Theoretical Investigation of the Odd Configurations of Ni II.*

Y. Shadmi** and E. Caspi**

(December 20, 1971)

Two groups of odd levels in Ni II were investigated: those belonging to the complex $3d^84p + 3d^74s4p + 3d^85p$ and those belonging to the configuration $3d^84f$. In the first group the calculated positions of the levels were fit to the positions of the 174 observed levels with an rms error of 133 cm⁻¹. The fit for the second group was based on 60 observed levels and had an rms error of 25 cm⁻¹. The predictions of this investigation helped in the discovery of many of the observed levels.

Key words: Energy levels; g-factors; nickel; parameters, theory.

1. Introduction

The configuration $3d^84p$ has been well known, and many of its observed levels have been reported in AEL [1].¹ Theoretical interpretations of the $3d^84p$ level structure were performed by various investigators [2–4].

About four years ago Professor A. G. Shenstone informed us of some newly discovered odd levels, presumably belonging to the configurations $3d^74s4p$, $3d^85p$, and $3d^8nf$ (n=4, 5, 6, 7). This paper is the result of his suggestion that a theoretical investigation of these configurations be made to help him with his experimental investigation. The companion paper containing Shenstone's experimental results has already been published [5].

Our calculations involved the diagonalization of the energy matrices of the $3d^84p$, $3d^74s4p$, and $3d^85p$ configurations calculated as one complex, and the energy tions calculated as one complex, and the energy matrices associated with the $3d^84f$ configuration. In the case of the $3d^84p + 3d^74s4p + 3d^85p$ complex, we were able to fit the 174 observed levels to the calculated ones with an rms error of 133 cm⁻¹. For the $3d^84f$ configuration, the 60 observed levels could be fitted to the calculated ones with an rms error of 25 cm⁻¹. All the levels were designated in a well defined coupling scheme.

2. Notations and Definitions

In the text and tables Slater parameters and spinorbit parameters are designated in the usual way. Other symbols and abbreviations used in the text have the following meanings:

B, C=linear combinations of Slater parameters $F_2(dd)$ and $F_4(dd)$; (see, for example, ref. [7]).

 α , β , T= effective interactions among d electrons; [9].

H, J, K= parameters of configuration interaction which are appropriate linear combinations of Slater integrals; (see, for example, refs. [4] and [8]).

 Δ = root mean square error ("rms error").

"Diag.", "L.S." = abbreviations for "Diagonalization" and "Least-squares calculation," respectively.

In cases where several configurations have analogous parameters, the configuration is also explicitly specified.

3. The Theoretical Interpretation of the Configurations $3d^84p + 3d^74s4p + 3d^85p$

We shall use the following abbreviations:

$$d^{8}p = 3d^{8}4p$$
,
 $d^{4}sp = 3d^{7}4s4p$,
 $d^{8}p' = 3d^{8}5p$.

In his first letter, Professor Shenstone supplied us with 17 levels belonging to the d^7sp configuration; 9 of them were low and were assumed to be based on $d^7s(^5F)$; 8 of them were high and it was supposed that they were based on $d^7s(^3P)$.

In the first stage of our calculations only the two configurations $d^8p + d^7sp$ were included. The interaction parameters of d^8p are well known [2–4]. For an estimate of initial parameters for d^7sp , we were able to use analogous calculations performed by C. Roth [4] on the Cu II and Zn II spectra and by A. Schwimmer [6] on Sc II, Ti II and V II. It is well known

^{*}An invited paper. This paper was partially supported by the National Bureau of Standards, Washington, D.C. 20304.
**Present Address: The Hebrew University of Jerusalem, Israel.

¹Figures in brackets indicate the literature references at the end of this paper.

from works on the even configurations in the iron group [7, 8] and from reference (4) that the electrostatic interaction parameters change linearly along sequences of spectra with constant ionization. The behavior of D', defined as the separation between the centers of the configurations $d^{n-1}sp$ and d^np , and the behavior of the spin-orbit interaction parameters are also approximately linear.

Hence we could interpolate the values of D' and the d-p interaction parameters from the spectra of Sc II, Ti II, V II, Cu II, and Zn II mentioned above. For the G_1 (sp) parameter we could rely upon the spectra of the right hand side of the period. Values for the parameters B, C, G_2 (ds) and H were simply taken from the even configurations of Ni II [10]. J and K were also extrapolated from the right hand side of the period.

The first diagonalization was performed using the described above parameters. The nine low observed levels of Shenstone's first list were quartets. It also became evident that the correct coupling for the d^7sp configuration is the following: first the s and p electrons are coupled and then the resulting term is coupled with a term of d^7 . Such a coupling was already used by C. Roth [4]. Using this scheme we found that all the nine low-lying levels reported by Shenstone are based on the combination $d^7(^4F)sp(^3P)$.

After our initial diagonalization, additional observed levels were provided by Professor Shenstone to bring the total number of observed levels which were fitted to calculated levels of $d^8p + d^7sp$ up to 78. In the final least-squares calculation based on the previously described interaction parameters, 43 levels were found to belong to the d^8p configuration and 35 to the new configuration d^7sp . The rms error was 100 cm⁻¹ for the calculated levels.

The observed levels in the range 110,000–120,000 cm⁻¹ could not be satisfactorily fitted in the previous diagonalization. The reason for this was rather clear: in the same energy range some levels belonging to the d^8p' configuration were also observed. This means that in order to obtain good results, one has to include the interaction between the configurations d^7sp and d^8p' as well. Because such an extended calculation requires quite a number of additional new parameters, we first performed a separate calculation on the d^8p' configuration in which we included only the levels which we believed not to be strongly perturbed by d^7 sp. This auxiliary calculation provided initial values for the 3d-5p interaction parameters and for ζ_{5p} ; for B and C we used the same values as for the $d^{8}p$ configuration.

The extended energy matrix of the three configurations was diagonalized using the approximated values for the parameters found in the previous calculations and estimates for the initial values for J' and K'. In the subsequent least-squares calculations we gradually fitted more and more observed levels to the calculated ones and reached a stage at which 109 observed levels were fitted unequivocally to the calculated ones with an rms error of 70 cm⁻¹. A considerable improvement of the fit between the observed and calculated levels was achieved in the previously problematic range 110,000–120,000 cm⁻¹.

