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Digital methods of high precision have been developed for the calculation of electric fields and tra-
jectories in electrostatic lenses and a computer program was written to apply these methods to the
two-tube lens. The increased precision results from the use of nine-point formulas in the relaxation
calculation of potentials in place of previously used five-point formulas and from the use of an improved
predictor-corrector method for the calculation of trajectories. Trajectories obtained with these methods
are sufficiently precise to determine third-order aberration coeflicients.
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1. Introduction

As part of a general program to determine precise
properties of electrostatic lenses, highly precise digital
methods were developed for the calculation of electric
fields and trajectories in electrostatic lenses and a com-
puter program was written to apply these methods
to the two-tube lens.! Our methods are easily general-
izable to a wide class of electrostatic lenses.

The two-tube lens was chosen to test the digital
methods since considerable data are available for this
lens. Comparison of our results with the existing data
shows that our methods have increased the accuracy
of the calculation of lens properties and makes it pos-
sible, for the first time, to determine all of the third-
order aberration coeflicients of the two-tube lens for
meridional trajectories.

2. Calculation of the Potentials
2.1. Statement of the Problem

Since a two-tube lens is cylindrically symmetric,
the potential distribution inside the cylinders can be
obtained by solving Laplace’s equation in cylindrical
coordinates (see fig. 1)
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* Present address: Istituto di Fisica, Universita di Bari, Bari, Italy.
1 A detailed description of the computer program will be published separately.

giving as boundary conditions the potentials on a
contour starting and ending on the axis. Let V; and
Vo be the potentials on the two cylinders, D the
inside diameter, and S the size of the gap between
the two cylinders. The following boundary conditions
were used : (see fig. 1)
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FIGURE 1. Schematic of the two-tube electrostatic lens, showing
r, z, coordinate system and boundary used in the relaxation cal-
culation of potentials.
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In the actual calculations the distance AF is typically
3.5 D. It is sufficient to calculate the potentials only
inside ABCDEF A since cylindrical symmetry requires

V(i—r,z)=V(r,z)

and the symmetry about the midplane of the lens
requires

V(ir,—z)=V+V,—V(r,z).

In addition, once the solution Vy(r, z) is obtained for
the case V,=0, Vo=1, then the solution for any other
potentials V4, V> on the tubes can be obtained from
the formula

V(r,z)=Vi+ (Vo—V1) Vo(r, z)
2.2. Method of Solution

Laplace’s equation (eq 1) was solved by the relaxa-
tion method on a matrix of equally spaced points [1].2
The domain ABCDEFA was divided into a network
of equal sides h. Let i be the index running along the
z axis, and j the index along r. Let Vi ; be the potential
at mesh point (i, j). Then the first order difference
form of eq (1) is:
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From eq (2) the relationship between V; ; and the
four adjacent points is easily obtained:

? Figures in brackets indicate the literature references at the end of this paper.
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Here we assume that rj is measured in units of A.
On the axis where
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eq (3) becomes
5 1 .
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In order to increase the accuracy of the relaxation
method, we have expressed Vi ; in terms of the
potentials of eight adjacent points. This is accom-
plished by using Stirling differentiation formulas [2]
for five points at equal intervals in both the r and z
directions. The resulting formulas, including those
special formulas required for points near the bound-
aries, are listed in table 1.

The basic nine-point formula used to relax the
network is I1, and its specialization to axial points
is 12. Formula I3 was obtained from Il assuming
symmetry about the axis. Formulas [4 and 16 which
were used for points near the left boundary are just
special cases of the five-point formulas given in eqs
(3) and (5). Formula I5 was obtained from II and the
relation

Vis1,i=2Vm,;—Va-1,; 6)
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TABLE 1. Formulas used for relaxation — Continued

Number | Potential Location Formula
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TABLE 1. Formulas used for relaxation — Continued
Number | Potential Location Formula
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Formula 17 was obtained from 12 and eq (6), and I8
was obtained from I3 and eq (6). Formula 19 was de-
rived by substituting into Laplace’s equation the
three-point formula for the derivative with respect
to z and the five-point formulas for the derivatives
with respect to r. Finally, Formula 110 was derived
by substituting into Laplace’s equation the three-
point formulas for the derivatives with respect to r
and the five-point formula for the derivative with
respect to z.

