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A finite-element structural analysis is described for application to problems in which geometry
and loading are axisymmetric and material properties are isotropic elastic. An attempt to minimize
restrictions imposed on the shape and orientation of the triangular finite-elements has been largely
successful. This facilitates use of the analysis, with automatic finite-element mesh generation, in
parameter or optimization studies. A series of laboratory tests to verify the analysis are described
in which the magnitude and distribution of boundary loading was known within narrow limits.
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1. Introduction

In the structural optimization of a force transducer
of the elastic column type, one is concerned with
relationships between surface strains and such
parameters as boundary loading, dimensions, and
material properties. Finite-element analysis is prob-
ably the most versatile structural analysis method
currently available for studying these relationships.
The finite-element formulation described here was
developed for application to such optimization prob-
lems in which both the geometry and loading are axi-
- symmetric and the materials are isotropic elastic.
This class of problems is analytically two-dimensional.
Ring-shaped finite elements of triangular cross section
and a global Cartesian coordinate system are used in
the analysis. This approach generally follows the out-
lines given by Clough [1, 2];' Rashid [2, 3, 4], and
Wilson [5].

For efficient structural optimization it is necessary
to program the computer to generate automatically
the mesh that subdivides a structure into a network
of finite elements. To facilitate this, an attempt has
been made in this formulation to keep to a minimum
the restrictions imposed on shape and orientation of
the triangular elements. Explicit integration, used
here to develop general formulas for the stiffness of
finite elements, yields logarithmic terms which re-
quire special treatment to avoid excessive errors
when one side of a triangular element is oriented at

* Present address: Naval Scientific and Technical Intelligence Center, Washington,

D.C. 20390
! Figures in brackets indicate literature references at end of paper.

a small non-zero angle with respect to the axis of
symmetry. The special treatment adopted here is to
expand the logarithmic integrals into rapidly converg-
ing infinite series. Although the stiffness integrals
are rather intricate in both the logarithmic and the
series forms, they do avoid the need for numerical
integration.

An experimental verification of the analysis was
obtained by a series of tests conducted on the struc-
tural body of a force transducer (load cell) made of
18 percent nickel 250 grade maraging steel. Axial
compressive load was applied to the load-cell body.
The load was distributed over a small circular area
at the top and over a narrow ring-shaped area at the
bottom. Thus, the location of applied load was known
within narrow limits. Strains on the surface of the
load-cell body, known to vary significantly with load
location or distribution, were measured and found
to be in good agreement with the finite-element
analysis.

2. Finite-Element Formulation

In a finite-element analysis the continuum structure
is subdivided into a network of elements that are
connected to adjacent elements only at common nodal
points. Elastic displacements within the individual
elements are assumed to be defined by generalized
functions that assure displacement compatibility
along common boundaries of adjacent elements.
The stiffness matrix of each element, relating nodal
point forces and displacements, is then computed in
terms of the assumed displacement functions, dimen-
sions, and material properties of the element. The
stiffness matrix for the entire structure, relating
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FIGURE 1. Longitudinal cross section of load-cell body used in labo-

ratory tests

applied external forces to nodal point displacements
throughout the structure, is formed by superposing
the element stiffness matrices.

A longitudinal cross section of the load-cell body
used in the laboratory tests is shown in figure 1. The
figure illustrates a triangular finite element mesh. A
similar but finer mesh was used for the analyses that
were correlated with the laboratory tests.

The triangular cross section of a general element is
shown in figure 2. Each nodal point (actually, a nodal
circle in the axisymmetric case) has independent
displacement components in the r and z directions.
The generalized displacement functions assumed for
this formulation are given by

(¢31]
(¢33
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(1)
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in which

u=displacement in the r direction of any point in
the element,

v=displacement in the z direction of any point in
the element,

and

r

FIGURE 2. Cross section of a general axisymmetric finite element.

a, = a generalized coordinate.