These results enabled Professor Shenstone to supply us with an improved and extended list of observed levels. This new list of levels was used in a new series of iterated diagonalizations. In the final least-squares calculation of this stage, which included the effective-interaction parameters β and T, 132 levels were fit with an rms error of 112 cm⁻¹.

We were not able to include in the fit ten levels of the experimental list. Of these levels, seven were considered by Professor Shenstone to be of doubtful identification. The inclusion of any of the remaining three in the least-squares calculation increases the rms error considerably and forces some of the parameters to assume unreasonable values.

In subsequent correspondence with Professor Shenstone a final level list was constructed. The ten problematical levels were reassigned—some to other configurations and others to different J values. Also, the list was amended by addition of 40 new levels to bring the total up to 174. A new iteration was performed, and the observed levels were fitted to the calculated values with an rms error of 133 cm⁻¹. The parameters of this final calculation are given in table 1, Column L.S. 1a.

The parameters β and T could not both be derived directly from the least squares calculation. Instead, the value of T was fixed at a value obtained from our calculations on the even third spectra of the iron group [8]. When T and β were not included in the calculation, the rms error increased to 145 cm⁻¹ as indicated in table 1, column L.S. 2.

Table 2 contains the list of observed and calculated levels of the configurations $d^8p+d^7sp+d^8p'$. The spectral purities of the reported assignments are given only when at least one level of the term has a purity of less than 60 percent. In a few cases the parent term was strongly mixed and was not included in the designation. Four observed levels which were assigned to these configurations by Professor Shenstone could not be fit into the scheme on calculated levels. They are:

- 1) The level $d^7sp^2D_{5/2}$ observed at 135258.88 cm⁻¹ with a deviation of about 600 cm⁻¹ from the calculated value;
- 2) the levels $d^7 sp\ ^4P_{5/2}$ 131834.94 cm $^{-1}$ $^4P_{3/2}$ 132225.15 cm $^{-1}$ $^4P_{1/2}$ 132120.70 cm $^{-1}$

which differ from the calculated values by about 1,200 cm⁻¹. When these levels are included in the iterative fitting procedure, the ⁴P levels•disagree by about 700 cm⁻¹ and the mean error increases to 188 cm⁻¹. (See table 1, column L.S. 1b; these levels are those in table 2 which are enclosed by parentheses.)

4. The Theoretical Interpretation of the Configuration 3d⁸4f

The abbreviation d^8f will be used for the configuration $3d^84f$. The treatment of this configuration was relatively simple. Initial values for the parameters B, C, and ζ_d were taken from the configuration d^8 of Ni III. [8] A rough first estimate for the parameters

Table 1. Parameters of the configurations $d^8p + d^7sp + d^8p$.

All values are in units of cm-1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L.S. 2 120815 ± 85 58500 ± 120 7940 ± 100 1131 ± 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58500 ± 120 7940 ± 100 1131 ± 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58500 ± 120 7940 ± 100 1131 ± 3
$A(d^7sp) - A(3d^85p)$ 7785 7755 ± 95 7550 ± 130 7950	1131 ± 3
	1
$B-d^7sp$ 1113 1112 ± 3 1108 ± 4 1130	1075
$B - d^{8}p$ 1046 1073	
$B - d^{8}p'$ 1046 ± 5 1047 ± 4 1046 ± 5 1073	1075 ± 4
$C - d^{7}sp$ 4875 4888 ± 23 4928 ± 31 4550	4550 ± 14
$C - d^{8}p$ 4535) 4170)
$C - d^8p'$ 4535 4547 ± 27 4549 ± 37 4170	$\left.\right $ 4172 ± 28
$G_2(ds) - d^7sp$ 1755 1756 \pm 30 1752 \pm 42 1770	1751 ± 32
$F_2(dp) - d^7sp$ 478 477 ± 6 455 ± 8 478	481 ± 6
$F_2(dp) - d^8p$ 352 353 \pm 5 353 \pm 8 352	351 ± 7
$F_2(dp) - d^8p'$ 87 85 ± 7 87 ± 10 87	87 ± 8
$G_1(sp) - d^7sp$ 10220 10192 ± 31 10076 ± 42 10290	10306 ± 34
$G_1(dp) - d^7sp$ 359 362 ± 9 353 ± 13 346	352 ± 12
$G_1(dp) - d^8p$ 295 293 ± 6 296 ± 8 300	299 ± 7
$G_1(dp) - d^8p'$ 88 88 90 91 97	98 ± 9
$G_3(dp) - d^7sp$ 42 40 40 40	17
$G_3(dp) - d^8p$	$\left \right. \right. \left. \right. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \left. \left. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \left. \right. \left. \left. \right. \left. \left. \right$
$G_3(dp) - d^8p'$ 7 8 ± 4 8 ± 5 8	9 ± 4
α 29 27 ± 3 28 ± 4 78	76 ± 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
T -5.7 Fixed Fixed	
$H = d^7 sp - d^8 p$ 185 220 ± 40 175 ± 55 120	135 ± 55
$J = d^7 s p - d^8 p$	1290 ± 370
$J = d^7 s p - d^8 p'$ 400 410 ± 80 475 ± 110 485	465 ± 85
$K = d^7 s p - d^8 p$	2875 ± 425
$K = d^7 s p - d^8 p'$ 1035 1005 ± 75 1015 ± 110 1070	1050 ± 85
$\zeta_d - d^7 sp$ 749 744 ± 21 748 ± 29 749	748 ± 23
$\ddot{\zeta}_d - d^8 \dot{p}$ 663 $\left.\right]$ 663 $\left.\right]$	(57 . 20
$\zeta_d - d^8p'$	657 ± 20
$\zeta_p^a - d^7 sp$ 630 640 ± 70 720 ± 100 595	605 ± 75
$\zeta_p - d^8 p$ 455 450 50 450 75 455	450 ± 55
$\zeta_p - d^8 p'$ 140 130 ± 55 130 ± 75 155	135 ± 60
Δ 133 cm ⁻¹ 188 cm ⁻¹	145 cm ⁻¹
174 170	174
Number of levels	117