2.3. Overrelaxation Procedure

The relaxation method is based on successive itera-
tions of formulas I1 through I10 until the values
assumed by the Vi in two successive iterations
differ by less than a preselected amount. Since the
convergence is very slow, overrelaxation is used.
The potential at point (i, j) after the mth iteration
is then given by

Vis=rnitw <V;'j"} =t ) ()

where V'* is the potential calculated from formulas
I1 through 110. The quantity w is called the over-
relaxation or acceleration factor, and its optimum
value is problem dependent.

To determine w we use the method of Carré [3].
Twelve iterations are first performed using a value
w=1.375 which is certainly smaller than the optimal
value wp, and a quantity W is calculated from the last
three iterations:
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The next estimate of the acceleration factor is then
calculated from
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Carré has shown the importance of not exceeding
the optimum value wp, and finds empirically that a
value

Wm = wl_1 (2—ar)
4

is close to wy but never exceeds it. The next twelve
iterations are then performed using the acceleration
factor w, and new estimates of W, w;, and w, ealcu-
lated from eqs (8-10). The entire process is repeated
twelve times or until two successive estimates w,
wi+1 from eq (9) satisfy the inequality

(10)
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Succeeding iterations are then made with the last
estimate of wy from eq (9) and are repeated until

W
| V}I‘lj_ Vf',lfl o W <e€ (12)
for all points on the mesh. The quantity €is the desired
precision for the potentials.

2.4. Program Organization

The radius of the lens was divided into 40 mesh
points, with 320 mesh points along the axis for the
half-lens. Hence, the program must relax 12,800 points.
In addition, a 5 X 100 matrix is relaxed in the gap be-
tween the tubes, with 15 points overlapping the main
matrix (see fig. 2). The time required to relax the com-
plete network to a precision of e=10"*% was about
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FIGURE 2. Layout of mesh points showing overlapping of the main |
matrix with the auxiliary matrix used in the lens gap. Cross-
hatched region is area of overlap. ‘
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TABLE 2. Axial potentials V(z) for the two-tube electrostatic lens
z=0 at the center of the gap. }V',=0, V.= 1.
V(z)
gap=0.1D gap=0

Z|D
Present Read Grivet- Verster Read El-Kareh Grivet-
results et al. Bernard et al. Bernard
0 .500000 .500000 .500000 .500000 .500000 .500000 500000
.025 467115 467206 467237 466896 466896 467089
.05 .434532 .434703 .434753 .434101 .434101 .434462
.075 .402538 .402789 .402816 401911 401911 .402393
b .371399 SIS 371679 .370599 .370599 370606 371138
125 341351 341722 .341566 .340406 .340406 .340925
k) .312592 .313005 312673 2 l1533 S11033 311952
175 .285279 .285722 .285159 .284138 .284138 .284379
2 259528 .259991 259146 258334 258334 .258327 .258327
225 .235413 .235884 .234720 .234195 .234195 .233883
25 .212969 .213438 .211932 211752 211752 .211093
83 .173079 7351 171309 171921 171921 171925 170510
135 139566 139957 137100 .138518 138518 136380
4 111851 112180 .108812 .110938 .110938 .110939 .108190
A5 .089212 .089479 .085771 .088438 .088438 .085253
5 .070897 .071103 067235 .070253 .070253 .070247 .066813
.6 .044436 .044536 .040802 .044009 .044009 .044012 .040542
7 .027676 .027690 1024483 .027403 .027403 .027405 .024331
8 017178 .017141 .014590 .017006 .017006 .017003 .014504
9 .010642 .010571 .008658 .010535 .010535 .010538 .008611
1.0 .006586 .006544 .005125 .006520 .006520 .006520 .005100
1.1 .004074 .004048 .003029 .004033 .004033 .004029 .003016
1.2 .002519 002501 .001789 .002494 .002494 002498 .001782
193 .001557 .001545 .001056 001542 .001542 .001543 .001053
1.4 .000962 .000954 .000623 .000953 .000953 .000951 .000621
1.5 .000595 .000589 .000368 .000589 .000589 .000591 .000367
1.6 .000368 .000364 .000217 .000364 .000364 .000217
7/ .000227 1000225 .000128 .000225 .000225 .000128
1.8 .000141 .000139 .000075 .000139 .000139 .000075
1.9 .000087 .000086 .000044 .000086 .000086 000045
2.0 000054 .000053 1000026 .000053 .000053 .000026
2.1 .000033 .000033 .000015 .000033 .000033 .000016
2.2 000020 .000020 .000009 .000020 .000020 .000009
2.3 .000013 .000013 .000005 .000013 .000013 .000005
2.4 .000008 .000008 .000003 .000008 .000008 .000003
225 000005 .000005 .000002 .000005 .000005 .000002

