property (M ):

/‘/[,r: zj /”jl)‘é/UZ. (232)
In the limit of high undercoolings BJ— 0 so that

A ZJA{

(2.33)
(2.34)
Now the forward rate constants chosen in accordance

with paper 1I (c.f. sec. IIla) give in the high undercool-
ing limit.

Ai— v} Va; (2.35)
thus
fi=vil Val (S0 V). (2.36)

The factor \/xj arises from the reduction of polymer
conformations near a crystal surface. More generally
the 1/2 power of x; is replaced by 28 where & has the
limits of zero and 1/2 (0 < § < 1/2).17 Our best estimate
of & in the equilibrium limit was 8= 1/4, however in
the high undercooling limit a smaller value for § may
be more appropriate. In any event, in the absence of
a surface =0 and w~ obtain

fi— vilve. (2337

This result is consistent with physical intuition
because the probability of finding a polymer molecule
at a particular place in the solution is equal to vj/vs.

Therefore, in the absence of energetic and surface
effects (all polymeric species which come in contact
with the crystal niche are incorporated) fractionation
will occur according to volume fraction. This is a
significant conc lusion because as mentioned previously
volume fraction is ¢ losely related to the weight average
properties of the polymer and thus to a first approx-
imation, the number average MW of the crystal will
equal the weight average MW of the polymer in solu-
tion. Of course, we are treating the case where the
composition of the solution does not change substan-
tially during the course of crystallization. In the usual
experimental range of undercoolings energetics
play an important role in fractionation as will be
demonstrated in section 3.

In the above considerations we have ignored pre-
exponential (diffusion) factors. The rate determining
step is presumed to be not diffusion to the crystal
surface, but rather incorporation into the growth niche.
This opinion has been expressed elsewhere for dilute
solution crystallization [22]. The present theory can
easily accommodate diffusional factors when they
exist. In the simplest approximation the diffusion
constant of a polymer molecule is inversely propor-
tional to MW and, therefore, the exponent of x; in
eqs (2.35) and (2.36) or wherever it occurs in rate
constants would change from 1/2 to 3/2.

3. Results
3.1. Constants and Parameters

The constants and parameters used in this study
are identical to those listed in table III of paper II
for polyethylene in xylene which serves as a model
system. As in paper II we will employ a semi-empirical
relation for the equilibrium dissolution temperature

To.
J 2
T { [0

Ml

St (N Sl | =0 O/ 2 3.1)
where r is defined by eq (2.29), Flory-Vrij values are
used for 79,(j) and the yx interaction parameter for a
species of molecular weight M; is the Pennings’
relation

x=0.372—25.2/| VM,. (3.2)

The evaluation of the rate constants (A4}, BJj) and
(45, Bi) differ from our previous evaluation of these
rate constants in paper Il in two ways: (1) the localiza-
tion free energy F;, now becomes equal to

FL(j)=kT In (v} Vx)

for each species j and (2) T;’ replaces T'Y). The replace-
ment of T by T" reflects the fact that the free energy
dssouated with the mixing of the n components in
solution has been taken into account.

In the special case where the extended or contour
length of the polymer molecule is less than the crystal
thickness, 4y and A4, can be set equal to zero, or the
extended length rather than the crystal thickness can

(3.3)
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be used in evaluating the rate constants with or with-
out a correction for chain end incorporation in the
crystal. Regardless of the approximation employed the
result is essentially the same—negligible amounts of
these short molecules are incorporated.

3.2. Two Component System
a. Solution of A Equation

A case of particular interest is the two component
system, i.e., a system of solvent and two polymeric
species. In this case eq(2.14) can be solved analytically
with the result

A={yit v+ [(yi+y2)>+4 (4B} + Byy2)|'2}/2 (3.4)

where y,=A! =B} and y,=A4?—B3. Experimentally,
one can hope to make measurements on blends of two
very sharp MW fractions. The results should approxi-
mate those for two perfectly sharp MW fractions for
which eq (3.4) obtains.

b. Method of Calculation

The calculational procedure for the two component
system is outlined below:

(a) The mole fraction of each component in solution
is fixed, as well as other parameters such as tempera-
ture and total volume fraction.