 $TABLE~2.~~Ni~II-Observed~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}$

THEORETICAL A	SSIGNMENT	,	ODC	CHIC	0.0	CALC. g
MAIN COMPONENT	ADDITIONAL	J	OBS.	CALC.	O-C	CALC. g
$3d^{8}\left({}^{3}\mathrm{F}\right) 4p^{4}\mathrm{D}$		7/2 5/2 3/2 1/2	51557.85 52738.45 53634.62 54176.26	51701 52846 53721 54252	-143 -108 -86 -76	1.423 1.359 1.187 .003
$3d^8(^3\mathrm{F})4p^4\mathrm{G}$		11/2 9/2 7/2 5/2	53496.49 53365.17 54262.63 55018.71	53364 53367 54205 54931	132 -2 58 88	1.273 1.180 1.021 .620
$3d^{8}(^{3}\mathrm{F})4p^{4}\mathrm{F}$		9/2 7/2 5/2 3/2	54557.05 55417.83 56075.26 56424.49	54523 55342 55990 56352	34 76 85 72	1.288 1.185 .987 .423
$3d^8(^3\mathrm{F})4p^2\mathrm{G}$		9/2 7/2	55299.65 56371.44	55315 56478	$-15 \\ -107$	1.148
$3d^{8}(^{3}\mathrm{F})4p^{2}\mathrm{F}$		7/2 5/2	57080.55 58493.21	57103 58471	$-22 \\ 22$	1.119 .934
$3d^8(^3\mathrm{F})4p^2\mathrm{P}$		5/2 3/2	57420.16 58705.95	57376 58647	44 59	1.132 .797

 $TABLE~2.~Ni~II-Observed~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p+3d^85p+3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~and~calculated~energy~lev$

THEORETICAL AS	SSIGNMENT		0.7.	0.1-	8	
MAIN COMPONENT	ADDITIONAL	$\neg \qquad J$	OBS.	CALC.	O-C	CALC. g
$3d^{8}(^{3}\mathrm{P})4p^{4}\mathrm{P}$		5/2 3/2 1/2	66571.35 66579.71 67031.02	66599 66584 66998	$ \begin{array}{r} -28 \\ -4 \\ 33 \end{array} $	1.487 1.564 2.267
$3d^8(^1\mathrm{D})4p\ ^2\mathrm{F}$		5/2 7/2	67694.64 68131.21	67666 68053	29 78	.938 1.179
$3d^8(^1\mathrm{D})4p^{-2}\mathrm{D}$		3/2 5/2	68154.31 68735.98	68235 68796	$ \begin{array}{r} -81 \\ -60 \end{array} $	1.050 1.258
$3d^8(^1\mathrm{D})4p^{-2}\mathrm{P}$		1/2 3/2	68281.62 68965.65	68118 68831	164 135	1.070 1.264
$3d^{8}(^{3}P)4p^{-4}D$		7/2 5/2 3/2 1/2	70778.11 70635.55 70706.74 70748.66	70759 70626 70672 70718	19 10 35 31	1.390 1.334 1.189 .012
$3d^8(^3\mathrm{P})4p^{-2}\mathrm{D}$		5/2 3/2	71770.83 72375.42	71909 72449	$-138 \\ -74$	1.206 .850
$3d^8(^3\mathrm{P})4p^{-2}\mathrm{P}$		3/2 1/2	72985.65 73903.25	72963 73886	23 17	1.309 .926
$3d^{8}(^{3}\mathrm{P})4p^{-2}\mathrm{S}$		1/2	74283.33	74399	-116	1.721
$3d^8(^3\mathrm{P})4p$ $^4\mathrm{S}$		3/2	74300.93	74304	-3	1.968
$3d^{8}({}^{1}{ m G})4p^{-2}{ m H}$		9/2 11/2	75149.55 75721.71	75190 75705	$-40 \\ 17$.910 1.091
$3d^{8}(^{1}\mathrm{G})4p^{-2}\mathrm{F}$		7/2 5/2	75917.61 76402.04	75977 76395	-59 7	1.143 .858
$3d^{8}({}^{1}{ m G})4p^{-2}{ m G}$		7/2 9/2	79823.03 79923.88	79874 79977	-51 -53	.890 1.110
$3d^{7}(^{4}\mathrm{F})^{4}sp(^{3}\mathrm{P})^{-6}\mathrm{F}$		11/2 9/2 7/2 5/2 3/2 1/2	86343.21 86870.03 87538.09 88128.56 88582.01 88881.59	86645 86956 87599 88170 88608 88884	$ \begin{array}{r} -302 \\ -86 \\ -61 \\ -41 \\ -26 \\ -2 \end{array} $	1.450 1.458 1.417 1.332 1.084 619
3d ⁷ (⁴ F)sp(³ P) ⁶ D		9/2 7/2 5/2 3/2 1/2	88171.88 89100.47	88272 89213 89900 90374 90654	-100 -113	1.519 1.541 1.590 1.742 3.285
3d ⁷ (4F)sp(3P) 6G		13/2 11/2 9/2 7/2 5/2 3/2	89460.35 89918.47 90275.30 90526.18	88787 89327 89795 90164 90428 90595	133 123 111 98	1.384 1.345 1.281 1.164 .903 .106
$3d^7(^4\mathrm{F})sp(^3\mathrm{P})$ $^4\mathrm{F}$		9/2 7/2 5/2 3/2	94283.94 94705.93 95332.53 95893.76	94262 94701 95324 95878	22 5 9 16	1.295 1.214 1.001 .423
3d ⁷ (4F)sp(3P)4G		11/2 9/2 7/2 5/2	94396.74 95017.71 95573.39 96052.48	94363 94989 95572 96056	34 29 1 -4	1.274 1.208 1.027 .625
$3d^{7}(^{4}\mathrm{F})sp(^{3}\mathrm{P})$ $^{4}\mathrm{D}$		7/2 5/2 3/2 1/2	96535.87 97273.83 97799.66 98122.63	96629 97376 97917 98250	-93 -102 -117 -127	1.407 1.346 1.178 .003

