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The steady-state temperature distribution in typical cylindrical high-pressure furnaces has been
computed from analytic solutions for various boundary conditions. Either the temperature variation
along the cylindrical heater or the power dissipation per unit length is prescribed. The results are
tabulated and discussed as an aid in the design of high-pressure furnaces and in the estimation of

temperature gradients.

Topics considered include: (1) the reduction of temperature gradients

around the center of the furnace, (2) the effect of temperature irregularities along the heater, and
(3) the effect of the relative thermal conductivity of neighboring components.
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1. Introduction

Activity in high-temperature, high-pressure research
has greatly increased in recent years. Such work is of
both scientific and technological importance and signifi-
cantly extends our knowledge of the phase diagrams and
equations of state of the solids and liquids studied. In
the design of experiments and in the detailed interpreta-
tion of results, the accuracy and uniformity of the tem-
perature and pressure require careful attention. This
paper deals with the computation of the temperature dis-
tribution in cylindrical furnaces of the type characteristic
of static high-pressure apparatus. Since the pressure
does not appear explicitly in the computation, the results
are equally applicable to furnaces at any pressure if the
geometry and the boundary conditions assumed in this
paper are a suitable approximation to the actual physical
conditions.

Several problems arise in the maintenance and mea-
surement of high temperatures in high-pressure media.
The small size of the pressurized region within a massive
metal apparatus restricts the size of the furnace compo-
nents and thus limits the amount of thermal insulation
that separates the sample from the heater and from the
surroundings. As a result there may be a large flux of
heat across the sample with correspondingly large tem-
perature gradients. Temperature irregularities along the
heater may cause additional gradients across the sample.
Temperatures in high-pressure furnaces are usually mea-
sured with thermocouples. Pressure modifies the tempera-
ture-emf relationship of a thermocouple by as much as an
estimated 5 to 10 percent under experimental conditions
[1,2].1 Because of the temperature and pressure gradi-

1 Figures in brackets indicate the literature references at the end of this paper.

ents, the details of positioning the thermocouples influ-
ence the readings obtained with them [3].

This paper grew out of our interest in designing a high-
pressure furnace in which temperature gradients across
the sample would be both small and well-known—for
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Ficure 1. Schematic diagram of typical high-pressure furnace with
coaxial cylindrical heater.
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example, known to within 0.1 percent of the difference
between the highest temperature in the furnace and the
temperature of the surrounding metal apparatus. A sur-
vey of the literature indicated that the kind of detailed
temperature distribution data needed in the design of
such a furnace was not available. Because of the various
difficulties in the determination of this sort of data by
experimental trial and error for different furnace designs,
we chose, instead, to compute the temperature distribution
for several alternative conditions. Most high-pressure
furnace designs can be described by one or a combination
of these conditions.

In the present work the steady-state temperature distri-
bution in typical cylindrical high-pressure furnaces has
been computed from analytic solutions for various bound-
ary conditions. A schematic diagram of such a typical
furnace is shown in figure 1, in which a cylindrical heater
of negligible thickness, radius @, and length [ is located
between opposed pistons in a massive metal apparatus.
Either the temperature variation along the cylindrical
heater or the power dissipation per unit length is pre-
scribed. Perfect thermal contact is assumed at all bound-
aries because of the intimate contact created by the high
pressure. Angular symmetry and homogeneous, isotropic
materials are also assumed throughout this paper.

2. General Solution for a Prescribed Surface
Temperature Variation

Consider a simple cylinder, 0 = r < a, 0 < z < [, with
a prescribed temperature f(z) along the cylindrical sur-
face at r = a and a constant temperature, taken as zero
for convenience, over the end surfaces. The temperature
potential v(r,z) within the cylinder, measured from the
temperature at either end, is given by Carslaw and Jaeger
[4] as
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where To (x) is the modified Bessel function of the first
kind of zero order. We now consider the application of
eq (1) for several explicit surface temperature variations.

