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A fin ite·e le ment s truc tural analys is is described for a ppli ca tion to p roble ms in whi ch geu metry 
a nd loading a re axi symmetri c a nd mate ri al properti es are iso tropic e las ti c . An a tt em pt to minimize 
res tric ti ons imposed on the s ha pe a nd ori e ntatio n of the tri angula r finit.e·e le me nt s has been large ly 
s uccessful. This fac ilit a tes use of the ana lys is, with auto ma ti c finite·e leme nt mes h gene rati on , in 
pa ra me ter or optimizatio n studies. A se ri es of la borato ry tes ts to verify t.h e an a lys is a re desc ri bed 
in w hi ch the magnitude and di s tribution of bo unda ry load ing was known withi n na rrow limits. 

Key wo rds: Axisymm etri c; e las tic; expe riment ; finite·ele ment ana lys is; force t ransducer; s tiffness 
matr ix ; struc tural anal ys is. 

1. Introduction 

In the structural optimization of a force transducer 
I of the elas ti c column type, one is concerned with 

relationships between surface strain s and s uc h 
parameters as boundary loading, dimensions, and 
material properti es . finite-ele ment analysis is prob· 
ably the mos t versatile structural analysis method 
c urre ntly available for studying these relations hips. 
The finite-ele ment formulation described here was 
developed for application to s uch optimization prob­
le ms in whic h bo th the geometry and loading are axi­
symmetric and the materials are isotropic elasti c. 
This class of problems is analytically two-dimensional. 
Ring-shaped finit e ele ments of triangular cross section 
and a global Cartesian coordinate system are used in 
the analysis. Thi s approac h generally follows the out­
lines given by Clough [1 , 2],t Rashid [2, 3 , 4], and 
Wilson [5]. 

f or effi cient s truc tural optimization it is necessary 
to program the co mputer to generate automatically 
the mesh that subdivides a structure into a network 
of finite ele me nts. To facilitate thi s, an attempt has 
been made in thi s formulation to keep to a minimum 
the restri ctions imposed on shape and ori enta tion of 
the triangular ele me nts . Expli cit integration, used 
here to develop general formulas for the s tiffness of 
finite ele ments, yields logarithmic terms which re­
qui re special treatment to avoid excessive errors 
when one side of a tri angular ele me nt is ori e nted at 

• Present address: Naval Sc ientific and Technical Int e lligence Center, Washington, 
D.C.2039O 

1 Figures in brackets indi cate lit erature references al end of paper. 

a small non-zero a ngle with res pect to the axis of 
symme try. Th e s pecial treatment adopted he re is to 
ex pand th e logarithmic integrals into ra pidly conve rg­
ing infinite se ri es. Although th e stiffn ess integrals 
are ra th er intri cate in both the logarithmic and the 
seri es forms, they do avo id the need for num erical 
integration. 

An experime ntal verification of th e a nalys is was 
obtain ed by a se ri es of tests conducted on the s truc­
tural body of a force transdu cer (load cell) made of 
18 percent nickel 250 grade maraging s teel. Axial 
co mpressive load was a pplied to the load-cell bod y. 
The load was dis tributed over a small circ ular area 
a t the top and over a narrow ring-shaped area at the 
bottom. Thus, the locati on of a ppli ed load was known 
within narrow limits. S trains on the s urface of the 
load·cell body, known to vary significantly with load 
location or di stribution , were measured and found 
to be in good agreement with the finit e-ele me nt 
analysis. 

2. Finite-Element Formulation 

In a finite-element analysis the continuum s tructure 
is subdivided into a network of ele ments that are 
connected to adjacent eleme nts only a t co mm on nodal 
points. Elastic displace ments within the individual 
eleme nts are ass umed to be de fin ed by generalized 
fun ctions that ass ure di splaceme nt compatibility 
along common boundaries of adj acent ele ments. 
The s tiffness matrix of each ele ment , rela ting nodal 
point forces and di s placeme nts, is the n computed in 
terms of the assumed di splace ment fun ctions, dimen­
sions, and material properti es of the ele ment. The 
stiffness matrix for the e ntire structure , relating 
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FIGURE 1. Longitudinal cross section of load-cell body used in labo­
ratory tests 

applied external forces to nodal point displacements 
throughout the structure, is formed by superposing 
the element stiffness matrices. 

A longitudinal cross section of the load-cell body 
used in the laboratory tests is shown in figure 1. The 
figure illustrates a triangular finite element mesh. A 
similar but finer mesh was used for the analyses that 
were correlated with the laboratory tests. 