 $TABLE~2.~~Ni~II-Observed~and~calculated~energy~levels~3d^84p + 3d^85p + 3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~3d^84p + 3d^85p + 3d^74s4p~in~units~of~cm^{-1}-Continued~and~calculated~energy~levels~and~calculated~energy~lev$

THEORET	TICAL AS	SIGNMENT	1	OBS.	CALC.	O-C	CALC. g
MAIN COMPONE	ENT	ADDITIONAL	J	ODS.	CALC.	0-6	CALC. g
$3d^{7}(^{4}\mathrm{F})sp(^{3}\mathrm{P})^{2}\mathrm{G}$			9/2 7/2	98276.70 99844.13	98301 99857	$-24 \\ -13$	1.115 .908
$3d^{7}(^{4}\mathrm{P})sp(^{3}\mathrm{P})^{6}\mathrm{S}$			5/2		98759		1.997
$3d^{7}(^{4}\mathrm{F})sp(^{3}\mathrm{P})^{2}\mathrm{F}$			7/2 5/2	99418.61 100609.01	99222 100430	196 179	1.130 .876
$3d^7(^4\mathrm{F})sp(^3\mathrm{P})^2\mathrm{D}$			5/2 3/2	101754.80 102742.74	101718 102733	37 10	1.186 .803
$3d^{8}(^{3}\mathrm{F})5p^{4}\mathrm{D}$			7/2 5/2 3/2 1/2	103653.03 104503.22 105439.85 106022.79	103741 104590 105478 106086	-88 -87 -38 -63	1.414 1.310 1.125 .013
$3d^{8}(^{1}S)4p^{2}P$			1/2 3/2		103459 104087		.667 1.329
$3d^{8}(^{3}\mathrm{F})5p^{4}\mathrm{G}$	41% 55%	38% ² G 24% ² G	11/2 9/2 7/2 5/2	104147.29 105588.89 105499.05 106283.16	104066 105496 105429 106228	81 93 70 55	1.273 1.164 1.006 .701
$3d^{8}(^{3}\mathrm{F})5p^{2}\mathrm{G}$	60% 58%	32% ⁴ G 24% ⁴ G	9/2 7/2	104081.04 106620.53	104045 106525	36 96	1.181 .964
$3d^{8}(^{3}F)5p^{4}F$	39% 53%	33% ² F 24% ⁴ G	9/2 7/2 5/2 3/2	104298.23 104646.52 105668.78 106369.30	104285 104646 105673 106399	$ \begin{array}{c c} 13 \\ 1 \\ -4 \\ -30 \end{array} $	1.271 1.157 .931 .463
$3d^8(^3\mathrm{F})5p\ ^2\mathrm{D}$			5/2 3/2	105861.19 107142.12	106017 107313	-156 -171	1.178 .822
$3d^8(^3\mathrm{F})5p\ ^2\mathrm{F}$	46%	32% ⁴ F	7/2 5/2	105838.06 107082.21	105825 107080	13 2	1.144 .913
$3d^{7}(^{4}\mathrm{P})~sp~(^{3}\mathrm{P})~^{6}\mathrm{D}$			9/2 7/2 5/2 3/2 1/2	105981.50	105888 105817 105863 105971 106106	93	1.554 1.585 1.654 1.837 3.296
$3d^{7}(^{4}\mathrm{P})sp(^{3}\mathrm{P})^{4}\mathrm{S}$			3/2	107737.81	107835	-97	1.851
3d ⁷ (4P) sp (3P) 6P			7/2 5/2 3/2	109038.84	108783 108873 108901	138	1.705 1.869 .982
3d ⁷ (2G) sp (3P) 4F			9/2 7/2 5/2 3/2	109148.05 109846.00 110573.36 111120.54	109136 109892 110573 111068	$ \begin{array}{c c} 12 \\ -46 \\ 0 \\ 53 \end{array} $	1.324 1.163 1.022 .518
$3d^{7}(^{2}G)$ sp (^{3}P) ^{4}H			13/2 11/2 9/2 7/2		109796 109673 109780 110088		1.228 1.135 .977 .744
$3d^{7}(^{2}\mathrm{P})sp(^{3}\mathrm{P})^{4}\mathrm{P}$	44% 48%	30% ⁴ D 30% ⁴ D	1/2 3/2 5/2		111112 111724 111917		2.458 1.519 1.506
$3d^{7}(^{2}\mathrm{G})sp(^{3}\mathrm{P})^{4}\mathrm{G}$			11/2 9/2 7/2 5/2	111783.79	111634 111850 112087 112329	-303	1.263 1.160 .975 .584

Table 2. Ni II – Observed and calculated energy levels $3d^84p + 3d^85p + 3d^74s4p$ in units of cm⁻¹ – Continued