16 min on an IBM 360/65 computer, using double
precision arithmetic (~ 15 decimal digits).

2.5. Results

In table 2 the potentials we obtain along the axis
are compared with potentials obtained with other meth-
ods. Our potentials are in agreement with Verster’s
calculated potentials [4] to within 0.3 percent. The
systematic difference between our results and those
of Verster is probably due to a difference in gap size,
which in the present calculations is 0.1 1) while Verster
uses a zero gap.

Also given are potentials calculated with the Grivet-

Bernard approximation [6] for gap widths of 0.1 D
and zero. The agreement with our results and also with
the results of Verster is good close to the gap but
becomes progressively poorer away from the gap as
could be expected with the approximations used by
Grivet and Bernard. Note that the systematic differ-
ence between our results and those of Verster is in the
same direction and roughly the same size as the differ-
ences between the Grivet-Bernard potentials for the
same gap sizes.

We have also included the results of a calculation
for the zero-gap case carried out by El-Kareh [5].
The agreement with Verster’s calculation is extremely
good. It should be noted that in deriving lens properties,
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El-Kareh uses the Grivet-Bernard approximation for
the axial potentials.

The Grivet-Bernard approximation assumes a linear
potential variation across the gap, while our method
of continuing the relaxation process into the gap shows
that the actual potential variation in the gap differs
substantially from linear, as shown in table 3. To
assess the effect of the nonlinear potential variation
in the gap, we made special calculations assuming a
linear variation in the gap. It was found that the change
in axial potential and lens properties was less than
0.1 percent.

TABLE 3. Linearly interpolated potentials compared to values
from relaxation in the lens gap
'=1, V,=20. |=distance measured from edge of tube along inner diameter of the tube.
s=gap width=10.1D.
ls Interpolated Relaxation
0 1.000 1.000
NI25 3.375 3.987
oS 5.750 6.315
375 8.125 8.441
) 10.500 10.500
.625 12.875 12.559
.75 15.250 14.685
.875 17.725 17.013
1.0 20.000 20.000

Finally, very recent calculations of Read et al.
[7] are given. For the zero-gap case, the same infinite
series was evaluated by Read et al., as by Verster and
by El-Kareh. The agreement is extremely good. For
the finite-gap case, Read et al. use a new method in-
volving a determination of charge distributions on the
tubes which give agreement with the boundary
conditions. The agreement with our results is within

0.0005.

