Theoretical Investigation of the Odd Configurations of Ni II.* Y. Shadmi** and E. Caspi** (December 20, 1971) Two groups of odd levels in Ni II were investigated: those belonging to the complex $3d^84p + 3d^74s4p + 3d^85p$ and those belonging to the configuration $3d^84f$. In the first group the calculated positions of the levels were fit to the positions of the 174 observed levels with an rms error of 133 cm⁻¹. The fit for the second group was based on 60 observed levels and had an rms error of 25 cm⁻¹. The predictions of this investigation helped in the discovery of many of the observed levels. Key words: Energy levels; g-factors; nickel; parameters, theory. #### 1. Introduction The configuration $3d^84p$ has been well known, and many of its observed levels have been reported in AEL [1].¹ Theoretical interpretations of the $3d^84p$ level structure were performed by various investigators [2–4]. About four years ago Professor A. G. Shenstone informed us of some newly discovered odd levels, presumably belonging to the configurations $3d^74s4p$, $3d^85p$, and $3d^8nf$ (n=4, 5, 6, 7). This paper is the result of his suggestion that a theoretical investigation of these configurations be made to help him with his experimental investigation. The companion paper containing Shenstone's experimental results has already been published [5]. Our calculations involved the diagonalization of the energy matrices of the $3d^84p$, $3d^74s4p$, and $3d^85p$ configurations calculated as one complex, and the energy tions calculated as one complex, and the energy matrices associated with the $3d^84f$ configuration. In the case of the $3d^84p + 3d^74s4p + 3d^85p$ complex, we were able to fit the 174 observed levels to the calculated ones with an rms error of 133 cm⁻¹. For the $3d^84f$ configuration, the 60 observed levels could be fitted to the calculated ones with an rms error of 25 cm⁻¹. All the levels were designated in a well defined coupling scheme. #### 2. Notations and Definitions In the text and tables Slater parameters and spinorbit parameters are designated in the usual way. Other symbols and abbreviations used in the text have the following meanings: B, C=linear combinations of Slater parameters $F_2(dd)$ and $F_4(dd)$; (see, for example, ref. [7]). α , β , T= effective interactions among d electrons; [9]. H, J, K= parameters of configuration interaction which are appropriate linear combinations of Slater integrals; (see, for example, refs. [4] and [8]). Δ = root mean square error ("rms error"). "Diag.", "L.S." = abbreviations for "Diagonalization" and "Least-squares calculation," respectively. In cases where several configurations have analogous parameters, the configuration is also explicitly specified. # 3. The Theoretical Interpretation of the Configurations $3d^84p + 3d^74s4p + 3d^85p$ We shall use the following abbreviations: $$d^{8}p = 3d^{8}4p$$, $d^{4}sp = 3d^{7}4s4p$, $d^{8}p' = 3d^{8}5p$. In his first letter, Professor Shenstone supplied us with 17 levels belonging to the d^7sp configuration; 9 of them were low and were assumed to be based on $d^7s(^5F)$; 8 of them were high and it was supposed that they were based on $d^7s(^3P)$. In the first stage of our calculations only the two configurations $d^8p + d^7sp$ were included. The interaction parameters of d^8p are well known [2–4]. For an estimate of initial parameters for d^7sp , we were able to use analogous calculations performed by C. Roth [4] on the Cu II and Zn II spectra and by A. Schwimmer [6] on Sc II, Ti II and V II. It is well known ^{*}An invited paper. This paper was partially supported by the National Bureau of Standards, Washington, D.C. 20304. **Present Address: The Hebrew University of Jerusalem, Israel. ¹Figures in brackets indicate the literature references at the end of this paper. from works on the even configurations in the iron group [7, 8] and from reference (4) that the electrostatic interaction parameters change linearly along sequences of spectra with constant ionization. The behavior of D', defined as the separation between the centers of the configurations $d^{n-1}sp$ and d^np , and the behavior of the spin-orbit interaction parameters are also approximately linear. Hence we could interpolate the values of D' and the d-p interaction parameters from the spectra of Sc II, Ti II, V II, Cu II, and Zn II mentioned above. For the G_1 (sp) parameter we could rely upon the spectra of the right hand side of the period. Values for the parameters B, C, G_2 (ds) and H were simply taken from the even configurations of Ni II [10]. J and K were also extrapolated from the right hand side of the period. The first diagonalization