THEORE	TICAL AS	SIGNMENT	T	OBC	CALC	0.6	CALC
MAIN COMPONI	ENT	ADDITIONAL	J	OBS.	CALC.	O-C	CALC. g
3d ⁷ (⁴ P) sp (³ P) ⁴ D	56% 44%	25% ⁴ P 24% ⁴ P	7/2 5/2 3/2 1/2		111437 111233 111271 111497		1.427 1.437 1.258 .166
3d ⁷ (⁴ F) sp (¹ P) ⁴ G	67% 41% 50%	28% ⁴ F 44% ⁴ F 28% ² F	11/2 9/2 7/2 5/2	112422.19 113753.04 115108.09	112549 113728 114531 115173	-127 25 -65	1.272 1.214 1.124 .820
d ⁷ sp ⁴D	65% 65%	24% ⁴ P 28% ⁴ P	7/2 5/2 3/2 1/2		112683 113262 113846 114523		1.421 1.380 1.309 .843
$3d^{7}(^{2}G) sp (^{3}P) ^{2}H$ $3d^{7}(^{4}F) sp (^{1}P) ^{4}F$	63% 28% 61% 60%	34% ⁴ G 29% ⁴ G + 29% ² G 16% ² F	9/2 11/2 9/2 7/2 5/2 3/2	113321.95 114052.21 115120.00	113082 113952 112935 113788 114836 115149	387 264 284	.904 1.085 1.275 1.056 1.046
$3d^{7}(^{2}{ m G})sp(^{3}{ m P})^{2}{ m G}$	58%	25% ⁴ G +14% ⁴ F	7/2 9/2		113765 114276		.970 1.119
$3d^{7}(^{4}\mathrm{P})sp(^{3}\mathrm{P})^{2}\mathrm{S}$			1/2		113841		1.925
$3d^{7}(^{4}P) sp (^{3}P)^{4}P$	61% 53% 38%	40% ⁴ D 40% ⁴ D + 20% ² S	5/2 3/2 1/2		114043 114387 114378		1.456 1.495 1.459
$3d^7(^2\mathrm{G}^+\ sp\ (^3\mathrm{P})^2\mathrm{F}$	29% 51%	46% ⁴ G 22% ⁴ D	5/2 7/2	115000.25	114229 114866	134	.831 1.209
$3d^{7}(^{2}\mathrm{H})sp(^{3}\mathrm{P})^{4}\mathrm{G}$			11/2 9/2 7/2 5/2	114858.88 116087.38 116275.81 116824.15	114996 115720 116379 116833	-137 367 -103 -9	1.269 1.139 1.019 .643
$d^7 sp$ ² D	62% 50%	33% ⁴ D	3/2 5/2	114869.35 116893.98	115018 117046	$-149 \\ -152$.923 1.237
$d^7 sp$ ⁴ D	78% 30% 32% 55%	42% ¹ F 25% ¹ F + 23% ² D 18% ² F	1/2 3/2 5/2 7/2	115592.25 115565.98 115209.98	115177 115568 115340 115321	24 226 -111	.461 .834 1.154 1.298
$3d^{7}(^{2}\mathrm{H})sp(^{3}\mathrm{P})^{4}\mathrm{I}$			15/2 13/2 11/2 9/2		115245 115237 115440 115784		1.200 1.109 .977 .785
$3d^{7}(^{4}\text{P}) sp (^{3}\text{P})^{2}\text{D}$	61% 43%	27% ⁴ D 25% ² P	5/2 3/2		115868 117094		1.245 1.057
$d^7 sp$ ⁴ D	50% 40% 38%	$\begin{array}{c} 23\%^{4}F \\ 23\%^{4}S + 21\%^{2}P \\ 26\%^{2}P + 23\%^{2}S \end{array}$	7/2 5/2 3/2 1/2	116512.06	116603 117595 117989 118159	-91	1.408 1.242 1.384 .758
$3d^{7}(^{2}\mathrm{P})sp(^{3}\mathrm{P})^{4}\mathrm{S}$	37%	12% ² D + 12% ⁴ F	3/2	117662.11	117460	202	1.417
$d^7 sp$ $^2{ m P}$	41% 27%	23% ² S 29% ⁴ D + 21% ⁴ F	1/2 3/2		117478 118284		.984 1.118
$3d^{7}(a^{2}D) sp (^{3}P) ^{4}F$	48% 32%	24% ² D 32% ² D+17% ² P	9/2 7/2 5/2 3/2	117593.68 117972.47	117552 117993 118627 118786	$ \begin{array}{c c} 42 \\ -21 \end{array} $	1.333 1.250 1.094 .874

 $Table \ 2. \quad Ni \ II-Observed \ and \ calculated \ energy \ levels \ 3d^84p + 3d^85p + 3d^74s4p \ in \ units \ of \ cm^{-1}-Continued$

THEORET	TICAL AS	SIGNMENT	J	OBS.	CALC.	о-с	CALC. g
MAIN COMPONE	NT	ADDITIONAL	,	ово.	G/LEG.		GILLO. 8
$3d^{8}(^{1}\mathrm{D})5p~^{2}\mathrm{D}$	36% 65%	12%(¹D)²P	3/2 5/2	117763.91 117872.78	117858 117995	$ \begin{array}{r} -94 \\ -122 \end{array} $	1.165 1.271
$3d^7(^2\mathrm{H})sp(^3\mathrm{P})^2\mathrm{I}$			11/2 13/2	118248.98 119010.21	118305 118992	-56 18	.928 1.085
$3d^8(^1\mathrm{D})5p\ ^2\mathrm{F}$			5/2 7/2	118379.11 118563.39	118389 118542	$-10 \\ 21$.979 1.193
$3d^8(^1\mathrm{D})5p^2\mathrm{P}$	37% 50%	35%(¹ D) ² D 29%d ⁷ sp ⁴ D	3/2 1/2	118442.81 118631.95	118510 118503	-67 128	1.158 .606
3d ⁷ (² P) sp (³ P) ² S	36%	44%²P	1/2		119423		1.438
$3d^{7}(^{2}\mathrm{H})sp(^{3}\mathrm{P})^{4}\mathrm{H}$			13/2 11/2 9/2 7/2		119729 120027 120280 120498		1.226 1.133 .976 .692
$3d^{8}$ (³ P) $5p$ ⁴ P	51% 36%	19%(¹D)²D 17%(¹D)²P	5/2 3/2 1/2	119796.98 120166.52 120316.02	119905 120221 120260	$ \begin{array}{c c} -108 \\ -54 \\ 56 \end{array} $	1.518 1.534 2.406
$3d^{7}(^{2}P)sp(^{3}P)^{2}P$	54% 31%	$36\%d^85p^4$ P	1/2 3/2		119906 119945		.679 1.385
$3d^7(a^2\mathrm{D})sp(^3\mathrm{P})$ ⁴ P	44%	17%²P	5/2 3/2 1/2		120612 121766 122378		1.527 1.535 2.393
$3d^8(^3\mathrm{P})5p^{-4}\mathrm{D}$	81% 63% 54% 83%	27% (3P)2D	7/2 5/2 3/2 1/2	120903.31 121325.09 121385.80 121561.06	121052 121302 121307 121445	-149 23 79 116	1.387 1.322 1.227 .064
$3d^{8}(^{3}\mathrm{P})5p^{-2}\mathrm{P}$	35%	$18\%^2D + 17\%^2S$	3/2 1/2	121042.57	121091 121917	-48	1.260 .751
$3d^8(^3\mathrm{P})5p^{-2}\mathrm{D}$	57% 28%	$20\%(^{3}P)^{4}D$ $32\%(^{3}P)^{2}P$	5/2 3/2	121050.66 121800.34	121007 121662	44 138	1.216 1.260
$3d^{8}(^{3}\mathrm{P})5p^{-4}\mathrm{S}$	43%	23% (³ P) ² D	3/2	121456.30	121409	47	1.509
$3d^7(^2\mathrm{H})sp(^3\mathrm{P})$ $^2\mathrm{G}$			9/2 7/2	121692.55 121862.57	121749 121882	$-56 \\ -19$	1.108 .873
$3d^7 (a^2\mathrm{D}) sp(^3\mathrm{P})$ ² F		-	5/2 7/2		121963 122670		.914 1.150
$3d^8(^3\mathrm{P})5p^{-2}\mathrm{S}$			1/2		122063		1.883
$3d^7(a^2\mathrm{D})sp(^3\mathrm{P})$ $^2\mathrm{D}$			3/2 5/2		122131 122277		.930 1.204
$3d^7(a^2\mathrm{D})sp(^3\mathrm{P})$ $^2\mathrm{P}$			1/2 3/2		124474 124771		.751 1.362
$3d^{7}(^{2}\mathrm{H})sp(^{3}\mathrm{P})$ $^{2}\mathrm{H}$			9/2 11/2	124652.00 125003.41	124787 125159	-135 -156	.911 1.092
$3d^{8}({}^{1}{ m G})5p^{-2}{ m F}$			7/2 5/2	127219.57 127331.60	126938 127071	282 261	1.142 .858
$3d^8({}^1\mathrm{G})5p~^2\mathrm{H}$			9/2 11/2	126679.98 126857.97	126895 127061	$ \begin{array}{r r} -215 \\ -203 \end{array} $.910 1.091