(b) A crystal thickness value is chosen and the rate
constants (A4}, B)) and 4/, B}) which are given by eqs
(3.3) through (3.6) in paper Il are calculated.

(¢) Lambda, which is the post-nucleated growth
rate of the strip, is evaluated from eq (3.4), the crystal
compositions f; are determined from eq (2.18) and the
total nucleation rate Sy is calculated from eq (2.15).
Now there are two possible types of nuclei—solution
molecules or cilia. Both nucleation rates are calcu-
lated. However, each term A»{'/\/(B-{+)\) for cilia nuclea-
tion must be multiplied by the weighting factor f;/ <j >
because the probability that a cilium belonging to
molecule j is available for nucleation is proportional to
the fraction of j molecules being incorporated into the
crystal and the density of cilia along the growth strip
which in turn is inversely proportional to the average
spacing < j > between cilia.

(d) The growth rate Sy passes through a maximum
as a function of lamella thickness. To obtain Sr(/),
the lamella thickness [ is incremented in 2.5 A inter-
vals and the above procedure (a to c) is repeated at
each [. A natural lower bound on [ occurs because
crystal thicknesses less than a certain value /. are
not possible since they correspond to thermodynami-
cally unstable crystals (A=0 at [.). For large lamella
thicknesses the calculation is carried on until the
nucleation rate is at least two orders of magnitude less
than the maximum nucleation rate.

c¢. Method of Averaging

The most important quantity to be calculated is
the composition of the crystallites that are formed.
Although the f; are uniquely determined for a given

crystal thickness and are independent of nucleation
rate constants, theory predicts that a distribution
of crystallite thicknesses may evolve. If S7(/;) is the
nucleation rate for crystallites of thickness /;, we can
define the average composition < f; > (or any other
property of the crystals) in the following way:

<fi >=2ifi(Li)Sr(l;)/2:iSr(L;). (3.5)
On physical grounds weighting f; by Sz is not strictly
correct because material conservation has not been
taken into account. For example, if the lateral dimen-
sions of a crystal are proportional to Sz, then the
volume or mass of the lamellar crystal is proportional
to S3/ which is the proper weighting function. How-
ever, average properties calculated with either weight-
ing function yield similar results. Alternatively one
could calculate the f; at the maximum value of Sy
but this procedure is not always adequate for two
component systems because Sy occasionally is slightly
binodal and tends to be broad.

Either the solution molecule or cilia nucleation rates
can be used to calculate average properties. In general,
utilization of the cilia nucleation rate leads to better
fractionation, i.e., more of the high MW component
is incorporated. Since it is still unknown at this time
how much each of the two nucleation rates contribute
to the total nucleation rate, we have arbitrarily pre-
sented results in figures 1 thru 6 based on the solution
molecule nucleation rate.

d. Kinetic Phase Diagrams

Figures 1 to 3 give some results for binary systems
of polyethylene. They are kinetic phase diagrams
although they differ from the usual temperature-
composition phase diagram representations. Since the
crystallization temperature is an experimentally
controllable variable we have chosen to present the
results for isothermal crystallization conditions.

The effect of crystallization temperature on fraction-
ation is illustrated in figure 1. One sees that even at
84 °C one is near the high undercooling limit given by
eq (2.37). Rejection of the low MW component is
enhanced as the crystallization temperature is in-
creased. The high temperature limit which is equi-
librium crystallization is of little interest since in this
region the growth rates are so small that no crystals
willl be observed in experiments of laboratory time
scale.

One sees by means of figure 1 that successive
recrystallization can be used to purify a binary system.
This is achieved by taking the crystals that form
initially in the solution and after dissolving them in
solvent, recrystallizing them and so on. A measure of
the efficiency of the process is given by the initial
slope of the curve. For 88° the slope is about 1/10
and therefore one would obtain 10 times more purity
with each recrystallization. Thus, provided one is
willing to spend the effort one can prepare poly-
ethylene of arbitrary purity.
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LOW MW=2 X 10°
HIGH MW =1 X 10°

r_

S0

HIGH
UNDERCOOLING
LIMIT

MOLE FRACTION OF LOW MW COMPONENT IN CRYSTAL

|
0 .50 1.0
MOLE FRACTION OF LOW MW COMPONENT IN SOLUTION

FIGURE 1. Crystal composition versus polymer solution composition
for a binary PE at various crystallization temperatures.

