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The steady-state temperature distribution in typical cylindrical high-pressure furnaces has been 
computed from analytic solutions for various boundary conditions. Either the temperature variation 
along the cylindrical heater or the power dissipation per unit length is prescribed. The results are 
tabulated and discussed as an aid in the design of high-pressure furnaces and in the estimation of 
temperature gradients. Topics considered include: (1) the reduction of temperature gradients 
around the center of the furnace, (2) the effect of temperature irregularities along the heater, and 
(3) the effect of the relative thermal conductivity of neighboring components. 
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1. Introduction 

Activity in high-temperature, high-pressure research 
has greatly increased in recent years. Such work is of 
both scientific and technological importance and signifi
cantly extends our knowledge of the phase diagrams and 
equations of state of the solids and liquids studied. In 
the design of experiments and in the detailed interpreta
tion of results, the accuracy and uniformity of the tem
perature and pressure require careful attention. This 
paper deals with the computation of the temperature dis
tribution in cylindrical furnaces of the type characteristic 
of static high-pressure apparatus. Since the pressure 
does not appear explicitly in the computation, the results 
are equally applicable to furnaces at any pressure if the 
geometry and the boundary conditions assumed in this 
paper are a suitable approximation to the actual physical 
conditions. 

Several problems arise in the maintenance and mea
surement of high temperatures in high-pressure media. 
The small size of the pressurized region within a massive 
metal apparatus restricts the size of the furnace compo
nents and thus limits the amount of thermal insulation 
that separates the sample from the heater and from the 
surroundings. As a result there may be a large flux of 
heat across the sample with correspondingly large tem
peratu re gradients. Temperature irregularities along the 
heater may cause additional gradients across the sample. 
Temperatures in high-pressure furnaces are usually mea
sured with thermocouples. Pressure modifies the tempera
ture-emf relationship of a thermocouple by as much as an 
estimated 5 to 10 percent under experimental conditions 
[1,2].1 Because of the temperature and pressure gradi-

1 F igu res in brackets indicate the lit e rature references at th e en d of this pap e r. 
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ents, the details of posItIOning the thermocouples influ
ence the read ings obtained with them [3 J . 

This paper grew out of our interest in designing a high
pressure furna ce in which temperature gradients across 
the sample would be both small and well-known-for 
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FIGURE 1. Schematic diagram 0/ typical high-pressure furnace with 
coaxial cylindrical heater. 



example, known to within 0.1 percent of the diff,erence 
between the highest temperature in the furnace and the 
temperature of the surrounding metal apparatus. A sur
vey of the literature indicated that the kind of detailed 
temperature distribution data needed in the design of 
such a furnace was not available. Because of the various 
difficulties in the determination of this sort of data by 
experimental trial and error for different furnace designs, 
we chose, instead, to compute the temperature distribution 
for several alternative conditions. Most high.pressure 
furna ce designs can be described by one or a combination 
of these conditions. 

In the present work the steady-state temperature distri
bution in typical cylindrical high-pressure furnaces has 
been computed from analytic solutions for various bound
ary conditions_ A schematic diagram of such a typical 
furnace is shown in figure 1, in which a cylindrical heater 
of negligible thickness, radius a, and length I is located 
between opposed pistons in a massive metal apparatus. 
Either the temperature variation along the cylindrical 
heater or the power dissipation per unit length is pre
scribed. Perfect thermal contact is assumed at all bound
aries because of the intimate contact created by the high 
pressure. Angular symmetry and homogeneous, isotropic 
materials are also assumed throughout this paper. 

2. General Solution for a Prescribed Surface 
Temperature Variation 

Consider a simple cylinder, 0 L r < a, 0 < z < I, with 
a prescribed temperature fez) along the cylindrical sur
face at r = a and a constant temperature, taken as zero 
for convenience, over the end surfaces. The temperature 
potential v(r,z) within the cy linder, measured from the 
temperature at either end, is given by Carslaw and Jaeger 
[4J as 

I I 

2~Io(n7rr/l) . n7rZ \ I. n7rZ I () 

v(r,z)=TL.-Jlo(n7ra/l)sm- -[- fez )sm- l - dz, 1 
n~l 0 

where 10 (x) is the modified Bessel function of the first 
kind of zero order. We now consider the application of 
eq (l) for several explicit surface temperature variations. 