 $Table \ 2. \quad Ni \ II-Observed \ and \ calculated \ energy \ levels \ 3d^84p + 3d^85p + 3d^74s4p \ in \ units \ of \ cm^{-1}-Continued$

THEORETICAL AS	SSIGNMENT		OPG	CALC	0.0	CALC
MAIN COMPONENT	ADDITIONAL	- J	OBS.	CALC.	O-C	CALC. g
3d ⁷ (⁴ P)sp(¹ P) ⁴ S		3/2	126738.82	126903	- 164	1.990
$3d^8$ (1G)5 p ² G		9/2 7/2	127885.86 127895.33	127896 127888	$-10 \\ 7$	1.110 .890
$3d^7(^4\mathrm{P})sp(^1\mathrm{P})^{-4}\mathrm{D}$		7/2 5/2 3/2 1/2	129782.07 129988.05 130331.78 130570.42	129925 130121 130372 130595	$ \begin{array}{r} -143 \\ -133 \\ -40 \\ -25 \end{array} $	1.427 1.366 1.200 .037
$3d^7(^2\mathrm{G})sp(^1\mathrm{P})^{-2}\mathrm{H}$		11/2 9/2	131424.32 132311.98	131131 13211 6	293 196	1.086 .915
3d ⁷ (² F)sp (³ P) ⁴ G		5/2 7/2 9/2 11/2	133625.96	132462 132685 133035 133567	59	.611 1.012 1.188 1.272
3d ⁷ (4P)sp(1P) 4P		5/2 3/2 1/2	(131834.94) (132225.15) (132120.70)	132957 133323 133328	(-1122) (-1098) (-1208)	1.548 1.681 2.490
$3d^7(^2\mathrm{G})sp(^1\mathrm{P})$ $^2\mathrm{F}$		7/2 5/2	133169.92 134208.30	132917 134110	253 98	1.138 .994
$3d^7(^2\mathrm{F})sp(^3\mathrm{P})$ $^4\mathrm{F}$		3/2 5/2 7/2 9/2	133190.19 133209.30 133528.02 133853.04	132894 133179 133541 133898	296 30 -13 -45	.425 1.021 1.214 1.303
$3d^7(^2\mathrm{G})sp(^1\mathrm{P})$ $^2\mathrm{G}$		9/2 7/2	133445.75 134380.82	133676 134783	$ \begin{array}{r} -230 \\ -402 \end{array} $	1.116 .891
$3d^7(^2\mathrm{F})sp(^3\mathrm{P})$ ⁴ D		7/2 5/2 3/2 1/2	133850.83 133973.33 134156.28 134283.76	133888 133885 134113 134215	-37 87 43 69	1.417 1.225 1.198 .047
$3d^7(^2\mathrm{F})sp(^3\mathrm{P})^{-2}\mathrm{D}$		5/2 3/2	134783.14 134964.78	1348 4 1 135024	-58 -59	1.205 .913
$3d^7(^2\mathrm{P})sp(^1\mathrm{P})$ $^2\mathrm{P}$		1/2 3/2	135382.53	1355 4 9 135661	-278	.776 1.169
$3d^7(^2\mathrm{F})sp(^3\mathrm{P})$ $^2\mathrm{G}$		7/2 9/2	135746.06 136076.26	135737 1359 4 2	9 134	.894 1.112
$3d^7(^2\mathrm{P})sp(^1\mathrm{P})$ $^2\mathrm{D}$		5/2 3/2	(135258.92)	135900 137089	(-741)	1.200 .826
$3d^7(^2\mathrm{H})sp(^1\mathrm{P})$ $^2\mathrm{I}$		13/2 11/2		136509 137 4 94		1.077 .929
$3d^7(a^2\mathrm{D})sp(^1\mathrm{P})^{-2}\mathrm{D}$		5/2 3/2		1382 4 4 139 4 02		1.154 .864
$3d^7(^2\mathrm{H})sp(^1\mathrm{P})$ $^2\mathrm{G}$		9/2 7/2	138495.84	1386 1 3 139322	-117	1.109 .906
$3d^7(^2\mathrm{F})sp(^3\mathrm{P})$ $^2\mathrm{F}$		7/2 5/2		138858 139447		1.138 .889
$3d^7(^2{\rm P})sp(^1{\rm P})\ ^2{\rm S}$		1/2		139683		1.911
$3d^7(a^2\mathrm{D})sp(^1\mathrm{P})$ $^2\mathrm{F}$		7/2 5/2		139904 141012	3	1.140 .902
3d ⁷ (² H)sp(¹ P) ² H		11/2 9/2		141873 142868		1.091 .913