2.1. Parabolic Surface Temperature

For typical furnaces with a smooth temperature varia-
tion along the heater from a hot middle to cooler ends,
the surface temperature may be approximated by a
parabolic function

f(z)=A— Bz -0)~ (2)

By requiring f(z) to be zero at z=—=0 and z=1 we

obtain A = C%, B = 2C/I, and
f(z2)=2BCz —B*z* = (4C*z/))(1—2z/1). (3)
After performing the integration in eq (1), we have

16C" 1 Iy(nxr/l) . nwz
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where C is an arbitrary scaling factor. The temperature
potential within cylindrical furnaces for the particular

v(r,2)=

geometrical conditions | = 8a and | = 16a is shown in
table 1 and table 2, respectively. Since the furnaces are
symmetric about the midplane, z/l = 0.50, the tables
show the potential explicitly for only half the furnace.
The computed potential is scaled so that its value in the
midplane at r/a = 1.0, the middle of the heater, is unity.

TaBLE 1. Temperature potential within a cylindrical
furnace: parabolic surface temperature,] = 8a

r/a
z/l 0.0 0.3 0.6 0.8 1.0
0.50 0.9688 0.9716 0.9800 0.9888 1.0000
45 .9588 9616 .9700 9788 .9900
.40 .9288 9316 .9400 .9488 .9600
.35 .8788 .8816 .8900 .8988 .9100
.30 .8089 8117 .8201 .8288 .8400
25 L7190 7218 7302 7388 7500
.20 .6095 .6122 6204 .6289 .6400
15 .4807 .4832 14911 4993 .5100
.10 .3338 .3360 .3428 3501 .3600
.05 TS 729 1774 .1825 .1900
.00 .0000 .0000 .0000 .0000 .0000
TABLE 2. Temperature potential within a cylindrical
furnace: parabolic surface temperature, | = 16a
r/a
z/l 0.0 0.3 0.6 0.8 1.0

0.50 0.9922 0.9929 0.9950 0.9972 1.0000
45 .9822 .9829 19850 9872 .9900
.40 .9522 .9529 .9550 9572 .9600
239 .9022 9029 19050 .9072 .9100
.30 .8322 .8329 .8350 13312 .8400
825 L1422 7429 7450 7472 7500
.20 .6322 .6329 6350 6372 .6400
15 .5022 .5029 .5050 5072 .5100
.10 .3524 3531 3551 $S 012 .3600
.05 .1834 .1840 1857 .1875 .1900
.00 .0000 .0000 .0000 .0000 .0000

The temperature potential v(r,z) at any point within
the cylindrical furnace is very simply related to the actual
temperature 7 (r,z) at that point by the equation

T(rz) —T(r,0)
T(al/2) —T(r,0)

where T'(r,0) is the reference temperature over the ends
of the furnace and 7T'(a,l/2) is the temperature at the
middle of the heater. If, for example, the middle of the
heater is 1000 °C hotter than the ends of the furnace,
table 1 shows that the cylindrical midpoint, r/a = 0.0
and z/l =0.50, is 968.8 °C hotter than the ends of the
furnace. If the temperature over the ends of the furnace
is 100 °C, the temperature at these other locations becomes
1100 °C and 1068.8 °C, respectively.

Table 1 shows that the temperature potential in the mid-
plane at r/a = 0.0, the cylindrical midpoint, is approxi-
mately 3 percent less than that at r/a = 1.0, the middle
of the heater, and 2 percent less than that at r/a = 0.8.
In terms of the preceding example, these potential differ-
ences represent temperature differences of approximately
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30 and 20 °C. The longitudinal variation from z/l = 0.50
to 0.45 at any radius is 1 percent. The cylindrical mid-
point is a saddle point at which the radial temperature
eradient is positive and the longitudinal gradient is nega-
tive. For the more elongated furnace of table 2 the poten-
tial at the cylindrical midpoint is only 0.8 percent less
than that at the middle of the heater and 0.5 percent less
than that at r/a = 0.8, z/l = 0.50. The longitudinal varia-
tion from z/l — 0.50 to 0.45 is still 1 percent, of course,
although relative to the radius, the corresponding longi-
tudinal displacement is twice as long as in table 1.