3. The Ray Tracing Program

3.1. Statement of the Problem

Using the potentials obtained by relaxation we must
solve numerically the Lorentz equation:
F=—¢E (13)
where F is the force on the electron, and E is the
electric field which must be calculated from the
potentials at the mesh points. We restrict to the non-
relativistic case and to cylindrically symmetric elec-
trostatic fields. In addition we consider only merid-
ional rays, that is, rays lying in a plane through the
axis of the lens. Equation (13) then reduces to the
two equations:

d? e
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Making the change of variables

T2 — 2_6 [2
m
dz_
“ dr
(15)
_dr
T
eqs (15) become
dz
& u(r. )
du 1
Py E.(r, z)
(16
dr
d—T—v(z, r)
dv 1
E_f B Er(l‘, Z).
We express the initial conditions as
z(10) =20
(%)
= = W
dr/o (17)
r(7o) =ro

(dz) 0

22) — .

dr/o

3.2. Method of Numerical Solution

The numerical solution of the system of eqs (16)
is of particular difficulty when a high precision is re-
quired. After a number of attempts using previous
methods [1] we have chosen to use the predictor-
corrector method of Hamming [8] where error and sta-
bility can be checked point by point. The important
property of the classical predictor-corrector method
is that it can be iterated until the required precision
in the solution is reached. Hamming’s method has the
additional advantage of setting limits on the error which
is accumulated along the integration. The method is
stable in the sense that the difference between the
numerical solution and the true solution decreases
as the number of points of integration increases.

The predictor-corrector method seems therefore
ideal for the calculation of trajectories. It has, however,
two disadvantages: (1) It is not “self-starting”; hence,
several starting points must be calculated with a
different method. (2) It is desirable that at least sev-
eral points be calculated in each mesh. Since the points
are calculated at equal time intervals h it may happen



that when the electron accelerates the stability criteria
require the interval h to be reduced by a factor of 2.
Then the predictor-corrector method needs, to proceed,
points calculated at intervals h/2, half of which do not
exist. The trajectory must therefore be reinitiated with
a different method.

Whenever required, the trajectory is reinitialized
using the Runge-Kutta method. Reinitialization is
only required when the electron moves toward the
higher potential part of the lens. The effect of the
occasional use of the Runge-Kutta method was checked
by using the reversibility of electron trajectories. Sev-
eral trajectories were calculated in both directions and
found to coincide to within 0.01 percent.

A negligible error is expected when the trajectory is
begun, this process being always performed in a
zero-field region.

3.3. Trajectory Initiation by the Runge-Kutta Method

The numerical solution of eqs (16) uses the Runge-
nutta method to calculate the first seven points of
the trajectory. Continuation of the solution then pro-
ceeds with the predictor-corrector method. Whenever
‘he stability conditions fail to be satisfied at some point
along the trajectory, the Runge-Kutta method is again
applied to reinitialize the trajectory before continuing
with the predictor-corrector method.

The Runge-Kutta formulas utilized are as follows:

1
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with

v.=—FE.[2
E,=—F,/2

E. and E, are obtained by differentiating with respect
to r and z the Lagrange interpolating polynomial used
to determine the potential at a given point from the
values of the potentials at surrounding mesh points
I(see secs. 2.5 and 2.6) .

The time interval h= Ar at the beginning is taken
equal to 1/(n V'V .x), thus assuring that the trajectory
will be calculated for at least n points per mesh. Then
h is reduced, if necessary, to satisfy the Hamming
stability condition:

hk < 0.4
u v k. oE,
k=2 [57]+ |52+ |5
0z ar du v (19)
In this way, after the seventh point is calculated from
the Runge-Kutta method, the predictor-corrector
method is started with points spaced by an A which
satisfies the stability condition.
3.4. Trajectory Continuation by Hamming “Predictor-
Corrector” Method
The predictor-corrector formulas, as used in our
program, are as follows:
Predictor
(0) — 4 ‘ 1
20, =zi_3+ 3 h[2u; — wi—y + 2ui_s)
(), = 4.0
U = ui—3+§ h[2E.(ri,zi) — E.(ri-1,2i-1) (20)
A +2E, (zi-2,ri-2) ]
O =ri_ +3 h[2vi—vio1 + 2vi—2]
4 )
= Ui—3+§h[2Ez(ri»Zi )—E.(ri-1,2i-1)
+2F, (ri—2,zi-2) ]
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) 1 . o,