From figure 2 one sees that the fractionation process
is more efficient the larger the difference in molecular
weights. and from figure 3 one sees that the process is
less efficient at high molecular weights.

A general feature of all three sets of curves is that
the crystal is always of higher average molecular weight
than the solution from which it was crystallized. One
wonders whether this is always the case. For poly-

4 I | l

T=88°C
HIGH MW=1X10°

MW=5x10°

MOLE FRACTION OF LOW MW COMPONENT IN CRYSTAL
o
o
|

T

0 .50 1.0
MOLE FRACTION OF LOW MW COMPONENT IN SOLUTION

FIGURE 2. Crystal composition versus polymer solution composition
Jor several binary PEs at a crystallization temperature of 88 °C.

The high MW component is 1 x 105 in all cases.

1.0 T T T

T=88°C
HIGH MW =1 X 10°

MW=5X10°

S0

MOLE FRACTION OF LOW MW COMPONENT IN CRYSTAL

|
0 .50 10
MOLE FRACTION OF LOW MW COMPONENT IN SOLUTION

FIGURE 3. Crystal composition versus polymer solution composition
for several binary PEs at a crystallization temperature of 88 °C.

The high MW component is 1 x 108 in all cases. (ca. fig. 2).

ethylene the use of eq (3.1) for the dissolution tempera-
ture guarantees that this is so. However, if for some
reason a polymer system had dissolution temperatures
that were constant or varied weakly with molecular
weight, the question would need to be reexamined.

e. Effects of Secondary Ciliation

Another important aspect of the two component
system is that it enables one to check an assumption
of the present theory. Secondary ciliation has been
ignored in the present theory, i.e.. we have assumed
that once a molecule begins folding into a growth
niche it is not interrupted by another molecule. One
can always go to solutions dilute enough so that this
situation obtains. A theory exists for a two component
system which allows for all degrees of molecular inter-
ruption during growth [25]. This theory is complicated
because it involves solving a large number of non-
linear simultaneous equations. Solution of these equa-
tions for a multicomponent system is very difficult, but
a binary system is reasonably amenable to analysis.
In the appendix it is shown that the same fractionation
is predicted from both theories at small undercoolings
which suggests that neglect of secondary ciliation
effects is valid also for the multicomponent system.

3.3. Multicomponent Systems

a. Molecular Weight Distribution

The MW distributions of commercially available
linear polyethylenes are usually very broad. Weight
average to number average molecular weights (M,./M,)
in the range 5 to 10 are not uncommon and log-normal
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distribution functions are often used to characterize

these MW distributions [28]:

P(logM)d(log M)= 2ma?) 12 exp

(3.6)
1
LETL P

If log M (common loﬁdrithm) follows a normal or Gaus-
sian law. then M is distributed according to a log-
normal law:

P(M)dM = [P(logM)/M In 10]dM (3.7)

with
<M>=M,= 10~ +c>n102 (3.8)
< M2>[|< M >:=M,/M,=10""10 (3 9)

A continuous distribution function can often be
accurately represented by a discrete distribution func-
tion and vice versa. In the present case it was found
that a broad normal distribution can be well represent-
ed by a discrete distribution containing £ points dis-
posed at equal intervals on the log M scale if k is greater
than about 25. A good representation of the continuous
distribution means that the calculated M, and M,
values that are obtained from the discrete distribution
are close to the exact values given in eqs (3.8) and (3.9).
Each interval A is set equal to 80/(k—1) where o
is the mean square deviation of the Gaussian distribu-
tion function (3.6). The points or intervals are distrib-
uted so that 3/8 of them lie on the low MW side of the
mean u and 5/8 of them lie on the high MW side of w.
In the calculations presented here k& was set equal to
33. i.e.. fractionation is being examined in a system
containing 33 different MW species of polymer.
The mole fraction of species & in solution is equal to

PM (M, —M,;_,) when properly normalized.

b. Method of Calculation

The calculation procedure employed for the multi-
component system is similar to that described in
section 3.2b for the two component system. The mole
fractions of each MW species are now determined by
the log-normal distribution as discussed above. The
differences in the calculations are briefly outlined
below:

(a) The \ equation, eq (2.14), is solved numerically
by successive iteration beginning with the trial
solution

A= 3;A]. (3.10)
Usually 4 or 5 iterations, except very near the critical
thickness [., secures convergence with an error of
1 part in 104 or better.