2.2. Generalized Parabolic Surface Temperature

With a Constant Central Section

In practice the small size of the pressurized region
restricts the opportunity for elongation of the furnace in
order to reduce the temperature gradients around its
center. Another way to reduce these gradients is to sup-
ply extra heat near the ends of the furnace to compensate
for the large losses to the surroundings and thus maintain
a substantially constant temperature about the middle of
the heater. To represent this section of constant tem-
perature, we generalize the preceding problem by splitting
the parabola at its midpoint and inserting a horizontal
line segment there. Since the maximum value of f(z) is
C?, which occurs at z = C/B, we obtain

f(z)=2BCz —B*2*,0< 2 <C/B,
=C’, C/B<z<I1-C/B,
=2BC(I—z)—B*(l—2)* |-C/B< z <I.

After substituting in eq (1) and performing the integra-
tion, we have

4B I'& 1 Ly(nwr /) . nmz
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When C/B =1/2, eq (5) reduces to eq (3) and eq (6)
reduces to eq (4). since cos nz/2 vanishes for odd n and
1 — cos n# vanishes for even n. The temperature poten-
tial within cylindrical furnaces for which I — 8a is shown

in table 3 for C/B = 1/2.5 and in table 4 for C/B —=I/A.

TABLE 3. Temperature potential within a cylindrical fur-
nace: generalized parabolic surface temperature with
central fifth at constant temperature, | — 8a

r/a
2/l 0.0 0.3 0.6 0.8 1.0
0.50 0.9922 0.9931 0.9957 0.9979 1.0000
45 .9885 .9898 .9934 .9967 1.0000
.40 .9750 9773 9841 9911 1.0000
.35 .9454, .9487 19588 9697 .9844
.30 .8927 .8966 19085 9210 9375
.25 .8125 .8166 .8292 .8423 .8594
.20 .7029 7071 7197 7329 .7500
o5) .5638 5678 .5799 .5927 .6094.
.10 .3966 4000 4106 4221 4375
U5 2056 2077 .2146 .2226 .2344
.00 .0000 .0000 .0000 .0000 .0000
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The temperature variations around the cylindrical mid-
point are indeed much smaller in these tables than in
table 1. For example, the total radial variation in the
midplane is 3.1 percent in table 1, 0.8 percent in table 3,
and 0.1 percent in table 4.

TABLE 4. Temperature potential within a cylindrical fur-
nace: generalized parabolic surface temperature with
central half at constant temperature, | — 8a

r/a
z/l 0.0 0.3 0.6 0.8 1.0
0.50 0.9989 0.9990 0.9994 0.9997 1.0000
45 19983 9985 L9991 19996 1.0000
.40 19961 .9966 RN .9990 1.0000
.35 19901 29913 19945 S90S 1.0000
.30 9748 9776 9855 9927 1.0000
225 9386 9441 L9606 9778 1.0000
.20 .8635 8715 .8963 9232 9600
SIS L7327 7418 L7697 7998 .8400
.10 5388 5471 5731 L6015 .6400
.05 .2874 .2928 3101 .3302 .3600
.00 .0000 .0000 .0000 .0000 .0000
2.3. Surface Temperature, a Rectangular Function

of Finite Width

Temperature irregularities exist along real heaters. A
detailed model of the irregularities in an actual furnace
would ereatly increase the complexity of the mathematical
analysis; for example, the angular symmetry assumed in
the derivation of eq (1) would not generally exist.
Rather than neglect such irregularities altogether, we may
explore their effect by considering a rectangular function
of finite width for the surface temperature

i(2) =0} 0<z <g,
= /D), g<z <h, (7)
=], h<z <l

where, in general, g 41— h; that is, the step is not cen-
tered at the midplane. After performing the integration
in eq (1), we have

@
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The temperature potential within a furnace for which
1 = 8a is shown in tables 5 and 6 for steps of width 0.01 !
and 0.05 [ centered at z/l = 0.30.