”‘iﬁ‘l”:g {9vi—via +3R[(EY)iv1 + 2(E} )i Before calculating the ultimate values zii1, risi,
—(Er)i-1]} j Wii, viv1, the interval h is checked against the sta-
bility criterion (19). If satisfied, the next trajectory
point is calculated with the same h. If not, h is divided
by two until criterion (19) is satisfied. Starting with z;,
ri, ui. vi seven points are then calculated with the
9 Runge-K(Iima method using the new h, and the solution

=) 4 —— (0 — ) continued.
T (@ = 2) If the stability criterion (19) can be satisfied with an
interval twice as large, h is doubled.and the next

Ultimate Value [superscript f indicates the final
values from eqs (22)]

e +i (™ —u) point with index i+ 1 is calculated from the points of
" BT qig TR TR index i, i—2, i—4, and i —6, instead of the usual i,
> (23) i—1,i—2,and i—3.
9
) 2 (A0 — )
rin=rf+ 121 (ri =) 3.5. Interpolation of Potentials

Potentials between mesh points are calculated by
) Lagrange interpolation. Let n be the degree of inter-
polation. Then

9
o= 4+ — (O — N
Vi1 vi/+1 121 (UHl Uiti

The corrector formulae are iterated until the required .
precision in z, r, u, and v is reached, that is, until the ) — . .
inequalities (24) are satisfied: S(x) kgo Cr(0)f (xx) (25)

where

(x—=2x0) (x—=21) . . . (x—2k-1) (x— k1) - . - (x— xn)
(o= 20l (X0 201) o (e o) (s i)l o e (0 — )

Cr(x)=

For the mesh we have used, the absciscae are uni-
formly spaced with unit interval. Putting u=x— x,
we have

Ck(x):u(u—l) . (L(z_—ll.‘)-:_};z!((un—_/\z;!l) co(u=n) (26)
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For our problem, the most reliable results were
obtained with interpolation of order 4.

The potential at point P(r, z) is calculated as follows:
(1) The potential at each point indicated in figure 3
with x and 0 is interpolated from the potentials in the
corresponding column or row. (2) Two values of the
potential at P are then interpolated, one from the
potentials at points labeled x and one from those
labeled 0. The average-of these two values is taken as
the potential at P.

3.6. Calculation of Electric Field

To find the two components of electric field, E.
and E,, at any point, we differentiate the Lagrange
interpolating polynomials [eqs (25) and (26)] with
respect to z and r respectively. There results:

Cr(x)
:ﬁ: wu—1)...(u—i+1)(w—i—1)...(u—k+1)(u—k—1)...(u—n)

i=0;i#k

(—D "5kl (n—k)!
(27)

Here x represents either z or r as appropriate. Again
n=4 was found to give the smoothest results and was
used in the program.

3.7. Accuracy of Results

It is difficult to predict, a priori, the accuracies of
the potentials and trajectories obtained from our
program. The accuracy of the relaxation technique,
using five-point formulas, is usually taken to be of
order 1/N where N is the number of mesh points.
Since we used the more accurate nine-point formulas
we believe that the accuracy of the potentials is con-
siderably better than 10~* of the maximum potential.

In the trajectory calculations the parameter g in eq
(24) gives the minimum precision with which each
point of the trajectory is calculated. Focal lengths
obtained from paraxial trajectories calculated with
2= 1077 satisfy the relationship

h_ \/E

f2 Ve
to a precision of at least 107>, demonstrating that the
estimate of precision is realistic.

Even higher precision can be obtained by reducing
g with a consequent increase in computer time. The
use of g=10"" is sufficient to determine accurate
first-order focal properties and third-order aberration
coeflicients for the two-tube lens. Results will be
reported in separate papers [9].

(28)

FIGURE 3. Points (x and 0) at which potentials are interpolated to

calculate the potential at an arbitrary point P(r,z).
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