Table 2. Ni II - Observed and calculated energy levels 3d84p + 3d85p + 3d74s4p in units of cm-1 - Continued

THEORETICAL A	SSIGNMENT	,	OBS.	CALC	0.0	CALC
MAIN COMPONENT	ADDITIONAL	J		CALC.	О-С	CALC. g
$3d^{7}(a^{2}\mathrm{D})sp(^{1}\mathrm{P})^{-2}\mathrm{P}$		3/2 1/2		142107 143961		1.332 .738
$3d^7(b^2\mathrm{D})sp(^3\mathrm{P})$ ⁴ P		5/2 3/2 1/2		151277 151257 151281		1.598 1.730 2.661
$3d^7(b^2\mathrm{D})sp(^3\mathrm{P})$ ⁴ F		3/2 5/2 7/2 9/2		152576 152859 153254 153760		.403 1.029 1.237 1.330
$3d^8(^1\mathrm{S})5p^2\mathrm{P}$		1/2 3/2		153513 154114		.667 1.148
$3d^7(^2\mathrm{F})sp(^1\mathrm{P})^2\mathrm{G}$		7/2 9/2		154379 154810		.890 1.114
$3d^7(^2\mathrm{F})sp(^1\mathrm{P})^2\mathrm{D}$		3/2 5/2		154619 154998		.986 1.078
$3d^7(^2\mathrm{F})sp(^1\mathrm{P})^2\mathrm{F}$		5/2 7/2		155556 155892		.979 1.143
$3d^7(b^2\mathrm{D})~sp~(^3\mathrm{P})~^2\mathrm{P}$		3/2 1/2		156895 157329		1.330 .623
$3d^7(b^2\mathrm{D})\ sp\ (^3\mathrm{P})\ ^2\mathrm{F}$		5/2 7/2		157904 158157		.869 1.166
$3d^7(b^2\mathrm{D})~sp~(^3\mathrm{P})~^4\mathrm{D}$		1/2 3/2 5/2 7/2		158243 158398 158717 159298		.048 1.200 1.359 1.405
$3d^7(b^2\mathrm{D})~sp~(^3\mathrm{P})~^2\mathrm{D}$		5/2 3/2		161296 161382		1.200 .803
$3d^7(b^2\mathrm{D})~sp~(^1\mathrm{P})~^2\mathrm{P}$		1/2 3/2		173566 174048		.667 1.332
$3d^7(b^2\mathrm{D})\mathrm{s}p(^1\mathrm{P})^2\mathrm{F}$		5/2 7/2		174919 175397		.858 1.142
$3d^7(b^2\mathrm{D})sp\left(^1\mathrm{P}\right)^2\mathrm{D}$		3/2 5/2		179748 180530		.800 1.199

of the d-f interaction and for ζ_f was done by direct observation of the experimental level values. The final parameters which we obtained for these configurations are given in table 3. In column L.S.a, all the parameters were set free, and the rms error is 25.6 cm⁻¹. We can see that the parameters $F_4(df)$, $G_3(df)$ and ζ_f are equal to zero within their statistical accuracy. Column L.S.b of table 3 gives the results of a calculation in which the above-mentioned parameters were fixed at zero. In this case the rms error is 25.2 cm⁻¹. The observed and calculated levels of d^8f are given in table 4.

We would like to emphasize that the d^8f configura-

tion was calculated independently without including any interaction with any other configuration. This simple treatment is justified to some extent by the small mean error.

In all, 60 experimental levels of d^8f were fitted to the calculated ones. Three observed levels could not be fitted. They are:

 $132729.48 \text{ cm}^{-1} \text{ with } J = 5/2,$

 $135954.09 \text{ cm}^{-1} \text{ with } J = 7/2,$

 $135580.25 \text{ cm}^{-1} \text{ with } J = 9/2.$

Table 3. Parameters of the Configuration d8f

All values are in units of cm-1

P	Diag.	L.S.a	L.S.B
$ \begin{array}{c} A - 3d^84f \\ B \end{array} $	128190 1035	$128189. \pm 1035.4 \pm 0.6$	$\begin{array}{c} 128186 \pm 5 \\ 1035.5 \pm 0.6 \end{array}$
C	4080	4086 ± 6	4086 ± 6
$F_2(df)$ $F_4(df)$	8.5	8.4 ± 0.5 0.1 ± 0.1	8.3 ± 0.4
$G_1(df)$	1	1.6 ± 0.8	1.4 ± 0.6
$G_3(df)$ $G_5(df)$	0	0.3 ± 0.3 0.03 ± 0.05	
	670	668 ± 3	668 ±3
$egin{array}{c} oldsymbol{\zeta}_d \ oldsymbol{\zeta}_f \end{array}$	0	3 ± 2	
Δ		25.6 cm ⁻¹	25.2 cm ⁻¹

The coupling for this configuration is the J-l coupling; that is: the S' and L' of the d^8 parent term first combine to form J''. Then J'' is combined with the $l\!=\!3$ of the f electron forming K and finally the spin of this electron is added to K and the total J is formed. This is the coupling used in table 4.

The authors wish to express their deep gratitude to Professor Shenstone for the special pleasure and benefit of his kind and useful cooperation.