The tables show certain features which can be expected
as general results of local irregularities in the temperature
along the heater. The gradients due to an irregularity
modify the gradients otherwise present to an extent that
depends upon the width and the height or depth of the
irregularity. The radial gradient along a radius leading
to a hot spot is increased. The radial gradient elsewhere
includes a component due to the hot spot that may be



negative along the entire radius or positive near the axis
and negative near the heater; the latter characteristic is
illustrated by the data in the tables for z/l = 0.25 and
0.35. Longitudinal gradients are also modified. The
tables show a slight asymmetry in the gradients above and
below the plane of the irregularity as a result of the tem-
perature asymmetry along the heater.

TABLE 5. Temperature potential within a cylindrical fur-
nace: surface temperature, a rectangular function of
finite width ({(z) =0 for 0 <z < g and h <z <],
f(z) =D for g <z<h, g=10295], h=0.3051),
1= 8a

r/a
z/1 0.0 0.3 0.6 0.8 1.0

1.00 0.0000 0.0000 0.0000 0.0000 0.0000
.95 .0000 .0000 .0000 .0000 .0000
.90 .0000 .0000 .0000 .0000 .0000
.85 .0000 .0000 .0000 .0000 .0000
.80 .0000 .0000 .0000 .0000 .0000
.75 .0000 .0000 .0000 .0000 .0000
.70 .0001 .0001 .0000 .0000 .0000
.65 .0002 .0002 .0001 .0000 .0000
.60 .0005 .0004 .0003 .0001 .0000
.55 .0013 L0011 .0007 .0003 .0000
.50 .0033 .0029 .0018 .0009 .0000
45 .0083 .0074 .0048 .0024 .0000
.40 .0199 .0185 .0132 0071 .0000
835 .0400 .0405 .0391 .0280 .0000
.30 .0530 0579 L0810 .1408 1.0000
525 .0400 .0405 .0391 .0280 0.0000
.20 .0199 0185 J132 .0071 .0000
IG5 .0083 0074 .0048 .0024 .0000
.10 .0032 .0028 .0018 .0009 .0000
.05 .0011 .0009 .0006 .0003 .0000
.00 .0000 .0000 .0000 .0000 .0000

TABLE 6. Temperature potential within a cylindrical fur-

nace: surface temperature, a rectangular function of
finite width (f(z) =0 for 0 < z < gand h <z < |,
f(z) = D forg <z < h, g = 02751, h — 0.3251),
|l = 8a

r/a
z/1 0.0 0.3 0.6 0.8 1.0
1.00 0.0000 0.0000 0.0000 0.0000 0.0000
.95 .0000 .0000 .0000 .0000 .0000
.90 .0000 .0000 .0000 .0000 .0000
.85 .0000 .0000 .0000 .0000 .0000
.80 .0001 .0000 .0000 .0000 .0000
75 .0001 .0001 .0001 .0000 .0000
.70 .0004 .0003 .0002 .0001 .0000
.65 .0010 .0008 .0005 .0003 .0000
.60 .0025 .0022 .0014 .0007 .0000
55 .0065 .0057 .0036 .0018 .0000
.50 .0169 .0148 .0094 .0046 .0000
45 .0428 .0382 .0249 .0126 .0000
.40 1017 .0948 .0692 .0379 .0000
35! .1987 .2026 .2029 .1620 .0000
.30 .2588 .2807 35T .5599 1.0000
825 .1987 .2026 .2029 .1620 0.0000
.20 1016 .0947 L0691 .0379 .0000
NI .0427 .0381 .0249 .0126 .0000
.10 .0165 .0145 .0092 .0045 .0000
.05 .0055 .0049 .0030 .0015 .0000
.00 .0000 .0000 .0000 .0000 .0000