(b) The f; and other properties are calculated at
the maximum value of the nucleation rate rather than
averaging over all nucleation rates. The nucleation
rate Sr, although broad, is unimodal and average
properties will not significantly differ from those
computed near the maximum value of Sr.

c. Crystal Composition

Figure 4 is a representative example of the kind
of information obtainable from theory. Curve 1 is the
distribution in histogram form of the 33 different
molecular weight species in solution. On the scale of
the graph, 8 of the highest MW species cannot be
shown because their mole fraction concentrations
are so small. At high undercoolings and in the absence
of energetic and diffusional effects the polymer would
fractionate according to volume fraction; the volume
fractions are shown in curve 2. At a crystallization
temperature of 90 °C energetics are important and
fractionation is enhanced. Curve 3 is the predicted
distribution of MWs for a crystal formed in a solution
where the distribution of MWs is given by curve 1 at
a crystallization temperature of 90 °C. The M, and
M /M, for the polymer in solution are 1 X 10* and 9.0,
respectively. The M, and M,/M, for the crystal,
however, are 1.5 X105 and 2.9. Will dissolution of the
crystal followed by recrystallization enhance the
fractionation even more? The answer is yes, but the
enhancement is undramatic. Curve 4 is the result of
recrystallizing from a solution where the MW distri-
bution is given by curve 3. The M, increases to about
3 X 10% but M /M, remains near 2.9.

Figure 5 summarizes the results of many calcula-
tions. The M, of each MW distribution was fixed at
1 X104 and the width of the distribution as measured
by the M /M, ratio was allowed to vary. Calculations
were carried out at 3 crystallization temperatures to
illustrate the effect of temperature on the fractionation.
As in the two component system, fractionation is
enhanced as the crystallization temperature is raised.

1.5 T T T T T T
T=90 °C
Vo= 1073
—~ 1o} —
s M,= 104 3
© M, /M_ =90
o w/Mn .
-
a
0.5 |- -
I
2
0.0 L rJ_
T T T T T
2.0 30 4.0 5.0 6.0 7.0
LOG M

FIGURE 4. Fractionation histograms for a multicomponent (33) PE.

Curve 1 is a log-normal distribution of the PE in solution. Curve 2 is the volume fraction
distribution of the polymer; in the high undercooling limit the MW distribution of the
crystal that is formed would be given by curve 2. Curve 3 is the resulting crystal MW dis-
tribution that obtains from curve 1 at a crystallization temperature of 90 °C. Curve 4 is
the resulting crystal MW distribution that obtains from curve 3 (recrystallization).
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FIGURE 5. Molecular weight distribution (My/M,) in the resulting
crystal versus MW distribution of polymer in solution.

The M, of the polymer in solution is 1 X104 in all cases: the M, of the crystal resulting from

the 90 °C crystallization is also shown.
d. Polydispersity Effects

Molecular weight polydispersity can significantly
affect crystal properties, especially those properties
which should depend on the average MW of the
polymer. In paper Il we calculated the variation of
crystal thickness with MW for monodisperse poly-
mer and found that at a crystallization temperature
of 90 °C a variation of crystal thickness of about
40 A occurs over a MW range of 104 to 106. Smaller
variations are predicted for lower crystallization tem-
peratures. Experimental attempts to observe such a
variation in crystal thickness have been unsuccessful
[29]. In figure 6 we have compared calculated values
of lamella thickness at 90 °C for polyethylenes with
various degrees of MW polydispersity. A M /M, ratio
of 1.5 which corresponds to a relatively good fraction
of PE reduces the variation of lamella thickness to
about 20 A. Fractionation during crystallization tends
to mask the intrinsic dependence of crystal thickness
on MW.