Table 4. Ni II-Observed and calculated energy levels 3d84f

THEORETICAL A	SSIGNMENT	1	OBS.	CALC.	О-С	CALC
d^{8} PARENT	K	J	OBS.	CALC.	0-6	CALC. g
$^3\mathrm{F}_4$	7	13/2 15/2	118803.82 118848.92	118837 118837	$-33 \\ 12$	1.086 1.200
	1	3/2 1/2	118809.34 118774.76	118800 118805	-30	1.779 1.523
	2	5/2 3/2	118828.61 118877.09	118833 118853	-4 24	1.448 1.143
	3	7/2 5/2	118874.11 118897.94	118871 118900	$-\frac{3}{2}$	1.329 1.094
	6	11/2 13/2	118892.99 118893.24	118909 118909	-16 -16	1.081 1.212
	4	9/2 7/2	118914.34 118923.20	118905 11892 4	9 -1	1.269 1.082
	5	9/2 11/2	118927.02 118939.53	11892 4 11892 4	3 16	1.081 1.234
$^3\mathrm{F}_3$	0	1/2	120189.55	120170	20	2.043
	1	3/2 1/2	120199.18 120203.49	12019 4 120181	5 22	1.379 .704
	2	5/2 3/2	120203.49 120222.89	120222 12022 4	-19 -1	1.244 .861
	6	11/2 13/2	120211.30 120218.22	120205 120205	6 13	.970 1.117
³ F ₃	3	7/2 5/2	120250.17 120271.97	120249 120265	1 7	1.176 .909
	4	7/2 9/2	120268.81 120281.11	120281 120272	-12 9	.938 1.146
	5	11/2 9/2	120270.44 120272.53	120265 120265	5 8	1.124 .949
$^3\mathrm{F}_3$	1	3/2 1/2	121042.52 121090.71	120092 121092	-49 -1	1.540 1.059
	5	11/2 9/2	121120.88 121125.41	121122 121122	$-1 \\ 3$.976 .771
	2	5/2 3/2	121146.98 121161.81	121146 121147	1 15	1.181 .763

Table 4. Ni II—Observed and calculated energy levels $3\,\mathrm{d^84f}$ —Continued

THEORETICAL AS	THEORETICAL ASSIGNMENT		utatea energy teve			
$d^{ m s}$ Parent	K	J	OBS.	CALC.	O-C	CALC. g
	4	7/2 9/2	121178.56 121180.54	121192 121190	-13 -9	.762 1.008
	3	7/2 5/2	121192.32 121194.14	121183 121188	9 6	1.063 .753
$^1\mathrm{D}_2$	4	9/2 7/2	132818.16 132846.53	132855 132857	$-37 \\ -10$	1.138 .933
	3	5/2 7/2	(132729.48) 132869.16	132875 132889	(-146) -20	.878 1.148
$^1\mathrm{D}_2$	2	5/2 3/2	132912.15 132927.97	132944 132940	$-32 \\ -12$	1,197 .793
	1	3/2 1/2	132982.51 133001.47	133005 133005	$ \begin{array}{r} -23 \\ -4 \end{array} $	1.283 .564
	5	11/2 9/2	133014.08 133031.00	132950 132950	64 81	1.119 .943
$^3\mathrm{P}_2$	3	7/2 5/2	135400.67 135461.55	135438 135452	$-37 \\ 10$	1.179 .979
	4	9/2 7/2	135435.26 135444.47	135414 135430	21 14	1.283 1.127
	2	3/2 5/2	135493.26 135512.92	135485 135501	8 12	.515 .976
	5	11/2 9/2	135538.61 135558.80	135582 135582	$ \begin{array}{r} -43 \\ -23 \end{array} $	1.243 1.092
	1	3/2 1/2	135652.93 135670.49	135661 135659	-8 11	1.057 .106
$^3\mathrm{P}_1$	2	5/2 3/2	135746.13	135784 135784	-38	1.255 .885
	4	9/2 7/2	(135580.35) (135464.86)	135773 135776	(-193) (-311)	1.179 .976
	3	5/2 7/2	135849.41 135879.41	135866 135864	-17 15	.895 1.174
$^3\mathrm{P}_0$	3	7/2 5/2	(135954.09) 136122.61	136055 136056	(-101) 67	1.176 .905
$^{1}G_{4}$	1	$\frac{3/2}{1/2}$		140232 140233		1.334 .667
	2	5/2 3/2		140345 140347	-	1.200 .800
	7	13/2 15/2		140355 140355		.933 1.067
	3	7/2 5/2		140491 140492		1.143 .857
	4	9/2 7/2		140632 140632		1.111 .889
	6	11/2 13/2		140643 140643		.923 1.077
	5	11/2 9/2		140708 140708		1.091 .909
¹ S ₀	3	7/2 5/2		171363 171364	,	1.143 .857

5. References

- Moore, C. E., Atomic Energy Levels, NBS Circ 467, II (1949).
 Steinberger, H., Msc. Thesis, The Hebrew University of Jerusa-
- [2] Steinberger, H., Msc. Thesis, The Hebrew University of Jerusalem, 1958.
 [3] Shimoni, Z., Msc. Thesis, The Herbrew University of Jerusalem,
- 1959. [4] Roth, C., J. Res. Nat. Bur. Stand. (U.S.), **73A** (Phys. and Chem.) No. 2, 129, (1969).
- [5] Shenstone, A. G., J. Res. Nat. Bur. Stand. (U.S.), 74A (Phys. and Chem.) No. 6, 801, (1970).
- [6] Schwimmer, A., Msc. Thesis, The Hebrew University of Jerusalem (1967).
- [7] Racah, G., and Shadmi, Y., Bull. Res. Counc. of Israel 8F, 15 (1959).
- [8] Shadmi, Y., and Caspi, E., Oreg J. Res., Nat. Bur. Stand. (U.S.), 73A (Phys. and Chem.) No. 2, 173, 1969.
- [9] Shadmi, Y., Phys. Rev. 139A, 43 (1965).
- [10] Shadmi, Y., Oreg, J., Stein, J., J.O.S.A. 58, 7, 909-914 (1968).

(Paper 76A2-705)