The triangular cross section of a general element is 
shown in figure 2. Each nodal point (actually, a nodal 
circle in the axisymmetric case) has independent 
displacement components in the rand z directions. 
The generalized displacement functions assumed for 
this formulation are given by 

{
UvJ = [01 r - l"i Z - Zi 0 0 0 1 a3 

o 0 1 r - ri Z - Zi a4 

(1) 

a6 

in which 

U = dis placement in the r direction of any point In 

the element, 
v = dis placement In the Z direction of any point In 

the element, 
and 

FIGURE 2. Cross section of a general axisymmetricjinite element. 

an = a generalized coordinate. 

A generalized coordinate, an, represents either the 
r or Z component of displacement of nodal point i 
or a rate of change of a displacement component 
with respect to r or z. The assumed displacement 
functions give linear variations in displacement along 
element boundaries and, therefore, complete dis­
placement compatibility between adjacent elements. 
Stresses within adjacent elements are not, in general, 
in equilibrium along co mmon boundaries, but · the ; 
resultant forces acting at nodal points are required 
to be in equilibrium. Substitution of nodal point 
coordinates (defined in fig. 2) into eq (1) gives the nodal 
,Point displacements In terms of the generalized 
coordinates. 

Ui 

~[! 
0 0 0 0 

01 
al 

Uj aj bj 0 0 0 a2 
Uk a" b" 0 0 0 iX3 

Vi 0 0 1 0 0 a4 
Vj 0 0 1 aj b· a5 
VA: 0 0 1 a" b~ ~6 

(2) 

or {w}=[A] {a}' (3) 

Element strains are obtained by applying the defini- i 

tions of strain from elasticity theory [6] to eq (1) as 
follows: 

al 
au 

0 1 0 000 
ar 

a2 €r 

U 1: r - ri Z - Zi 0 0 0 a3 
r r r r , (4) 
av 

0 0 0 001 a4 
az 

Yrz 
au av 

0 0 1 010 -+- a5 
dZ dr 

a6 
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or {E} = [B (r,z)] {a} . (5) 

The assumed s tress-strain relationship for isotropic 
elas tic materi als is 

1 1 0 Er 
I - v 

(Tr 
V 

I-v 
1 0 EO (To 1 

vE V , (6) 

1 
I-v 

0 Ez 
V 

(Tz 
(l+v)(1 -2v) 

1 

0 0 
1-2v 

2v Yrz Trz 0 

v E 1(1) 
(l-v) (l-2v) r 

- 2E 
k22 = (l+v)(l - 2v) I (l) 

2Er; 1(1) 
(l + v) (l- 2v ) r 

(1- v)Er? (1) + ' 1 -
(l + v) (l - 2v ) r2 

_ _ E (Z-Z ,) 
k23 = k32 = (1 + v) (l- 2v) I - r -

(l+v)Eri I (Z-Z;) 
(l + v)( 1- 2v) r~ 

or {(T} = [D] {E}, - - 2vE Veri (1) 
(7) k26 = k62 = (l + v) (l - 2 v) { (l) - (l + v) (1 - 2 v) I -; 

in which E = Modulus of elasticity 
and v= Poisson's ratio. 

By a process of equating internal to external virtual 
work , using eqs (3), (5), and (7), the general equation 
for nodal point s tiffness of an element can be shown 
to be (see ref 1, 2, 3 and 7) 

[k] = [A - I ]T( J [B)7'[D] [B]dV) [A - I], (8) 
Volume 

or (9) 

In eq (8) , dV is a differential volume within the element. 
Integration is performed over the volume of the 
element, and the superscripts T and -1 indicate 
matrix transposition and inversion , respectively. 
The stiffness matrix [k] relates the six components 
of force {f} acting at the three nodal points of a 
triangular eleme nt to the six compone nts of nodal 
point displaceme nt {w} by 

{f1 = [k] {w}. (10) 

Using r, z - Z;, and () as the variables of integration , 
and defining the integrals of the functions of these 
variables by 

- E (l-v)E . ( (z-z;y) 
k33 = 2(I +v) 1(1)+ (l + v)(l-2v) 1 r2 

E 

- E 
1e55 = 2 (l + v) 1 (1 ) 

k = (l-v)E 
66 (1 + v) (1 - 2v l (1). 

For explicit integration of eq (ll) in the r -z pla ne, 
the nota tion shown in fi gure 2 is used with th e co n­
straints 

if ri = rk then Zi < Z/r . 