In general, the dependence of any crystal property
on MW will be diminished by the effects of polydis-
persity. This includes the dependence of crystal growth
rates on MW. In paper II it was shown that if cilia are
the primary nucleating species in polymer crystal
growth, then the dependence of crystal growth rates
of polymer concentration are relatively weak. More-
over, this concentration dependence should weaken
even more and eventually disappear as the MW of
the polymer increases. Under normal experimental
conditions the MW composition of the polymer in
solution is continuously changing with time. Since
the high MW components are selectively removed from
the solution early in the crystallization, the M, of
the polymer remaining in solution continually de-
creases. Initially the growth rate may be very weakly
dependent or independent of concentration. but in later
stages of growth the dependence on concentration
should increase. The effect that is measured is an aver-
age over the entire range of growth which, of course,
could be quite concentration dependent.
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= 160}
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R
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10 10° 10f
NUMBER AVERAGE MOLECULAR WEIGHT, M,
FIGURE 6. The effects of MW polydispersity on crystal thickness is
shown.

At crystallization temperatures lower then 90 °C the variations in crystal thickness with

/ are even smaller.

It should be noted that a similar type argument can-
not be put forth to justify that lamella thickness should
increase as the polymer solution becomes depleted
in high MW components. If, in fact, the thickness is
initially established by high MW species ‘then a per-
sistence of that thickness over the entire range of
crystal growth is to be expected. An energetically
unfavorable increase in total lateral surface free energy
would accompany an increase in crystal thickness
(caused by the mismatch of adjacent growth strips),
and although there is a favorable increase in bulk free
energy associated with the increase in crystal thick-
ness, the unfavorable increase in lateral surface free
energy will be larger in the usual range of under-
coolings. The net result should be that some persist-
ence of the crystal thickness should obtain. Indeed,
if this is true, then Kawai’s theory [13, 14] of thicken-
ing of polymer crystals is no longer valid.

4. Discussion
4.1. Conclusions

A nonequilibrium theory of polymer MW fractiona-
tion has been formulated and applied to binary and
multicomponent PEs crystallized from unstirred
xylene solutions. We have treated the case where the
composition of the polymer in solution is presumed
not to vary during the course of the crystallization.
From this theoretical study the following conclusions
have been drawn:

(1) high MW components are selectively incorporated
into the crystal;

(2) fractionation is inhanced as the crystallization
temperature is raised (see figs. 1 and 5);

(3) fractionation is independent of the total polymer
concentration vy;

(4) fractionation is relatively insensitive to choices
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of the lateral and end surface free energies o and o;

(5) at high undercoolings the M, of the crystal will be
approximately equal to the M, of the polymer in solu-
tion from which it was formed;

(6) in binary PEs fractionation not only depends
on the ratio of the MWs, but also on the absolute
magnitudes of the MWs (see figs. 2 and 3);

(7) fractionation tends to mask the intrinsic depend-
ence of crystal thickness on MW (see fig. 6);

(8) fractionation is not determined by the MW
species involved in nucleation, it only depends on the
rates (4J, Bj) for post-nucleation crystal growth.

The important variables that govern polymer MW
fractionation are (1) the pseudo equilibrium dissolu-
tion temperatures T;’, (2) the volume fractions vj,
(3) the prefactors 1/Vx; that arise due to the loss of
conformational entropy of a flexible polymer near a
crystal-solution interface, (4) the “dilution factor,”
which is to be discussed below, and (5) diffusion con-
stants which were not explicitly considered in the
present study. The variables T;' and v/ favor the in-
corporation of hich MW components whereas the re-
remaining variables favor incorporation of low MW
components.

The pseudo equilibrium dissolution temperature
increases with MW because it is a function of the
equilibrium melting temperature 7' which increases
with MW and because the x interaction parameter
which is a measure of the solubility of the MW species
also varies with MW. Thus, at a fixed crystallization
temperature those MW components with the highest
dissolution temperatures have the greatest energetic
driving forces for crystallization. However, there is
another energetic effect which favors the incorpora-
tion of low MW components which was alluded to
in section 3.2d. Incorporation of low MW polymer
produces more cilia on the crystal surface; ener-
getically a cilium contributes much less to the surface
free energy than a chain fold. Therefore, dilution
of the number of chain folds on the crystal surface by
cilia, the ““dilution factor,” is energetically favorable.
For PE in xylene the variation of the dissolution
temperature with MW is sufficiently strong so that
this dilution effect is overwhelmed and high MW
species are favored; nonetheless, it seems possible
that a polymer solvent might exist where the varia-
tion in the dissolution temperature with MW is
sufficiently weak so that the dilution effect might
dominate.