2.1_ Parabolic Surface Temperature 

For typical furnaces with a smooth temperature varia
tion along the heater from a hot middle to cooler ends, 
the surface temperature may be approximated by a 
parabolic function 

f(z) = A-(Bz _C)2_ (2) 

By requiring fez) to be zero at z = 0 and z = I, we 
obtain A = C2, B = 2CIl, and 

fez) =2BCz _B2z2 = (4C2z/l)(1 - z/l). (3) 

After performing the integration in eq (1), we have 

16C2~1 I o(n7rr/l) . n7rZ 
v(r,z) =-3-L.-J-31 ( /l)sm-l-(l-cOsn7r), 7r n~ln 0 n7ra 

(4) 

where C is an arbitrary scaling factor. The temperature 
potential within cylindrical furnaces for the particular 

geometrical conditions I = 8a and I = 16ais .. shown in 
table 1 and table 2, respectively. Since the furnaces are 
symmetric about the midplane, zll = 0.50, the tables 
show the potential explicitly for only half the furnace. 
The computed potential is scaled so that its value in the 
midplane at ri a = l.0, the middle of the heater, is unity. 

zll 

zll 

TABLE 1. Temperature potential within a cylindrical 
furnace: parabolic surface temperature, I = 8a 

ria 
0.0 0.3 0.6 0.8 1.0 

0.50 0.9688 0.9716 0.9800 0.9888 1.0000 
.45 .9588 .9616 .9700 .9788 .9900 
.40 .9288 .9316 .9400 .9488 .9600 
.35 .8788 .8816 .8900 .8988 .9100 
.30 .8089 .8117 .8201 .8288 .8400 
.25 .7190 .72 18 .7302 .7388 .7500 
.20 .6095 .6122 .6204 .6289 .6400 
.15 .4807 .4832 .4911 .4993 .5100 
.10 .3338 .3360 .3428 .3501 .3600 
.05 .1715 .1729 

I 

.1774 .1825 .1900 
.00 .0000 .0000 .0000 .0000 .0000 

TABLE 2. Temperature potential within a cylindrical 
/urnace: parabolic sur/ace temperature, I = 16a 

ria 
0.0 0.3 0.6 0.8 1.0 

0.50 0.9922 0.9929 0.9950 0.9972 1.0000 
.45 .9822 .9829 .9850 .9872 .9900 
.40 .9522 .9529 .9550 .9572 .9600 
.35 .9022 .9029 .9050 .9072 .9100 
.30 .8322 .8329 .8350 .8372 .8400 
.25 .7422 .7429 .7450 .7472 .7500 
.20 .6322 .6329 .6350 .6372 .6400 
.15 .5022 .5029 .5050 .5072 .5100 
.10 .3524 .3531 .3551 .3572 .3600 
.05 .1834 .1840 .1857 .1875 .1900 
.00 .0000 .0000 .0000 .0000 I .0000 

The temperature potential v (r,z) at any point within 
the cylindrical furnace is very simply related to the actual 
temperature T (r,z ) at that point by the equation 

T(r,z) - T(r ,O) 
v(r,z) = T(a,l / 2J _ T(r,O) , 

where T(r,O) is the reference temperature over the ends 
of the furnace and T (a,l/2) is the temperature at the 
middle of the heater. If, for example, the middle of the 
heater is 1000 °C hotter than the ends of the furnace, 
table 1 shows that the cylindrical midpoint, ria = 0.0 
and zll = 0.50, is 968.8 °e hotter than the ends of the 
furnace. If the temperature over the ends of the furnace 
is 100 °e, the temperature at these other locations becomes 
noD °C and 1068.8 °C, respectively. 

Table 1 shows that the temperature potential in the mid
plane at ria = 0.0, the cylindrical midpoint, is approxi
mately 3 percent less than that at ria = 1.0, the middle 
of the heater, and 2 percent less than that at ria = 0.8. 
In terms of the preceding example, these potential differ
ences represent temperature differences of approximately 
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30 and 20°C. The longitudinal variation from zll = 0.50 
to 0.45 at any radius is 1 percent. The cylindrical mid
point is a saddle point at which the radial temperature 
gradient is positive and the long iludinal gradient is nega
tive. For the more elongated furnace of table 2 the poten
tial at the cylindrical midpoint is only 0.8 percent less 
than that at the middle of the heater and 0.5 percent less 
than lhat at ri a = 0.8, zl l = 0.50. The longitudinal varia
tion from z/l = 0.50 to 0.45 is still 1 percent, of course, 
although relative to the radius, the corresponding longi
tudinal displacement is twice as long as in table 1. 