Since rj may be less than, eq ual to, or greater tha n 

J J rk , four possible sets of integration limits, cases 1 
l(f(r ,z-z;, () )= 21T r z _ z f(r,z-z;)rd(z-z;)dr,(ll) through 4 in figure 3, are considered. These are: 

I 

the nonzero elements of [k] , eq (9), are 
Case 1: 

kll = 1 -- (1-v)E . (1) 
(1 + v) (1- 2v) r2 

l,(f(r ,z-zi») = 2 1T fir !:'k!( r ,z-zi) rd(z-zi)dr (12) 
, 'J 

- - E (1) 
k'2 = k2 , = (1+v)(l-2v/ -;. (l-v)Er; (1 

- (l + v) (l- 2v) 1 ~) 

Case 2: 
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FIGURE 3. Four different integration limit cases. 

Case 3: 

Jr. IZ'k 13 (J(r,z-zi))=27T r) z~, f(r,z-z;)rd(z-zi)dr (14) 
, 1) 

Case 4: 

14 (J(r, Z - Zi)) = 27T Irk IZik fer, z- Z;) rd(z - zi)dr (15) 
rj Zjk 

in which the limit notation Zij represents the value 
of Z - Zi along line i - j. Three of the functions in 
[k] integrate directly, for either orientation of side 

j - k, to 

and 

1( Z~Zi ) =~ TTA (bj + bk ), 

1 
In which A = 2 (ajbk - akbj ) = area of the element 

cross section. 

The integrals of the other three functions in [k], for the 
four cas~s shown in figure 3, are 

(Z-Zi) 14 -­r2 

+~ (1 - .!i In rk)l 
3a~ ak ri J 

158 



The logarithmic terms in the above integrals re­
quire special treatment to avoid excessive errors in 
numerical computations. By a limiting process employ­
ing L'Hospital's rule it can be shown that , as ri or both 
ri and rA- tend to zero , the limit of the logarithmic term 
is zero. Therefore, if one or two nodal points of an 
element li e on the Z axi s, the logarithmic terms are 
omitted from the computation. A more diffic ult com­
putational proble m is presented when one side of a 
finite ele me nt is oriented at a small nonzero angle 
relative to the Z axis. To permit the use of elements with 
a side so ori ented, the logarithmic terms can be ex­
panded in the series (P eirce's formula 768 [8]) 

which converges in the interval - 1 < X < 1. 111is 
gives the following alternate forms -of the integrals : 

Ifbj =O, 

1;(~)=47TA (-l)n+l(a,_)" 
r2 a - 2: n + 1 r· J n I, 

1~ ( ~ )=_ 47TA 2: _1 (a jA) 11 

I aj n n + 1 rj 

1~ ( ~ )= 47TA (-1)11+1 (a j )n 
r- a .- 2: n + 1 r 

r. It ' 

1~ (~) = _ 47TA (-1)"+1 (lajA- )" 
r2 a" ~ n + 1 r" 

1~ ( (Z - Zir )= 47TAaybx_ 2: _1_ (aik)n 
r2 3a] n n + 3 rj 

Ifb,,=o, 

: ( (Z- Zi)" ) = ~ [ 2 ~ _1 (ajk)n _ __ ~ (_1 __ 1 ) (ajl')" aiajk] 
1 2 2 3 3 ak.LJ + 3 _ 3aJr, .LJ + 1 + 2 - + 2 r aj 11 n rJ 11 n n rJ 

159 



If b".=O, 

I~ ( (z- Zi) t ) =_ 47TA by (-I)n+1 (ajk)n 
r2 3ak L n + 3 rk n 

(-1)'H1 (_1 __ 1 ) (ajk)" 
n+ 1 n+2 rk 

( -1)"+1 
_ a2 L (ajk )" _ akajk ] . 

j n n + 3 rk 2 

Notice that use of the series forms of two of the inte­
grals, U [(Z-Zi)2/ r2] and IH (Z-Zi)2/ r2], is limited to 
elements for which either bj or bk equals zero; that is, 
one side of the element must be oriented in the r direc­
tion. If an element has one side oriented at a small non­
zero angle with respect to the Z direction, no nodal point 
on -the Z axis, and no side oriented in the r direction, 
some other method is required to evaluate these two 
integrals. In such an event, the two integrals could be 
evaluated by the application of numerical integration 
to eqs (13) and (15) for the function (z - Zi }2/r2 • Com­
putational experience indicates that the series forms 
of the integrals are efficient for numerical computations 
within the bounds: 

Case 1: 
1 ak . ak - > - > 10- 6 and - < 10- 1 
2 aj ri 

Case 2: 

Case 3: 
1 a· a· 
- > ---.L> 10-6 and ---.L < 10- 1 

2 ak ri 

Case 4: 

For cases falling below the lower bound it is satisfac­
tory to set the integrals equal to zero. For cases falling 
above either upper bound the general integrals con­
taining the logarithmic terms can be used without 
difficulty. 