Although fractionation depends on the volume
fraction distribution (4]~ v} of the MW components

in solution (conclusion 5), it does not depend on
the total volume fraction v» of the polymer in solution
(conclusion 3). The reason for the latter is that for
dilute polymer solutions. dissolution temperatures
are only weakly dependent on v., both theoretically
[1] and experimentally [1, 2].

A qualifying note needs to be added to conclusion
8. The fraction of a MW species that is incorporated
into the crystal is only a function of the post-nuclea-

tion rate constants (4, BJ) and the thickness of the
crystal (/). Since a distribution of crystal thicknesses
is theoretically possible, a distribution of composi-
tions are also possible and the average composition
of the crystals formed will depend in a weak and
indirect way on the nucleation rates for crystals of
various thicknesses (see section 3.2b). This explains
why fractionation is only weakly dependent on the
value of the lateral surface free energy o (conclusion
4) since it only appears in nucleation rate constants.

Fractionation is also relatively independent of
0. but for different reasons. The value of o, estab-
lishes a lower bound /. for the range of thermody-
namically stable crystal thicknesses. The energetics
which govern fractionation do not depend very much
on the magnitude of /. or [, but rather on the thermo-
dynamic stability of the crystal as measured by the
difference /—I[.. Thus. the magnitude of o, which
largely determines /. does not play an important role
in MW fractionation.

4.2. Extensions

Mention should be made on how the theory can
be extended and improved. The first obvious exten-
sion is that nonequilibrium MW fractionation needs
to be considered from stirred solutions. The situation
is complicated from a theoretical point of view by
virtue of the fact that the crystalline morphology is
highly complex [30]. Some progress along theoretical
lines has been made [2], but much work remains.

A second possible extension is that MW fractiona-
tion during crystallization from the melt needs to
be considered as well as the effect of pressure on
the fractionation phenomena. Although it appears
reasonable to ignore diffusional and crystal thickening
effects in solution ecrystallization, they probably
play important role in melt crystallization.

In the present study we have assumed that the MW
composition of the solution did not vary during the
course of the crystallization. This restriction needs
to be relaxed and can probably be easily accomplished
by use of an adiabatic approximation.

Finally, there is a need to develop a molecular
theory which will predict how the x interaction parame-
ter varies with MW. Fractionation is very sensitive
to the variation of the dissolution temperature with
MW and as was mentioned previously. the dissolution
temperature depends on x. The dependence of x on
MW is probably closely associated with long range
intramolecular interactions (excluded volume effects)
which implies that developing a theory for x may be
as difficult as solving the excluded volume problem.

5. Appendix: Comparison of Fractionation
Effects With or Without Secondary Ciliation

From eq (2.18) and the expressions for (4J, BJ)

we obtain for the equilibrium limit (A — 0)

fi= (BN (@)=t j=1.2 (A1)
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where v; is the total number of folds for molecules
of type j. The corresponding equation that obtains
when secondary ciliation is allowed is given by eq

(123) of reference [25]:

(B[l = (alp)}i] ‘
= = (@B), . (A.2)

These expressions reduce to each other in the infinite
dilute solution limit. One has (a}/B});—0 and
(a/B); > 1. In the usual experimental range (a/B); > 1
and the expressions will still be nearly identical for
large »;, but not necessarily for small v;.

The equivalence of eqs (A.1) and (A.2) does not mean
that there is no secondary ciliation. It means rather
that even the approximate treatment which ignores
secondary ciliation gives the correct results for
fractionation (and growth rates) even though ciliation
may occur.

An estimate of the amount of ciliation can be ob-
tained by realizing (eq 120 of ref. [25]) that for a
given MW species. the fraction of it incorporated
into the crystal with & and only £ folds is proportional
to (a/B)*=B%. Thus one obtains for the expected
number of folds in a polymer of length v; (maximum of
vj folds) the expression

J )
<vy;>=B B In [EA"’:lBI\]

(v +1)B""! B .
= ;3",;”—1 g1 A3

In the infinite dilute solution limit B> 1 and <v; >—
v;. In the usual concentration ranges B>1 and
<> <.
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