was performed using the described above parameters. The nine low observed levels of Shenstone's first list were quartets. It also became evident that the correct coupling for the d^7sp configuration is the following: first the s and p electrons are coupled and then the resulting term is coupled with a term of d^7 . Such a coupling was already used by C. Roth [4]. Using this scheme we found that all the nine low-lying levels reported by Shenstone are based on the combination $d^7(^4F)sp(^3P)$. After our initial diagonalization, additional observed levels were provided by Professor Shenstone to bring the total number of observed levels which were fitted to calculated levels of $d^8p + d^7sp$ up to 78. In the final least-squares calculation based on the previously described interaction parameters, 43 levels were found to belong to the d^8p configuration and 35 to the new configuration d^7sp . The rms error was 100 cm⁻¹ for the calculated levels. The observed levels in the range 110,000–120,000 cm⁻¹ could not be satisfactorily fitted in the previous diagonalization. The reason for this was rather clear: in the same energy range some levels belonging to the d^8p' configuration were also observed. This means that in order to obtain good results, one has to include the interaction between the configurations d^7sp and d^8p' as well. Because such an extended calculation requires quite a number of additional new parameters, we first performed a separate calculation on the d^8p' configuration in which we included only the levels which we believed not to be strongly perturbed by d^7 sp. This auxiliary calculation provided initial values for the 3d-5p interaction parameters and for ζ_{5p} ; for B and C we used the same values as for the $d^{8}p$ configuration. The extended energy matrix of the three configurations was diagonalized using the approximated values for the parameters found in the previous calculations and estimates for the initial values for J' and K'. In the subsequent least-squares calculations we gradually fitted more and more observed levels to the calculated ones and reached a stage at which 109 observed levels were fitted unequivocally to the calculated ones with an rms error of 70 cm⁻¹. A considerable improvement of the fit between the observed and calculated levels was achieved in the previously problematic range 110,000–120,000 cm⁻¹. These results enabled Professor Shenstone to supply us with an improved and extended list of observed levels. This new list of levels was used in a new series of iterated diagonalizations. In the final least-squares calculation of this stage, which included the effective-interaction parameters β and T, 132 levels were fit with an rms error of 112 cm⁻¹. We were not able to include in the fit ten levels of the experimental list. Of these levels, seven were considered by Professor Shenstone to be of doubtful identification. The inclusion of any of the remaining three in the least-squares calculation increases the rms error considerably and forces some of the parameters to assume unreasonable values. In subsequent correspondence with Professor Shenstone a final level list was constructed. The ten problematical levels were reassigned—some to other configurations and others to different J values. Also, the list was amended by addition of 40 new levels to bring the total up to 174. A new iteration was performed, and the observed levels were fitted to the calculated values with an rms error of 133 cm⁻¹. The parameters of this final calculation are given in table 1, Column L.S. 1a. The parameters β and T could not both be derived directly from the least squares calculation. Instead, the value of T was fixed at a value obtained from our calculations on the even third spectra of the iron group [8]. When T and β were not included in the calculation, the rms error increased to 145 cm⁻¹ as indicated in table 1, column L.S. 2. Table 2 contains the list of observed and calculated levels of the configurations $d^8p+d^7sp+d^8p'$. The spectral purities of the reported assignments are given only when at least one level of the term has a purity of less than 60 percent. In a few cases the parent term was strongly mixed and was not included in the designation. Four observed levels which were assigned to these configurations by Professor Shenstone could not be fit into the scheme on calculated levels. They are: - 1) The level $d^7sp^2D_{5/2}$ observed at 135258.88 cm⁻¹ with a deviation of about 600 cm⁻¹ from the calculated value; - 2) the levels $d^7 sp\ ^4P_{5/2}$ 131834.94 cm $^{-1}$ $^4P_{3/2}$ 132225.15 cm $^{-1}$ $^4P_{1/2}$ 132120.70 cm $^{-1}$ which differ from the calculated values by about 1,200 cm⁻¹. When these levels are included in the iterative fitting procedure, the ⁴P levels•disagree by about 700 cm⁻¹ and the mean error increases to 188 cm⁻¹. (See table 1, column L.S. 1b; these levels are those in table 2 which are enclosed by parentheses.) ## 4. The Theoretical Interpretation of the Configuration 3d⁸4f The abbreviation d^8f will be used for the configuration $3d^84f$. The treatment of this configuration was relatively simple. Initial values for the parameters B, C, and ζ_d were taken from the