The stiffness matrices of the various finite elements. 
[k] in eqs (8) and (10), are superposed to form the 
stiffness matrix of the entire structure. This is done 
by adding the stiffness matrix elements that relate 
displacements to resulting forces for common or ad­
jacent nodal points of adjacent elem~nts. The resulting 
stiffness matrix of the entire structure [K] relates the 

forces applied to the structure {F} to the resulting 
nodal point displacements {w} according to the 
equation 

{F} = [K] {w}. (16) 

For problems involving large numbers of unknown 
displacements, eq (16) can be solved efficiently by 
iteration. For the work reported here, Gauss-Seidel 
iteratIon was used along with overrelaxation and group 
relaxation as described by Wilson [5]. For the analysis 
mesh shown in figure 1,250 cycles of iteration resulted 
in convergence to a state having an absolute sum of 
unbalanced residual forces of one-half percent of 
the applied load. This iteration required about 48.8 s. 
running time on a UNIVAC 1108 computer. Evaluation 
of the stiffness integrals , eqs (12) through (15), and 
formation of the stiffness array for the entire structure 
required only about 6.1 s. computer running time. 

3. Experimental Verification 

To determine how well the finite-element analysis 
described the structural response of a load cell, 
a series of laboratory tests were conducted on the load­
cell body dimensioned in figure 1. The load-cell body 
was made of 18 percent nickel 250 grade maraging 
steel. For the principal verification tests, an axisym­
metric compressive load of 100,000 lbf (444,800 N) 
was applied through a small circular area on the top 
surface and through a circular ring-shaped area on 
the bottom surface. In a preliminary test, an axisym­
metric compressive load of 800,000 lbf (3,558,400 N) 
was applied to the load-cell body through two solid 
cylindrical mild steel blocks. In all tests, the loads were 
applied by dead weight testing machines. 

Strains on the surface of the load-cell body were 
monitored by fifty-four metal foil strain gages of 0.062 
in (0.16 cm) gage length. Forty-six gages were oriented 
in the longitudinal direction and located on three I 

lines defined by the intersections of the surface and 
three radial planes spaced 120 degrees apart. Eight 
gages were oriented in the circumferential direction 
and located beside longitudinal gages. Twenty-four 
longitudinal gages were located in sets of three at 
common heights and at the three angular locations to 
detect bending due to load eccentricity. 

In the preliminary test, figure 4, the upper mild 
steel block was plastically indented by the spherical 
top surface of the load cell, giving a contact surface 
of about 1.41 in (3.58 cm) radius at 800,000 lbf 
(3,558,400 N) applied load. The lower mild steel block 
was used to permit plastic indentation by a small 
region that protruded about 0.002 in (0.005 em) 
at the center of the bottom surface of the load-cell 
body. This resulted in continuous contact over the 
bottom surface upon application of the first 50,000 
lbf (222,400 N) load increment. Recorded longitudinal 
surface strains due to a load of 800,000 lbf (3,558,400 N) 
are plotted in figure 5. The curves in figure 5 were 
obtained by finite-element analysis. One curve is for 
800,000 Ibf (3,558,400 N) load applied at the centers 
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load in olle of the ver\lico tioll tests. 

FIG URE 4. Setup for applying 800,000 Ibf (a,558,400 N) compressive 
load in a prelim.i nary test. 

of the analysis. Figure 5 shows that surface strains 
can be very sensitive to variations in the di stribution 
of boundary loading. 

of the top and bottom surface. The other curve is for 
800,000 lbf (3,558,400 N) load applied at the radii of 
the edges of the contact surfaces in the laboratory tes t, 
figure 4. Although most of the test data points lie near 
or are bracketed by the analytical c urves, this experi· 
ment is clearly insufficient for a precise verification 

Fi gure 6 shows the loading arrangement for one of 
the principal verification tests. Axis ym me tri c co m pres· 
sive loads of 100,000 Ibf (444,800 N) were applied to th e 
top surface of th e load·cell body through a mild s teel 
block and to the bottom s urface through a 0.2 in (0.5 c m) 
wide by 0.035 in (0.088 cm) thick s teel rin g. Rings with 
mean radii of 0.40, 0.79, 1.58 and 2.27 in (1.02,2.01,4.01 