3. Solution for Uniform Heating Along the
Full Length of the Heater

In the problems considered thus far, we have prescribed
the surface temperature variation along the cylindrical
heater. We now prescribe a particular power dissipation
along it. Consider a special form of a general problem
treated by Laubitz [5] . A composite cylinder of length [
and radius ¢, shown in figure 1, contains a coaxial cylin-
drical heater of the same length, negligible thickness, and
radius a, whose power dissipation per unit length Q is
independent of time and position; the thermal conductiv-
ity is k1 for 0 = r < @ and ks for a < r < ¢, and the
boundary conditions are v(c,z) = v(r,[) = v(r,0) =0. The
distinction between the conductivities, which are assumed
to be independent of temperature and pressure, arises
because the temperature along the heater is not pre-
scribed. The boundary conditions express the physical
fact that the apparatus surrounding the furnace acts as a
heat sink.

For the region inside the heater, 0 =r < a, 0 < z < I,
the temperature potential is

2Q o 1

7l'3k2€;n=1 ne
(I/nra)l,(nwc/l)

. [Io (nwc/)Ky(nra/l) —Ko(nwc /1) [y (nma/l)

+ <i‘ - 1>Il<ma/z>} e <nTﬂ> . <n§>
. sin (#) o

where Io(x) and I1(x) are the modified Bessel functions
of the first kind and of zero and first order and Ko(x) is
the modified Bessel function of the second kind of zero
order. If ki = ko, eq (9) reduces to

o0.= 5 o (K7 -0 e

. Iy (nxr/l) sin®(nr/2) sin (nxz/l).  (10)

v(r,2)=

The temperature potential inside the heater of a furnace
for which [ = 4¢ = 8a is shown in tables 7 through 9 for
k1/ks = 0.1, 1, and 10. As in the earlier tables, the poten-
tial is scaled to a maximum value of unity.

Three observations may be made regarding the tables.
Near the midplane the temperature along the heater is quite
uniform for k1/k> < 1 and becomes more nearly parabolic
as k1/ks increases. To be more specific, for r/a = 1.0 the
potential at z/l=10.40 is 0.2 percent less than that at
z/1=0.50 for ki/ks = 0.1, 2.8 percent less for k1/k> = 10,
and 4 percent less for the parabolic surface temperature of
table 1. In practice an experimental sample is commonly
located in the vicinity of the axis and the midplane — for
example, within the cylindrical volume bounded by
2/l = 0.40 and 0.60 and r/a = 0.6. Within this volume
the maximum potential difference is 0.5 percent of the
reference value of unity for ki/k2 = 0.1, 3.8 percent for
k1/ks = 10, and 5.1 percent for the parabolic surface tem-
perature of table 1. For constant ) and %> an increase
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in ki causes a decrease in the temperature for r < a.
This result follows directly from eq (9) and is related
physically to the greater flux of heat to the anvils. It is
not apparent in the tables because of the scaling.

TABLE 7. Temperature potential within a cylindrical fur-
nace: uniform heating along the full length of the heater
of radius a, | = 4c = 8a, (thermal conductivity for
0 =r < a) = 0.1 (thermal conductivity fora < r < c)

r/a
z/l 0.0 0.3 0.6 0.8 1.0
0.50 0.9975 0.9978 0.9985 0.9992 1.0000
45 .9965 9968 9978 .9986 9996
.40 9931 .9937 9951 9965 9981
.35 .9858 .9868 9895 9920 9950
.30 9714 9732 9783 .9830 .9886
.25 .9439 9472 9565 9655 9760
.20 .8920 .8979 9150 9316 9512
15 7967 .8068 .8365 .8662 .9022
.10 .6290 .6439 .6902 7400 .8042
.05 .3596 .3740 .4249 4919 .5985
.00 .0000 .0000 .0000 .0000 .0000
TaBLE 8. Temperature potential within a cylindrical fur-