configuration d^8 of Ni III. [8] A rough first estimate for the parameters Table 1. Parameters of the configurations $d^8p + d^7sp + d^8p$. All values are in units of cm-1 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | L.S. 2
120815 ± 85
58500 ± 120
7940 ± 100
1131 ± 3 | |--|---| | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 58500 ± 120
7940 ± 100
1131 ± 3 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 58500 ± 120
7940 ± 100
1131 ± 3 | | $A(d^7sp) - A(3d^85p)$ 7785 7755 ± 95 7550 ± 130 7950 | 1131 ± 3 | | | 1 | | $B-d^7sp$ 1113 1112 ± 3 1108 ± 4 1130 | 1075 | | $B - d^{8}p$ 1046 1073 | | | $B - d^{8}p'$ 1046 ± 5 1047 ± 4 1046 ± 5 1073 | 1075 ± 4 | | $C - d^{7}sp$ 4875 4888 ± 23 4928 ± 31 4550 | 4550 ± 14 | | $C - d^{8}p$ 4535) 4170 |) | | $C - d^8p'$ 4535 4547 ± 27 4549 ± 37 4170 | $\left.\right $ 4172 ± 28 | | $G_2(ds) - d^7sp$ 1755 1756 \pm 30 1752 \pm 42 1770 | 1751 ± 32 | | $F_2(dp) - d^7sp$ 478 477 ± 6 455 ± 8 478 | 481 ± 6 | | $F_2(dp) - d^8p$ 352 353 \pm 5 353 \pm 8 352 | 351 ± 7 | | $F_2(dp) - d^8p'$ 87 85 ± 7 87 ± 10 87 | 87 ± 8 | | $G_1(sp) - d^7sp$ 10220 10192 ± 31 10076 ± 42 10290 | 10306 ± 34 | | $G_1(dp) - d^7sp$ 359 362 ± 9 353 ± 13 346 | 352 ± 12 | | $G_1(dp) - d^8p$ 295 293 ± 6 296 ± 8 300 | 299 ± 7 | | $G_1(dp) - d^8p'$ 88 88 90 91 97 | 98 ± 9 | | $G_3(dp) - d^7sp$ 42 40 40 40 | 17 | | $G_3(dp) - d^8p$ | $\left \right. \right. \left. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \left. \right. \left. \left. \right. \left. \right$ | | $G_3(dp) - d^8p'$ 7 8 ± 4 8 ± 5 8 | 9 ± 4 | | α 29 27 ± 3 28 ± 4 78 | 76 ± 2 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | T -5.7 Fixed Fixed | | | $H = d^7 sp - d^8 p$ 185 220 ± 40 175 ± 55 120 | 135 ± 55 | | $J = d^7 s p - d^8 p$ | 1290 ± 370 | | $J = d^7 s p - d^8 p'$ 400 410 ± 80 475 ± 110 485 | 465 ± 85 | | $K = d^7 s p - d^8 p$ | 2875 ± 425 | | $K = d^7 s p - d^8 p'$ 1035 1005 ± 75 1015 ± 110 1070 | 1050 ± 85 | | $\zeta_d - d^7 sp$ 749 744 ± 21 748 ± 29 749 | 748 ± 23 | | $\ddot{\zeta}_d - d^8 \dot{p}$ 663 $\left.\right]$ 663 $\left.\right]$ | (57 . 20 | | $\zeta_d - d^8p'$ | 657 ± 20 | | $\zeta_p^a - d^7 sp$ 630 640 ± 70 720 ± 100 595 | 605 ± 75 | | $\zeta_p - d^8 p$ 455 450 50 450 75 455 | 450 ± 55 | | $\zeta_p - d^8 p'$ 140 130 ± 55 130 ± 75 155 | 135 ± 60 | | Δ 133 cm ⁻¹ 188 cm ⁻¹ | 145 cm ⁻¹ | | 174 170 | 174 | | Number of levels | 117 | $TABLE~2.~~Ni~II-Observed~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}$ | THEORETICAL A | SSIGNMENT | , | ODC | CHIC | 0.0 | CALC. g | |---|------------|---------------------------|--|----------------------------------|----------------------------|---------------------------------| | MAIN COMPONENT | ADDITIONAL | J | OBS. | CALC. | O-C | CALC. g | | $3d^{8}\left({}^{3}\mathrm{F}\right) 4p^{4}\mathrm{D}$ | | 7/2
5/2
3/2
1/2 | 51557.85
52738.45
53634.62
54176.26 | 51701
52846
53721
54252 | -143
-108
-86
-76 | 1.423
1.359
1.187
.003 | | $3d^8(^3\mathrm{F})4p^4\mathrm{G}$ | | 11/2
9/2
7/2
5/2 | 53496.49
53365.17
54262.63
55018.71 | 53364
53367
54205
54931 | 132
-2
58
88 | 1.273
1.180
1.021
.620 | | $3d^{8}(^{3}\mathrm{F})4p^{4}\mathrm{F}$ | | 9/2
7/2
5/2
3/2 | 54557.05
55417.83
56075.26
56424.49 | 54523
55342
55990
56352 | 34
76
85
72 | 1.288
1.185
.987
.423 | | $3d^8(^3\mathrm{F})4p^2\mathrm{G}$ | | 9/2
7/2 | 55299.65
56371.44 | 55315
56478 | $-15 \\ -107$ | 1.148 | | $3d^{8}(^{3}\mathrm{F})4p^{2}\mathrm{F}$ | | 7/2
5/2 | 57080.55
58493.21 | 57103
58471 | $-22 \\ 22$ | 1.119
.934 | | $3d^8(^3\mathrm{F})4p^2\mathrm{P}$ | | 5/2
3/2 | 57420.16
58705.95 | 57376
58647 | 44
59 | 1.132
.797 |
$TABLE~2.~Ni~II-Observed~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~and~calculated~energy~lev$ | THEORETICAL AS | SSIGNMENT | | 0.7. | 0.1- | 8 | | |---|------------|--|--|--|--|--| | MAIN COMPONENT | ADDITIONAL | $\neg \qquad J$ | OBS. | CALC. | O-C | CALC. g | | $3d^{8}(^{3}\mathrm{P})4p^{4}\mathrm{P}$ | | 5/2
3/2
1/2 | 66571.35
66579.71
67031.02 | 66599
66584
66998 | $ \begin{array}{r} -28 \\ -4 \\ 33 \end{array} $ | 1.487
1.564
2.267 | | $3d^8(^1\mathrm{D})4p\ ^2\mathrm{F}$ | | 5/2
7/2 | 67694.64
68131.21 | 67666
68053 | 29