A generalized coordinate, «,, represents either the
r or z component of displacement of nodal point i
or a rate of change of a displacement component
with respect to r or z. The assumed displacement
functions give linear variations in displacement along
element boundaries and, therefore, complete dis-
placement compatibility between adjacent elements.
Stresses within adjacent elements are not, in general,
in equilibrium along common boundaries, but the
resultant forces acting at nodal points are required
to be in equilibrium. Substitution of nodal point
coordinates (defined in fig. 2) into eq (1) gives the nodal
jpoint displacements in terms of the generalized

coordinates.
u; 1 00 0 0 O a
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or {W}=[A] {a} - 3)

Element strains are obtained by applying the defini-
tions of strain from elasticity theory [6] to eq (1) as
follows:
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The assumed stress-strain relationship for isotropic
elastic materials is

or

(07 L=l 1 1 0 €
v
o0 1 120 0 | e
. vE v , (6)
o (1+v)(1—2p) 1 1 1:1/ 0 ‘.
1—2v
Trz 0 0 0 2% Yrz
L _
or {o}=[D] {€}, (7)

in which E = Modulus of elasticity
and v=Poisson’s ratio.

By a process of equating internal to external virtual
work, using eqs (3), (5), and (7), the general equation
for nodal point stiffness of an element can be shown

to be (see ref 1, 2, 3 and 7)
=17 BypIBIaY ) 147], @

or [k]=[A-1]"[k][4]. 9)
In eq (8), dV'is a differential volume within the element.
Integration is performed over the volume of the
element, and the superscripts T and —1 indicate
matrix transposition and inversion, respectively.
The stiffness matrix [k] relates the six components
of force {f} acting at the three nodal points of a
" triangular element to the six components of nodal
point displacement {w} by

{/1=[k] {w}.

Using r, z—z;, and 0 as the variables of integration,
and defining the integrals of the functions of these
variables by

(10)

l(f(r,z-z;.()))EZ?Tff  flrz=z)rd(z—z)dr,(11)

the nonzero elements of [k], eq (9), are
1
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For explicit integration of eq (11) in the r—z plane,
the notation shown in figure 2 is used with the con-
straints
ri =Tk,
ri = Tj,

if ri=ry then z; < zj.

Since r; may be less than, equal to, or greater than
re, four possible sets of integration limits, cases 1
through 4 in figure 3, are considered. These are:

Case 1:

Il(f(r,z—z,-)):271'jrkfzikf(r,z—z,—)rd(z—z,-)dr (12)
ri Jzj

Case 2:

Ig(f(r,z—z,-)):Zﬂ'frj ijkf(r,z—z,-)rd(z——zi)dr (13)
i J 2jj
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z The integrals of the other three functions in [K], for the
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FIGURE 3. Four different integration limit cases.
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in which the limit notation z; represents the value
of z—z; along line i —j. Three of the functions in
[k] integrate directly, for either orientation of side
J—k, to
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The logarithmic terms in the above integrals re-
quire special treatment to avoid excessive errors in
numerical computations. By a limiting process employ-
ing L’Hospital’s rule it can be shown that, as r; or both
ri and ry tend to zero, the limit of the logarithmic term
is zero. Therefore, if one or two nodal points of an
element lie on the z axis, the logarithmic terms are
omitted from the computation. A more difficult com-
putational problem is presented when one side of a
finite element is oriented at a small nonzero angle
relative to the z axis. To permit the use of elements with
a side so oriented, the logarithmic terms can be ex-
panded in the series (Peirce’s formula 768 [8])
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which converges in the interval —1 <y <1. This
gives the following alternate forms of the integrals:
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Notice that use of the series forms of two of the inte-
grals, I; [(z—z:)?/r?] and I;[(z—z;)?/r?], is limited to
elements for which either b; or by equals zero; that is,
one side of the element must be oriented in the r direc-
tion. If an element has one side oriented at a small non-
zero angle with respect to the z direction, no nodal point
on the z axis, and no side oriented in the r direction,
some other method is required to evaluate these two
integrals. In such an event, the two integrals could be
evaluated by the application of numerical integration
to eqs (13) and (15) for the function (z—z)2/r%. Com-
putational experience indicates that the series forms
of the integrals are efficient for numerical computations
within the bounds:

Case 1: l>a—l‘>]()"and——<101
2 @y i
1

Case 2: —> Yk 106 and Lo
2 a, rJ
1 _a;

Case 3: —>-L>10°6 and < 10!
2 ag Ti

Case 4: 1 >ﬂi > 106 and% < 10-1.