nace: uniform heating along the full length of the heater
of radius a, | = 4c¢ = 8a, (thermal conductivity for
0=r < a) = (thermal conductivity for a <r < c)

r/a
z/l 0.0 0.3 0.6 0.8 1.0
0.50 0.9932 0.9939 0.9958 0.9977 1.0000
.45 .9908 9916 .9937 .9958 .9984
.40 9830 .9840 .9869 .9897 9931
35 9680 L9695 O3 9779 .9830
.30 9423 .9445 9512 .9577 9657
.25 .8999 9035 9140 .9243 9370
820) .8314 .8370 .8535 .8699 .8900
N5 N02:25) L7309 .7559 7815 8133
.10 .5538 .5649 .5998 .6375 .6869
.05 .3087 .3188 .3539 .3994 4713
.00 .0000 .0000 .0000 .0000 .0000

TABLE 9. Temperature potential within a cylindrical fur-
nace: uniform heating along the full length of the heater
of radius a, | = 4c = 8a, (thermal conductivity for
0=r < a) = 10 (thermal conductivity for a < r < c)

r/a
z/1 0.0 0.3 0.6 0.8 1.0
0.50 0.9776 0.9796 0.9857 0.9920 1.0000
45 9702 9123 .9786 .9850 9931
.40 .9480 .9502 .9568 .9636 9723
B35) .9098 9122 9195 9270 .9366
.30 8541 .8569 .8652 8737 .8845
) 7786 .7819 .7914 .8013 .8138
.20 .6803 .6840 .6952 7068 7216
15 5651 .5595 .5726 .5863 .6039
.10 .3993 .4040 4185 4342 4551
.05 2114 2150 RS .2426 .2662
.00 .0000 .0000 .0000 .0000 .0000
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Further calculations have been performed to study the
effects of varying the furnace parameters. The results,
which are not shown in the tables, display considerable
complexity. For example, for | = 4c the changes in the
radial and longitudinal temperature gradients in the vicin-
ity of the axis and the midplane that are caused by a
decrease in a/c¢ from 0.50 to 0.25 depend in sign as well
as in magnitude on the value of %i/k.. Consider the
cylindrical volume bounded by z/l = 0.45 and 0.55 and
r/c = 0.25. Within this volume the maximum potential
difference increases slightly from 0.14 percent to 0.18
percent of the reference value of unity as a@/c decreases
from 0.50 to 0.25 for ki/ks — 0.01. For ki/k: = 0.1 the
increase is from 0.17 percent to 0.19 percent. For
ki/ks =1 the maximum potential difference decreases
from 0.43 percent to 0.29 percent as a/c decreases from
0.50 to 0.25. For k1/k> = 10 the decrease is from 1.30
percent to 0.99 percent, and for ki/k: — 100 it is from
1.69 percent to 1.65 percent. For Fki/ks — 1000 the
maximum potential difference is barely influenced by the
decrease in a/c, changing from 1.75 percent to 1.76
percent.

4. Comments

Although the results shown in the tables are based upon
several simplifying assumptions, we believe that they are
sufficiently general to be helpful in the design of high-
pressure furnaces and in the estimation of temperature
gradients. By superposition of these results the results of
more complicated problems may be obtained. This is the
reason for the inclusion of the problem in which tempera-
ture irregularities along the heater are approximated by
the assumption that the surface temperature is a rectangu-
lar function of finite width.

Reported furnace designs have not always illustrated an
optimum choice of environmental materials so far as the
thermal conductivities are concerned. The tables show
that the temperature gradients in the sample region are
significantly affected by the relative thermal conductivity
of neighboring components as well as by the temperature
variation along the heater. In many cases temperature
irregularities along the heater may impose a lower limit to
the magnitude of the temperature gradients in the sample
region.

It is a pleasure to thank Bradley A. Peavy, Jr. for sev-
eral helpful discussions.
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