78 | .938
1.179 | | $3d^8(^1\mathrm{D})4p^{-2}\mathrm{D}$ | | 3/2
5/2 | 68154.31
68735.98 | 68235
68796 | $ \begin{array}{r} -81 \\ -60 \end{array} $ | 1.050
1.258 | | $3d^8(^1\mathrm{D})4p^{-2}\mathrm{P}$ | | 1/2
3/2 | 68281.62
68965.65 | 68118
68831 | 164
135 | 1.070
1.264 | | $3d^{8}(^{3}P)4p^{-4}D$ | | 7/2
5/2
3/2
1/2 | 70778.11
70635.55
70706.74
70748.66 | 70759
70626
70672
70718 | 19
10
35
31 | 1.390
1.334
1.189
.012 | | $3d^8(^3\mathrm{P})4p^{-2}\mathrm{D}$ | | 5/2
3/2 | 71770.83
72375.42 | 71909
72449 | $-138 \\ -74$ | 1.206
.850 | | $3d^8(^3\mathrm{P})4p^{-2}\mathrm{P}$ | | 3/2
1/2 | 72985.65
73903.25 | 72963
73886 | 23
17 | 1.309
.926 | | $3d^{8}(^{3}\mathrm{P})4p^{-2}\mathrm{S}$ | | 1/2 | 74283.33 | 74399 | -116 | 1.721 | | $3d^8(^3\mathrm{P})4p$ $^4\mathrm{S}$ | | 3/2 | 74300.93 | 74304 | -3 | 1.968 | | $3d^{8}({}^{1}{ m G})4p^{-2}{ m H}$ | | 9/2
11/2 | 75149.55
75721.71 | 75190
75705 | $-40 \\ 17$ | .910
1.091 | | $3d^{8}(^{1}\mathrm{G})4p^{-2}\mathrm{F}$ | | 7/2
5/2 | 75917.61
76402.04 | 75977
76395 | -59
7 | 1.143
.858 | | $3d^{8}({}^{1}{ m G})4p^{-2}{ m G}$ | | 7/2
9/2 | 79823.03
79923.88 | 79874
79977 | -51
-53 | .890
1.110 | | $3d^{7}(^{4}\mathrm{F})^{4}sp(^{3}\mathrm{P})^{-6}\mathrm{F}$ | | 11/2
9/2
7/2
5/2
3/2
1/2 | 86343.21
86870.03
87538.09
88128.56
88582.01
88881.59 | 86645
86956
87599
88170
88608
88884 | $ \begin{array}{r} -302 \\ -86 \\ -61 \\ -41 \\ -26 \\ -2 \end{array} $ | 1.450
1.458
1.417
1.332
1.084
619 | | 3d ⁷ (⁴ F)sp(³ P) ⁶ D | | 9/2
7/2
5/2
3/2
1/2 | 88171.88
89100.47 | 88272
89213
89900
90374
90654 | -100
-113 | 1.519
1.541
1.590
1.742
3.285 | | 3d ⁷ (4F)sp(3P) 6G | | 13/2
11/2
9/2
7/2
5/2
3/2 | 89460.35
89918.47
90275.30
90526.18 | 88787
89327
89795
90164
90428
90595 | 133
123
111
98 | 1.384
1.345
1.281
1.164
.903
.106 | | $3d^7(^4\mathrm{F})sp(^3\mathrm{P})$ $^4\mathrm{F}$ | | 9/2
7/2
5/2
3/2 | 94283.94
94705.93
95332.53
95893.76 | 94262
94701
95324
95878 | 22
5
9
16 | 1.295
1.214
1.001
.423 | | 3d ⁷ (4F)sp(3P)4G | | 11/2
9/2
7/2
5/2 | 94396.74
95017.71
95573.39
96052.48 | 94363
94989
95572
96056 | 34
29
1
-4 | 1.274
1.208
1.027
.625 | | $3d^{7}(^{4}\mathrm{F})sp(^{3}\mathrm{P})$ $^{4}\mathrm{D}$ | | 7/2
5/2
3/2
1/2 | 96535.87
97273.83
97799.66
98122.63 | 96629
97376
97917
98250 | -93
-102
-117
-127 | 1.407
1.346
1.178
.003 | $TABLE~2.~~Ni~II-Observed~and~calculated~energy~levels~3d^84p + 3d^85p + 3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p + 3d^85p + 3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~and~calculated~energy~lev$ | THEORET | TICAL AS | SIGNMENT | 1 | OBS. | CALC. | O-C | CALC. g | |---|------------|--|---------------------------------|--|--|---|---| | MAIN COMPONE | ENT | ADDITIONAL | J | ODS. | CALC. | 0-6 | CALC. g | | $3d^{7}(^{4}\mathrm{F})sp(^{3}\mathrm{P})^{2}\mathrm{G}$ | | | 9/2
7/2 | 98276.70
99844.13 | 98301
99857 | $-24 \\ -13$ | 1.115
.908 | | $3d^{7}(^{4}\mathrm{P})sp(^{3}\mathrm{P})^{6}\mathrm{S}$ | | | 5/2 | | 98759 | | 1.997 | | $3d^{7}(^{4}\mathrm{F})sp(^{3}\mathrm{P})^{2}\mathrm{F}$ | | | 7/2
5/2 | 99418.61
100609.01 | 99222
100430 | 196
179 | 1.130
.876 | | $3d^7(^4\mathrm{F})sp(^3\mathrm{P})^2\mathrm{D}$ | | | 5/2
3/2 | 101754.80
102742.74 | 101718
102733 | 37
10 | 1.186
.803 | | $3d^{8}(^{3}\mathrm{F})5p^{4}\mathrm{D}$ | | | 7/2
5/2
3/2
1/2 | 103653.03
104503.22
105439.85
106022.79 | 103741
104590
105478
106086 | -88
-87
-38
-63 | 1.414
1.310
1.125
.013 | | $3d^{8}(^{1}S)4p^{2}P$ | | | 1/2
3/2 | | 103459
104087 | | .667
1.329 | | $3d^{8}(^{3}\mathrm{F})5p^{4}\mathrm{G}$ | 41%
55% | 38% ² G
24% ² G | 11/2
9/2
7/2
5/2 | 104147.29
105588.89
105499.05
106283.16 | 104066
105496
105429
106228 | 81
93
70
55 | 1.273
1.164
1.006
.701 | | $3d^{8}(^{3}\mathrm{F})5p^{2}\mathrm{G}$ | 60%
58% | 32% ⁴ G
24% ⁴ G | 9/2
7/2 | 104081.04
106620.53 | 104045
106525 | 36
96 | 1.181
.964 | | $3d^{8}(^{3}F)5p^{4}F$ | 39%
53% | 33% ² F
24% ⁴ G | 9/2
7/2
5/2
3/2 | 104298.23
104646.52
105668.78
106369.30 | 104285
104646
105673
106399 | $ \begin{array}{c c} 13 \\ 1 \\ -4 \\ -30 \end{array} $ | 1.271
1.157
.931
.463 | | $3d^8(^3\mathrm{F})5p\ ^2\mathrm{D}$ | | | 5/2
3/2 | 105861.19
107142.12 | 106017
107313 | -156
-171 | 1.178
.822 | | $3d^8(^3\mathrm{F})5p\ ^2\mathrm{F}$ | 46% | 32% ⁴ F | 7/2
5/2 | 105838.06
107082.21 | 105825
107080 | 13 2 | 1.144
.913 | | $3d^{7}(^{4}\mathrm{P})~sp~(^{3}\mathrm{P})~^{6}\mathrm{D}$ | | | 9/2
7/2
5/2
3/2
1/2 | 105981.50 | 105888
105817
105863
105971
106106 | 93 | 1.554
1.585
1.654
1.837
3.296 | | $3d^{7}(^{4}\mathrm{P})sp(^{3}\mathrm{P})^{4}\mathrm{S}$ | | | 3/2 | 107737.81 | 107835 | -97 | 1.851 | | 3d ⁷ (4P) sp (3P) 6P | | | 7/2
5/2
3/2 | 109038.84 | 108783
108873
108901 | 138 | 1.705
1.869