448-719 OL - 72 - 2 

z 

" 

cen t i meler~ 

0.010°'i-____ --,-_____ -';-_____ ...:,12r--____ --'T'6'---__ ---, 

0 .0 08 

O. 006 

LOAD APPLIED AT : 
r.1.41 in ( 3.58cm) TOP 
,..2.37 in (6.02cm)BOTTOM 

~ 0.004 
~ 

0.002 • 

inches 
HEI GHT A80VE BOTTOM 

FIGURE 5. Longitudinal surface strains for an applied load of800,000 
lb./(3,558,400 N). 
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and 5.77 cm) were used in different tests. Figure 7 
shows the recorded longitudinal surface strains for 
four of these tests (the plotted data points) along with 
corresponding curves obtained by finite-element 
analysis. For the finite-element analysis the bottom 
loading radius corresponds to the mean loading ring 
radius and the top loading radius corresponds to one­
half the contact surface radius. Much of the scatter in 
the data is probably due to ' bending. The value of the 
modulus of elasticity used in the finite-element 
analysis was 26.8 X 106 Ib/in 2 (1.85 X 1010 N/m2). This 
value was computed by averaging, for several tests , the 
data obtained from the three strain gages located at 
z = 4.31 in (10.95 cm). This particular data was very 
repeatable and bending errors were essentially can­
celled by the averaging. Admittedly, this procedure for 
determining the elastic modulus imposes good agree­
ment between analysis and experiment in the region 
near z = 4.31 in (10.95 cm). A Poisson's ratio of 0.3, 
a value listed in the literature of steel producers for 18 
percent nickel 250 grade maraging steel, was used in 
the finite-element analysis. The generally good agree­
ment between the analysi s and this test data for the 
entire length of the load-cell body (fig. 7) indicates 
that the analysis would be suitable for the study of 
such subjects as stress concentration and the opti mum 
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0 

~----,f;----47-' ----6!-' ---~8 inches 
, 
0 10 15 20 centimeters 

HEIGHT ABOVE BOTTOM 

FIGURE 7. Longitudinal surface strains for an applied load of 100,000 
[bf (444.800 N). 

geometry of material test specimens and fixtures. 
For use as a force transducer, a load-cell body of the 

type tested is ordinarily instrumented with strain 
gages over only a small region near mid-height. An 
important consideration in the design of such a load 
cell is the change in surface strain sensed by these 
strain gages due to a change in the distribution of 
boundary loading. A portion of the curves and test 
data in figure 7 that bear directly on this question are 
replotted to a much greater scale in figure 8. The test 
data points in figure 8 have been averaged from the 
strain readings of sets of three gages at different 
angular locations to minimize bending errors. Figure 9 
is a plot of the differences between surface strain for a 
particular radius of load at the bottom surface and the 
corresponding strain for a 2.27 in (5.77 em) radius of 
load. Figures 8 and 9 indicate very good agreement 
between the finite-element analysis and the test re­
sults at the three strain gage locations represented. 
The greatest difference between the analytical and aver­
aged experimental values represented in figure 9 is 
2 X 10- 6• This difference approachpc thp resolution of 
the digital indicator (1 X 10- 6) used in the laboratory 
tests. This data verifies the accuracy of the analysis in 
predicting the sensitivity of such a load cell to changes 
in the distribution of boundary loading. 
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FIGURE 8. Longitudinal surface strains averaged for sets of three 
gages at common heights and different angular Locations. 
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L.n in (5.77 cm). 

4. Conclusion 

A finite-ele ment s truc tural analysis has bee n for­
mulated for a ppli cation to proble ms in whic h geo me tr y 
and loading are axisymmetri c and materials are iso­
tropic elastic. An attempt to minimize res tri c tions im-

I posed on the s hape and orientation of the triangular 
elements e mployed has been largely successful. This 
facilitates use of the analysis , with a utoma ti c finite -

element mesh generation , in parameter or optimization 
studies. 

An experimental verifi cation of the analysis has been 
obtained by a seri es of tes ts condu cted on a load­
cell body. In these tes ts the magnitude and di s tribution 
of boundary loading was known within narrow limits. 
Strains measured on the surface of th e load-cell body 
were 111 good agree me nt with the finit e-ele ment 
analysis. 

C. H. Melton was large ly res ponsible for ins trum e nt· 
ing the load cell for th e meas ure ment of surface s tra in s. 
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