2 ag 'k

For cases falling below the lower bound it is satisfac-
tory to set the integrals equal to zero. For cases falling
above either upper bound the general integrals con-
taining the logarithmic terms can be used without
difficulty.

The stiffness matrices of the various finite elements.
[£] in eqs (8) and (10), are superposed to form the
stiffness matrix of the entire structure. This is done
by adding the stiffness matrix elements that relate
displacements to resulting forces for common or ad-
jacent nodal points of adjacent elements. The resulting
stiffness matrix of the entire structure [K] relates the

forces applied to the structure {F} to the resulting
nodal point displacements {w} according to the
equation
{F}=[K] {w}. (16)
For problems involving large numbers of unknown
displacements, eq (16) can be solved efficiently by
iteration. For the work reported here, Gauss-Seidel
iteration was used along with overrelaxation and group
relaxation as described by Wilson [5]. For the analysis
mesh shown in figure 1, 250 cycles of iteration resulted
in convergence to a state having an absolute sum of
unbalanced residual forces of one-half percent of
the applied load. This iteration required about 48.8 s.
running time on a UNIVAC 1108 computer. Evaluation
of the stiffness integrals, eqs (12) through (15), and
formation of the stiffness array for the entire structure
required only about 6.1 s. computer running time.

3. Experimental Verification

To determine how well the finite-element analysis
described the structural response of a load cell,
a series of laboratory tests were conducted on the load-
cell body dimensioned in figure 1. The load-cell body
was made of 18 percent nickel 250 grade maraging
steel. For the principal verification tests, an axisym-
metric compressive load of 100,000 lbf (444,800 N)
was applied through a small circular area on the top
surface and through a circular ring-shaped area on
the bottom surface. In a preliminary test, an axisym-
metric compressive load of 800,000 lbf (3,558,400 N)
was applied to the load-cell body through two solid
cylindrical mild steel blocks. In all tests, the loads were
applied by dead weight testing machines.

Strains on the surface of the load-cell body were
monitored by fifty-four metal foil strain gages of 0.062
in (0.16 cm) gage length. Forty-six gages were oriented
in the longitudinal direction and located on three
lines defined by the intersections of the surface and
three radial planes spaced 120 degrees apart. Eight
gages were oriented in the circumferential direction
and located beside longitudinal gages. Twenty-four
longitudinal gages were located in sets of three at
common heights and at the three angular locations to
detect bending due to load eccentricity.

In the preliminary test, figure 4, the upper mild
steel block was plastically indented by the spherical
top surface of the load cell, giving a contact surface
of about 1.41 in (3.58 cm) radius at 800,000 Ibf
(3,558,400 N) applied load. The lower mild steel block
was used to permit plastic indentation by a small
region that protruded about 0.002 in (0.005 cm)
at the center of the bottom surface of the load-cell
body. This resulted in continuous contact over the
bottom surface upon application of the first 50,000
Ibf (222,400 N) load increment. Recorded longitudinal
surface strains due to a load of 800,000 lbf (3,558,400 N)
are plotted in figure 5. The curves in figure 5 were
obtained by finite-element analysis. One curve is for
800,000 1bf (3,558,400 N) load applied at the centers
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FIGURE 4. Setup for applying 800,000 lbf (3,558,400 N) compressive

load in a preliminary test.

of the top and bottom surface. The other curve is for
800,000 1bf (3,558,400 N) load applied at the radii of
the edges of the contact surfaces in the laboratory test,
figure 4. Although most of the test data points lie near
or are bracketed by the analytical curves, this experi-
ment is clearly insufficient for a precise verification

# —30in (7.6cm)  SQUARE BLOCK

0.50in j ——_CONTACT RADIUS:

(27en) ] (102em)

FIGURE 6. Setup for applying 100,000 lbf (444,800 N) compressive
load in one of the verification tests.

of the analysis. Figure 5 shows that surface strains
can be very sensitive to variations in the distribution
of boundary loading.