.982 | | 3d ⁷ (2G) sp (3P) 4F | | |
9/2
7/2
5/2
3/2 | 109148.05
109846.00
110573.36
111120.54 | 109136
109892
110573
111068 | $ \begin{array}{c c} 12 \\ -46 \\ 0 \\ 53 \end{array} $ | 1.324
1.163
1.022
.518 | | $3d^{7}(^{2}G)$ sp (^{3}P) ^{4}H | | | 13/2
11/2
9/2
7/2 | | 109796
109673
109780
110088 | | 1.228
1.135
.977
.744 | | $3d^{7}(^{2}\mathrm{P})sp(^{3}\mathrm{P})^{4}\mathrm{P}$ | 44%
48% | 30% ⁴ D
30% ⁴ D | 1/2
3/2
5/2 | | 111112
111724
111917 | | 2.458
1.519
1.506 | | $3d^{7}(^{2}\mathrm{G})sp(^{3}\mathrm{P})^{4}\mathrm{G}$ | | | 11/2
9/2
7/2
5/2 | 111783.79 | 111634
111850
112087
112329 | -303 | 1.263
1.160
.975
.584 | Table 2. Ni II – Observed and calculated energy levels $3d^84p + 3d^85p + 3d^74s4p$ in units of cm⁻¹ – Continued | THEORE | TICAL AS | SIGNMENT | T | OBC | CALC | 0.6 | CALC | |---|--------------------------|--|---|--|--|--|--| | MAIN COMPONI | ENT | ADDITIONAL | J | OBS. | CALC. | O-C | CALC. g | | 3d ⁷ (⁴ P) sp (³ P) ⁴ D | 56%
44% | 25% ⁴ P
24% ⁴ P | 7/2
5/2
3/2
1/2 | | 111437
111233
111271
111497 | | 1.427
1.437
1.258
.166 | | 3d ⁷ (⁴ F) sp (¹ P) ⁴ G | 67%
41%
50% | 28% ⁴ F
44% ⁴ F
28% ² F | 11/2
9/2
7/2
5/2 | 112422.19
113753.04
115108.09 | 112549
113728
114531
115173 | -127 25 -65 | 1.272
1.214
1.124
.820 | | d ⁷ sp ⁴D | 65%
65% | 24% ⁴ P
28% ⁴ P | 7/2
5/2
3/2
1/2 | | 112683
113262
113846
114523 | | 1.421
1.380
1.309
.843 | | $3d^{7}(^{2}G) sp (^{3}P) ^{2}H$
$3d^{7}(^{4}F) sp (^{1}P) ^{4}F$ | 63%
28%
61%
60% | 34% ⁴ G
29% ⁴ G + 29% ² G
16% ² F | 9/2
11/2
9/2
7/2
5/2
3/2 | 113321.95
114052.21
115120.00 | 113082
113952
112935
113788
114836
115149 | 387
264
284 | .904
1.085
1.275
1.056
1.046 | | $3d^{7}(^{2}{ m G})sp(^{3}{ m P})^{2}{ m G}$ | 58% | 25% ⁴ G +14% ⁴ F | 7/2
9/2 | | 113765
114276 | | .970
1.119 | | $3d^{7}(^{4}\mathrm{P})sp(^{3}\mathrm{P})^{2}\mathrm{S}$ | | | 1/2 | | 113841 | | 1.925 | | $3d^{7}(^{4}P) sp (^{3}P)^{4}P$ | 61%
53%
38% | 40% ⁴ D
40% ⁴ D + 20% ² S | 5/2
3/2
1/2 | | 114043
114387
114378 | | 1.456
1.495
1.459 | | $3d^7(^2\mathrm{G}^+\ sp\ (^3\mathrm{P})^2\mathrm{F}$ | 29%
51% | 46% ⁴ G
22% ⁴ D | 5/2
7/2 | 115000.25 | 114229
114866 | 134 | .831
1.209 | | $3d^{7}(^{2}\mathrm{H})sp(^{3}\mathrm{P})^{4}\mathrm{G}$ | | | 11/2
9/2
7/2
5/2 | 114858.88
116087.38
116275.81
116824.15 | 114996
115720
116379
116833 | -137
367
-103
-9 | 1.269
1.139
1.019
.643 | | $d^7 sp$ ² D | 62%
50% | 33% ⁴ D | 3/2
5/2 | 114869.35
116893.98 | 115018
117046 | $-149 \\ -152$ | .923
1.237 | | $d^7 sp$ ⁴ D | 78%
30%
32%
55% | 42% ¹ F
25% ¹ F + 23% ² D
18% ² F | 1/2
3/2
5/2
7/2 | 115592.25
115565.98
115209.98 | 115177
115568
115340
115321 | 24
226
-111 | .461
.834
1.154
1.298 | | $3d^{7}(^{2}\mathrm{H})sp(^{3}\mathrm{P})^{4}\mathrm{I}$ | | | 15/2
13/2
11/2
9/2 | | 115245
115237
115440
115784 | | 1.200
1.109
.977
.785 | | $3d^{7}(^{4}\text{P}) sp (^{3}\text{P})^{2}\text{D}$ | 61%
43% | 27% ⁴ D
25% ² P | 5/2
3/2 | | 115868
117094 | | 1.245
1.057 | | $d^7 sp$ ⁴ D | 50%
40%
38% | $\begin{array}{c} 23\%^{4}F \\ 23\%^{4}S + 21\%^{2}P \\ 26\%^{2}P + 23\%^{2}S \end{array}$ | 7/2
5/2
3/2
1/2 | 116512.06 | 116603
117595
117989
118159 | -91 | 1.408
1.242
1.384
.758 | | $3d^{7}(^{2}\mathrm{P})sp(^{3}\mathrm{P})^{4}\mathrm{S}$ | 37% | 12% ² D + 12% ⁴ F | 3/2 | 117662.11 | 117460 | 202 | 1.417 | | $d^7 sp$ $^2{ m P}$ | 41%
27% | 23% ² S
29% ⁴ D + 21% ⁴ F | 1/2
3/2 | | 117478
118284 | | .984
1.118 | | $3d^{7}(a^{2}D) sp (^{3}P) ^{4}F$ | 48%
32% | 24% ² D
32% ² D+17% ² P | 9/2
7/2
5/2
3/2 | 117593.68
117972.47 | 117552
117993
118627
118786 | $ \begin{array}{c c} 42 \\ -21 \end{array} $ | 1.333
1.250
1.094
.874 | $Table \ 2. \quad Ni \ II-Observed \ and \ calculated \ energy \ levels \ 3d^84p + 3d^85p + 3d^74s4p \ in \ units \ of \ cm^{-1}-Continued$ | THEORET | TICAL AS | SIGNMENT | J | OBS. | CALC. | о-с | CALC. g | |---|--------------------------|--|----------------------------|--|--------------------------------------|--|---------------------------------| | MAIN COMPONE | NT | ADDITIONAL | , | ово. | G/LEG. | | GILLO. 8 | | $3d^{8}(^{1}\mathrm{D})5p~^{2}\mathrm{D}$ | 36%
65% | 12%(¹D)²P | 3/2
5/2 | 117763.91
117872.78 | 117858
117995 | $ \begin{array}{r} -94 \\ -122 \end{array} $ | 1.165
1.271 | | $3d^7(^2\mathrm{H})sp(^3\mathrm{P})^2\mathrm{I}$ | | | 11/2
13/2 | 118248.98
119010.21 | 118305
118992 | -56
18 | .928
1.085 | | $3d^8(^1\mathrm{D})5p\ ^2\mathrm{F}$ | | | 5/2
7/2 | 118379.11
118563.39 | 118389
118542 | $-10 \\ 21$ | .979
1.193 | | $3d^8(^1\mathrm{D})5p^2\mathrm{P}$ | 37%
50% | 35%(¹ D) ² D
29%d ⁷ sp ⁴ D | 3/2
1/2 | 118442.81
118631.95 | 118510
118503 | -67
128 | 1.158
.606 | | 3d ⁷ (² P) sp (³ P) ² S | 36% | 44%²P | 1/2 | | 119423 | | 1.438 | | $3d^{7}(^{2}\mathrm{H})sp(^{3}\mathrm{P})^{4}\mathrm{H}$ | | | 13/2
11/2
9/2
7/2 | | 119729
120027
120280
120498 | | 1.226
1.133
.976
.692 | | $3d^{8}$ (³ P) $5p$ ⁴ P | 51%
36% | 19%(¹D)²D
17%(¹D)²P | 5/2
3/2
1/2 | 119796.98
120166.52
120316.02 | 119905
120221
120260 | $ \begin{array}{c c} -108 \\ -54 \\ 56 \end{array} $ | 1.518
1.534
2.406 | | $3d^{7}(^{2}P)sp(^{3}P)^{2}P$ | 54%
31% | $36\%d^85p^4$ P | 1/2
3/2 | | 119906
119945 | | .679
1.385 | | $3d^7(a^2\mathrm{D})sp(^3\mathrm{P})$ ⁴ P | 44% | 17%²P | 5/2
3/2
1/2 | | 120612
121766
122378 | | 1.527
1.535
2.393 | | $3d^8(^3\mathrm{P})5p^{-4}\mathrm{D}$ | 81%
63%
54%
83% | 27% (3P)2D | 7/2
5/2
3/2
1/2 | 120903.31
121325.09
121385.80
121561.06 | 121052
121302
121307
121445 | -149
23
79
116 | 1.387
1.322
1.227
.064 | | $3d^{8}(^{3}\mathrm{P})5p^{-2}\mathrm{P}$ | 35% | $18\%^2D + 17\%^2S$ | 3/2
1/2 | 121042.57 | 121091
121917 | -48 | 1.260
.751 | | $3d^8(^3\mathrm{P})5p^{-2}\mathrm{D}$ | 57%
28% | $20\%(^{3}P)^{4}D$
$32\%(^{3}P)^{2}P$ | 5/2
3/2 | 121050.66
121800.34 | 121007
121662 | 44
138 | 1.216
1.260 | | $3d^{8}(^{3}\mathrm{P})5p^{-4}\mathrm{S}$ | 43% | 23% (³ P) ² D | 3/2 | 121456.30 | 121409 | 47 | 1.509 | | $3d^7(^2\mathrm{H})sp(^3\mathrm{P})$ $^2\mathrm{G}$ | | | 9/2
7/2 | 121692.55
121862.57 | 121749
121882 | $-56 \\ -19$ | 1.108
.873 | | $3d^7 (a^2\mathrm{D}) sp(^3\mathrm{P})$ ² F | | - | 5/2
7/2 | | 121963
122670 | | .914
1.150 | | $3d^8(^3\mathrm{P})5p^{-2}\mathrm{S}$ | | | 1/2 | | 122063 | | 1.883 | | $3d^7(a^2\mathrm{D})sp(^3\mathrm{P})$ $^2\mathrm{D}$ | | | 3/2
5/2 | | 122131
122277 | | .930
1.204 | | $3d^7(a^2\mathrm{D})sp(^3\mathrm{P})$ $^2\mathrm{P}$ | | | 1/2
3/2 | | 124474
124771 | | .751
1.362 | | $3d^{7}(^{2}\mathrm{H})sp(^{3}\mathrm{P})$ $^{2}\mathrm{H}$ | | | 9/2
11/2 | 124652.00
125003.41 | 124787
125159 | -135
-156 | .911
1.092 | | $3d^{8}({}^{1}{ m G})5p^{-2}{ m F}$ | | | 7/2
5/2 | 127219.57
127331.60 | 126938
127071 | 282
261 | 1.142
.858 | | $3d^8({}^1\mathrm{G})5p~^2\mathrm{H}$ | | | 9/2
11/2 | 126679.98
126857.97 | 126895
127061 | $ \begin{array}{r r} -215 \\ -203 \end{array} $ | .910
1.091 | $Table \ 2. \quad Ni \ II-Observed \ and \ calculated \ energy \ levels \ 3d^84p + 3d^85p + 3d^74s4p \ in \ units \ of \ cm^{-1}-Continued$ | THEORETICAL AS | SSIGNMENT | | OPG | CALC | 0.0 | CALC | |--|------------|---------------------------|--|--------------------------------------|---|---------------------------------| | MAIN COMPONENT | ADDITIONAL | - J | OBS. | CALC. | O-C | CALC. g | | 3d ⁷ (⁴ P)sp(¹ P) ⁴ S | | 3/2 | 126738.82 | 126903 | - 164 | 1.990 | | $3d^8$ (1G)5 p ² G | | 9/2
7/2 | 127885.86
127895.33 | 127896
127888 | $-10 \\ 7$ | 1.110
.890 | | $3d^7(^4\mathrm{P})sp(^1\mathrm{P})^{-4}\mathrm{D}$ | | 7/2
5/2
3/2
1/2 | 129782.07
129988.05
130331.78
130570.42 | 129925
130121
130372
130595 | $ \begin{array}{r} -143 \\ -133 \\ -40 \\ -25 \end{array} $ | 1.427
1.366
1.200
.037 | | $3d^7(^2\mathrm{G})sp(^1\mathrm{P})^{-2}\mathrm{H}$ | | 11/2
9/2 | 131424.32
132311.98 | 131131
13211 6 | 293
196 | 1.086
.915 | | 3d ⁷ (² F)sp (³ P) ⁴ G | | 5/2
7/2
9/2
11/2 | 133625.96 | 132462
132685
133035
133567 | 59 | .611
1.012
1.188
1.272 | | 3d ⁷ (4P)sp(1P) 4P | | 5/2
3/2
1/2 | (131834.94)
(132225.15)
(132120.70) | 132957
133323
133328 | (-1122)
(-1098)
(-1208) | 1.548
1.681
2.490 | | $3d^7(^2\mathrm{G})sp(^1\mathrm{P})$ $^2\mathrm{F}$ | | 7/2
5/2 | 133169.92
134208.30 | 132917
134110 | 253
98 | 1.138
.994 | | $3d^7(^2\mathrm{F})sp(^3\mathrm{P})$ $^4\mathrm{F}$ | | 3/2
5/2
7/2
9/2 |
133190.19
133209.30
133528.02
133853.04 | 132894
133179
133541
133898 | 296
30
-13
-45 | .425
1.021
1.214
1.303 | | $3d^7(^2\mathrm{G})sp(^1\mathrm{P})$ $^2\mathrm{G}$ | | 9/2
7/2 | 133445.75
134380.82 | 133676
134783 | $ \begin{array}{r} -230 \\ -402 \end{array} $ | 1.116
.891 | | $3d^7(^2\mathrm{F})sp(^3\mathrm{P})$ ⁴ D | | 7/2
5/2
3/2
1/2 | 133850.83
133973.33
134156.28
134283.76 | 133888
133885
134113
134215 | -37
87
43
69 | 1.417
1.225
1.198
.047 | | $3d^7(^2\mathrm{F})sp(^3\mathrm{P})^{-2}\mathrm{D}$ | | 5/2
3/2 | 134783.14
134964.78 | 1348 4 1
135024 | -58
-59 | 1.205
.913 | | $3d^7(^2\mathrm{P})sp(^1\mathrm{P})$ $^2\mathrm{P}$ | | 1/2
3/2 | 135382.53 | 1355 4 9
135661 | -278 | .776
1.169 | | $3d^7(^2\mathrm{F})sp(^3\mathrm{P})$ $^2\mathrm{G}$ | | 7/2
9/2 | 135746.06
136076.26 | 135737
1359 4 2 | 9
134 | .894
1.112 | | $3d^7(^2\mathrm{P})sp(^1\mathrm{P})$ $^2\mathrm{D}$ | | 5/2
3/2 | (135258.92) | 135900
137089 | (-741) | 1.200
.826 | | $3d^7(^2\mathrm{H})sp(^1\mathrm{P})$ $^2\mathrm{I}$ | | 13/2
11/2 | | 136509
137 4 94 | | 1.077
.929 | | $3d^7(a^2\mathrm{D})sp(^1\mathrm{P})^{-2}\mathrm{D}$ | | 5/2
3/2 | | 1382 4 4
139 4 02 | | 1.154
.864 | | $3d^7(^2\mathrm{H})sp(^1\mathrm{P})$ $^2\mathrm{G}$ | | 9/2