Figure 6 shows the loading arrangement for one of
the principal verification tests. Axisymmetric compres-
sive loads of 100,000 lbf (444,800 N) were applied to the
top surface of the load-cell body through a mild steel
block and to the bottom surface through a 0.2in (0.5 ¢m)
wide by 0.035 in (0.088 ¢m) thick steel ring. Rings with
mean radii of 0.40,0.79,1.58 and 2.27 in (1.02,2.01, 4.01

centimeters
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FIGURE 5. Longitudinal surface strains for an applied load of 800,000
Lbf (3,558,400 N).
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and 5.77 cm) were used in different tests. Figure 7
shows the recorded longitudinal surface strains for
four of these tests (the plotted data points) along with
corresponding curves obtained by finite-element
analysis. For the finite-element analysis the bottom
loading radius corresponds to the mean loading ring
radius and the top loading radius corresponds to one-
half the contact surface radius. Much of the scatter in
the data is probably due to bending. The value of the
modulus of elasticity used in the finite-element
analysis was 26.8 X10° 1b/in? (1.85 X 10 N/m2). This
value was computed by averaging, for several tests, the
data obtained from the three strain gages located at
z=4.31 in (10.95 cm). This particular data was very
repeatable and bending errors were essentially can-
celled by the averaging. Admittedly, this procedure for
determining the elastic modulus imposes good agree-
ment between analysis and experiment in the region
near z=4.31 in (10.95 cm). A Poisson’s ratio of 0.3,
a value listed in the literature of steel producers for 18
percent nickel 250 grade maraging steel, was used in
the finite-element analysis. The generally good agree-
ment between the analysis and this test data for the
entire length of the load-cell body (fig. 7) indicates
that the analysis would be suitable for the study of
such subjects as stress concentration and the optimum

0.0014 g

0.0012 L

STRAIN

L 1 s 1 —

0 2 4 6 8 inches

— n L n L

0 5 10 15 20 centimeters

HEIGHT ABOVE BOTTOM

geometry of material test specimens and fixtures.

For use as a force transducer, a load-cell body of the
type tested is ordinarily instrumented with strain
gages over only a small region near mid-height. An
important consideration in the design of such a load
cell is the change in surface strain sensed by these
strain gages due to a change in the distribution of
boundary loading. A portion of the curves and test
data in figure 7 that bear directly on this question are
replotted to a much greater scale in figure 8. The test
data points in figure 8 have been averaged from the
strain readings of sets of three gages at different
angular locations to minimize bending errors. Figure 9
is a plot of the differences between surface strain for a
particular radius of load at the bottom surface and the
corresponding strain for a 2.27 in (5.77 c¢m) radius of
load. Figures 8 and 9 indicate very good agreement
between the finite-element analysis and the test re-
sults at the three strain gage locations represented.
The greatest difference between the analytical and aver-
aged experimental values represented in figure 9 is
2 %X 10-6. This difference approache= the resolution of
the digital indicator (1 X 10-%) used in the laboratory
tests. This data verifies the accuracy of the analysis in
predicting the sensitivity of such a load cell to changes
in the distribution of boundary loading.
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FIGURE 7. Longitudinal surface strains for an applied load of 100,000 FI1GURE 8. Longitudinal surface strains averaged for sets of three

1bf (444.800 N).

gages at common heights and different angular locations.
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FIGURE 9. Difference between surface strain for a particular loading
radius and the corresponding strain for a loading radius of
2.271in (5.77 cm).

4. Conclusion

A finite-element structural analysis has been for-

" mulated for application to problems in which geometry
and loading are axisymmetric and materials are iso-
tropic elastic. An attempt to minimize restrictions im-
posed on the shape and orientation of the triangular
elements employed has been largely successful. This
facilitates use of the analysis, with automatic finite-

element mesh generation, in parameter or optimization
studies.

An experimental verification of the analysis has been
obtained by a series of tests conducted on a load-
cell body. In these tests the magnitude and distribution
of boundary loading was known within narrow limits.
Strains measured on the surface of the load-cell body
were in good agreement with the finite-element
analysis.

C. H. Melton was largely responsible for instrument-
ing the load cell for the measurement of surface strains.
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