7/2 | 138495.84 | 1386 1 3
139322 | -117 | 1.109
.906 | | $3d^7(^2\mathrm{F})sp(^3\mathrm{P})$ $^2\mathrm{F}$ | | 7/2
5/2 | | 138858
139447 | | 1.138
.889 | | $3d^7(^2{\rm P})sp(^1{\rm P})\ ^2{\rm S}$ | | 1/2 | | 139683 | | 1.911 | | $3d^7(a^2\mathrm{D})sp(^1\mathrm{P})$ $^2\mathrm{F}$ | | 7/2
5/2 | | 139904
141012 | 3 | 1.140
.902 | | 3d ⁷ (² H)sp(¹ P) ² H | | 11/2
9/2 | | 141873
142868 | | 1.091
.913 | Table 2. Ni II - Observed and calculated energy levels 3d84p + 3d85p + 3d74s4p in units of cm-1 - Continued | THEORETICAL A | SSIGNMENT | , | OBS. | CALC | 0.0 | CALC | |--|------------|--------------------------|------|--------------------------------------|-----|---------------------------------| | MAIN COMPONENT | ADDITIONAL | J | | CALC. | О-С | CALC. g | | $3d^{7}(a^{2}\mathrm{D})sp(^{1}\mathrm{P})^{-2}\mathrm{P}$ | | 3/2
1/2 | | 142107
143961 | | 1.332
.738 | | $3d^7(b^2\mathrm{D})sp(^3\mathrm{P})$ ⁴ P | | 5/2
3/2
1/2 | | 151277
151257
151281 | | 1.598
1.730
2.661 | | $3d^7(b^2\mathrm{D})sp(^3\mathrm{P})$ ⁴ F | | 3/2
5/2
7/2
9/2 | | 152576
152859
153254
153760 | | .403
1.029
1.237
1.330 | | $3d^8(^1\mathrm{S})5p^2\mathrm{P}$ | | 1/2
3/2 | | 153513
154114 | | .667
1.148 | | $3d^7(^2\mathrm{F})sp(^1\mathrm{P})^2\mathrm{G}$ | | 7/2
9/2 | | 154379
154810 | | .890
1.114 | | $3d^7(^2\mathrm{F})sp(^1\mathrm{P})^2\mathrm{D}$ | | 3/2
5/2 | | 154619
154998 | | .986
1.078 | | $3d^7(^2\mathrm{F})sp(^1\mathrm{P})^2\mathrm{F}$ | | 5/2
7/2 | | 155556
155892 | | .979
1.143 | | $3d^7(b^2\mathrm{D})~sp~(^3\mathrm{P})~^2\mathrm{P}$ | | 3/2
1/2 | | 156895
157329 | | 1.330
.623 | | $3d^7(b^2\mathrm{D})\ sp\ (^3\mathrm{P})\ ^2\mathrm{F}$ | | 5/2
7/2 | | 157904
158157 | | .869
1.166 | | $3d^7(b^2\mathrm{D})~sp~(^3\mathrm{P})~^4\mathrm{D}$ | | 1/2
3/2
5/2
7/2 | | 158243
158398
158717
159298 | | .048
1.200
1.359
1.405 | | $3d^7(b^2\mathrm{D})~sp~(^3\mathrm{P})~^2\mathrm{D}$ | | 5/2
3/2 | | 161296
161382 | | 1.200
.803 | | $3d^7(b^2\mathrm{D})~sp~(^1\mathrm{P})~^2\mathrm{P}$ | | 1/2
3/2 | | 173566
174048 | | .667
1.332 | | $3d^7(b^2\mathrm{D})\mathrm{s}p(^1\mathrm{P})^2\mathrm{F}$ | | 5/2
7/2 | | 174919
175397 | | .858
1.142 | | $3d^7(b^2\mathrm{D})sp\left(^1\mathrm{P}\right)^2\mathrm{D}$ | | 3/2
5/2 | | 179748
180530 | | .800
1.199 | of the d-f interaction and for ζ_f was done by direct observation of the experimental level values. The final parameters which we obtained for these configurations are given in table 3. In column L.S.a, all the parameters were set free, and the rms error is 25.6 cm⁻¹. We can see that the parameters $F_4(df)$, $G_3(df)$ and ζ_f are equal to zero within their statistical accuracy. Column L.S.b of table 3 gives the results of a calculation in which the above-mentioned parameters were fixed at zero. In this case the rms error is 25.2 cm⁻¹. The observed and calculated levels of d^8f are given in table 4. We would like to emphasize that the d^8f configura- tion was calculated independently without including any interaction with any other configuration. This simple treatment is justified to some extent by the small mean error. In all, 60 experimental levels of d^8f were fitted to the calculated ones. Three observed levels could not be fitted. They are: $132729.48 \text{ cm}^{-1} \text{ with } J = 5/2,$ $135954.09 \text{ cm}^{-1} \text{ with } J = 7/2,$ $135580.25 \text{ cm}^{-1} \text{ with } J = 9/2.$ Table 3. Parameters of the Configuration d8f All values are in units of cm-1 | P | Diag. | L.S.a | L.S.B | |--|----------------|----------------------------------|---| | $ \begin{array}{c} A - 3d^84f \\ B \end{array} $ | 128190
1035 | $128189. \pm 1035.4 \pm 0.6$ | $\begin{array}{c} 128186 \pm 5 \\ 1035.5 \pm 0.6 \end{array}$ | | C | 4080 | 4086 ± 6 | 4086 ± 6 | | $F_2(df)$
$F_4(df)$ | 8.5 | 8.4 ± 0.5
0.1 ± 0.1 | 8.3 ± 0.4 | | $G_1(df)$ | 1 | 1.6 ± 0.8 | 1.4 ± 0.6 | | $G_3(df)$
$G_5(df)$ | 0 | 0.3 ± 0.3
0.03 ± 0.05 | | | | 670 | 668 ± 3 | 668 ±3 | | $egin{array}{c} oldsymbol{\zeta}_d \ oldsymbol{\zeta}_f \end{array}$ | 0 | 3 ± 2 | | | Δ | | 25.6 cm ⁻¹ | 25.2 cm ⁻¹ | The coupling for this configuration is the J-l coupling; that is: the S' and L' of the d^8 parent term first combine to form J''. Then J'' is combined with the $l\!=\!3$ of the f electron forming K and finally the spin of this electron is added to K and the total J is formed. This is the coupling used in table 4. The authors wish to express their deep gratitude to Professor Shenstone for the special pleasure and benefit of his kind and useful cooperation. Table 4. Ni II-Observed and calculated energy levels 3d84f | THEORETICAL A | SSIGNMENT | 1 | OBS. | CALC. | О-С | CALC | |-----------------------------|-----------|--------------|------------------------|----------------------------------|----------------|----------------| | d^{8} PARENT | K | J | OBS. | CALC. | 0-6 | CALC. g | | $^3\mathrm{F}_4$ | 7 | 13/2
15/2 | 118803.82
118848.92 | 118837
118837 | $-33 \\ 12$ | 1.086
1.200 | | | 1 | 3/2
1/2 | 118809.34
118774.76 | 118800
118805 | -30 | 1.779
1.523 | | | 2 | 5/2
3/2 | 118828.61
118877.09 | 118833
118853 | -4 24 | 1.448
1.143 | | | 3 | 7/2
5/2 | 118874.11
118897.94 | 118871
118900 | $-\frac{3}{2}$ | 1.329
1.094 | | | 6 | 11/2
13/2 | 118892.99
118893.24 | 118909
118909 | -16
-16 | 1.081
1.212 | | | 4 | 9/2
7/2 | 118914.34
118923.20 | 118905
11892 4 | 9
-1 | 1.269
1.082 | | | 5 | 9/2
11/2 | 118927.02
118939.53 | 11892 4
11892 4 | 3
16 | 1.081
1.234 | | $^3\mathrm{F}_3$ | 0 | 1/2 | 120189.55 | 120170 | 20 | 2.043 | | | 1 | 3/2
1/2 | 120199.18
120203.49 | 12019 4
120181 | 5
22 | 1.379
.704 | | | 2 | 5/2
3/2 | 120203.49
120222.89 | 120222
12022 4 | -19
-1 | 1.244
.861 | | | 6 | 11/2
13/2 | 120211.30
120218.22 | 120205
120205 | 6
13 | .970
1.117 | | ³ F ₃ | 3 | 7/2
5/2 | 120250.17
120271.97 | 120249
120265 | 1
7 | 1.176
.909 | | | 4 | 7/2
9/2 | 120268.81
120281.11 | 120281
120272 | -12 9 | .938
1.146 | | | 5 | 11/2
9/2 | 120270.44
120272.53 | 120265
120265 | 5
8 | 1.124
.949 | | $^3\mathrm{F}_3$ | 1 | 3/2
1/2 | 121042.52
121090.71 | 120092
121092 | -49
-1 | 1.540
1.059 | | | 5 | 11/2
9/2 | 121120.88
121125.41 | 121122
121122 | $-1 \\ 3$ | .976
.771 | | | 2 | 5/2
3/2 | 121146.98
121161.81 | 121146
121147 | 1
15 | 1.181
.763 | Table 4. Ni II—Observed and calculated energy levels $3\,\mathrm{d^84f}$ —Continued | THEORETICAL AS | THEORETICAL ASSIGNMENT | | utatea energy teve | | | | |-----------------------------|------------------------|-------------------|----------------------------|------------------|---|----------------| | $d^{ m s}$ Parent | K | J | OBS. | CALC. | O-C | CALC. g | | | 4 | 7/2
9/2 | 121178.56
121180.54 | 121192
121190 | -13
-9 | .762
1.008 | | | 3 | 7/2
5/2 | 121192.32
121194.14 | 121183
121188 | 9
6 | 1.063
.753 | | $^1\mathrm{D}_2$ | 4 | 9/2
7/2 | 132818.16
132846.53 | 132855
132857 | $-37 \\ -10$ | 1.138
.933 | | | 3 | 5/2
7/2 | (132729.48)
132869.16 | 132875
132889 | (-146) -20 | .878
1.148 | | $^1\mathrm{D}_2$ | 2 | 5/2
3/2 | 132912.15
132927.97 | 132944
132940 | $-32 \\ -12$ | 1,197
.793 | | | 1 | 3/2
1/2 | 132982.51
133001.47 | 133005
133005 | $ \begin{array}{r} -23 \\ -4 \end{array} $ | 1.283
.564 | | | 5 | 11/2
9/2 | 133014.08
133031.00 | 132950
132950 | 64
81 | 1.119
.943 | | $^3\mathrm{P}_2$ | 3 | 7/2
5/2 | 135400.67
135461.55 | 135438
135452 | $-37 \\ 10$ | 1.179
.979 | | | 4 | 9/2
7/2 | 135435.26
135444.47 | 135414
135430 | 21
14 | 1.283
1.127 | | | 2 | 3/2
5/2 | 135493.26
135512.92 | 135485
135501 | 8
12 | .515
.976 | | | 5 | 11/2
9/2 | 135538.61
135558.80 | 135582
135582 | $ \begin{array}{r} -43 \\ -23 \end{array} $ | 1.243
1.092 | | | 1 | 3/2
1/2 | 135652.93
135670.49 |
135661
135659 | -8
11 | 1.057
.106 | | $^3\mathrm{P}_1$ | 2 | 5/2
3/2 | 135746.13 | 135784
135784 | -38 | 1.255
.885 | | | 4 | 9/2
7/2 | (135580.35)
(135464.86) | 135773
135776 | (-193)
(-311) | 1.179
.976 | | | 3 | 5/2
7/2 | 135849.41
135879.41 | 135866
135864 | -17
15 | .895
1.174 | | $^3\mathrm{P}_0$ | 3 | 7/2
5/2 | (135954.09)
136122.61 | 136055
136056 | (-101)
67 | 1.176
.905 | | $^{1}G_{4}$ | 1 | $\frac{3/2}{1/2}$ | | 140232
140233 | | 1.334
.667 | | | 2 | 5/2
3/2 | | 140345
140347 | - | 1.200
.800 | | | 7 | 13/2
15/2 | | 140355
140355 | | .933
1.067 | | | 3 | 7/2
5/2 | | 140491
140492 | | 1.143
.857 | | | 4 | 9/2
7/2 | | 140632
140632 | | 1.111
.889 | | | 6 | 11/2
13/2 | | 140643
140643 | | .923
1.077 | | | 5 | 11/2
9/2 | | 140708
140708 | | 1.091
.909 | | ¹ S ₀ | 3 | 7/2
5/2 | | 171363
171364 | , | 1.143
.857 | ### 5. References - Moore, C. E., Atomic Energy Levels, NBS Circ 467, II (1949). Steinberger, H., Msc. Thesis, The Hebrew University of Jerusa- - [2] Steinberger, H., Msc. Thesis, The Hebrew University of Jerusalem, 1958. [3] Shimoni, Z., Msc. Thesis, The Herbrew University of Jerusalem, - 1959. [4] Roth, C., J. Res. Nat. Bur. Stand. (U.S.), **73A** (Phys. and Chem.) No. 2, 129, (1969). - [5] Shenstone, A. G., J. Res. Nat. Bur. Stand. (U.S.), 74A (Phys. and Chem.) No. 6, 801, (1970). - [6] Schwimmer, A., Msc. Thesis, The Hebrew University of Jerusalem (1967). - [7] Racah, G., and Shadmi, Y., Bull. Res. Counc. of Israel 8F, 15 (1959). - [8] Shadmi, Y., and Caspi, E., Oreg J. Res., Nat. Bur. Stand. (U.S.), 73A (Phys. and Chem.) No. 2, 173, 1969. - [9] Shadmi, Y., Phys. Rev. 139A, 43 (1965). - [10] Shadmi, Y., Oreg, J., Stein, J., J.O.S.A. 58, 7, 909-914 (1968). (Paper 76A2-705)