2 .2. Generalized Parabolic Surface Temperature 
With a Constant Central Section 

In practice the small size of the pressurized region 
restricts the opportunity for elongation of the furnace in 
order to reduce the temperature gradients around its 
center. Another way to reduce these gradients is to sup
ply extra heat near the ends of the furnace to compensate 
for the large losses to the surroundings and thus maintain 
a substantially constant temperature about the middle of 
the heater. To represent this section of constant tem
perature, we generalize the preceding problem by sp litting 
the parabola at its midpoint and inserting a horizontal 
line segment lhere. Since the maximum value of f ez) is 
C2, whi ch occurs at z = CI B, we obtain 

f(z ) = 2BC Z _ B2 Z2,0< Z < CI B, 

= C2, CI B < z < l - CI B, (5) 

= 2BC(I- z )-B2(I_z)2 , l-CIB < z < I. 
After substiluting in eq (1) and performing the integra 
tion, we have 

(6 ) 

When CIB = 1/ 2, eq (5 ) reduces to eq (3) and eq (6) 
reduces to eq 14) _ sin ce cos 117r/ 2 va ni shes for od d n and 
1 - cos n71" vanishes for even n. Th e tempe rature poten
tial within cylindri cal furnaces for which 1= 8a is shown 
in table 3 for CI B = l/2.5 and in table 4 for CI B = l!4. 

TABLE 3. Temperature potential within a cylindrical fur
nace .- generalized parabolic surface temperature with 
central fifth at cOnstant temperature, I = 8a 

ri a I 
zll 0.0 0.3 0.6 0.8 1.0 

0.50 0.9922 0.993 1 0.9957 0.9979 1.0000 
.45 .9885 .9898 . 9934 .9967 1.0000 
.40 .9750 .9773 .9841 .9911 1.0000 
.35 .9454- .9487 .9588 .9697 .9844-
.30 .8927 .8966 .9085 .9210 .9375 
.25 .8125 .8166 .8292 .8423 .8594 
.20 .7029 .7071 .7l97 .7329 .7500 
.15 .5638 .5678 .5799 .5927 .6094 
.10 .3966 ,4,000 .4106 .4221 .4375 
.05 .2056 .2077 .2146 .2226 .2344-
.00 .0000 .0000 .0000 .0000 .0000 
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The temperature variations around the cylindrical mid
point are indeed much smaller in these tables than in 
table 1. For example, the total radial variation in the 
midplane is 3.1 percent in table 1, 0.8 percent in table 3, 
and 0.1 percent in table 4. 

TABLE 4. Temperature potential within a cylindrical fur
nace.- generalized parabolic surface temperature with 
central half at constant temperature, I = 8a 

ria 
zll 0.0 0.3 0.6 0.8 1.0 

0.50 0.9989 0.9990 0.9994 0.9997 1.0000 
.45 .9983 .9985 .999 1 .9996 1.0000 
.40 .9961 .9966 .9979 .9990 1.0000 
.35 .9901 .9913 .9945 .9973 1.0000 
.30 .9748 .9776 .9855 .9927 1.0000 
.25 .9386 .9441 .9606 .9778 1.0000 
.20 .8635 .8715 .8963 .9232 .9600 
.15 .7327 .7418 .7697 .7998 .8400 
.10 .5388 .54.71 .573 1 .6015 .6400 
.05 .2874 .2928 .3101 .3302 .3600 
.00 .0000 .0000 .0000 .0000 .0000 

2.3. Surface Temperature, a Rectangular Function 
of Finite Width 

T cmperature irregul arities exist a long rea l heaters. A 
detail ed model of the irregularilies in an aC lual furnace 
would grea tly increase thc complexity of th e mathematical 
analys is ; for example, the angula r sy mmetry assumed in 
lhe deri va ti on of eq (1) would not genera lly exist. 
Rather th an neg lcct such irregulariti cs altogether , we may 
explore their effec t by co nsiderin g a rectangula r fun ction 
of finite width for the surface temper ature 

f(z )= O, 0 < z <g, 

= D, g< z < 11, (7) 

= 0, h<z < I, 

where, in general , g =1= 1- It; thal is, the step is not cen
tered at the midplane. Aftcr performing th e intcgration 
in eq (1), we have 

v (r, z) = 2D i J:. !.!J (nrrr I I) sin !!:!~ (cos ~rrg 
rr 1l~1 n 10 (nrrall) I I 

nrrl1) -cos - -I . (8) 

The temperature potential within a furnace for wh ich 
1= 8a is shown in tables 5 and 6 for steps of width 0.01 l 
and 0.05 I centered at zl l = 0.30 . 

The tables show certain fea tures which ca n be expected 
as general results of local irregulariti es in the temperature 
along the heater. The gradients due to an irregularity 
modify the gradi ents otherwise present to an extent that 
depends upon the width a nd the height or depth of the 
irregularity. The radi al grad ient along a radius leading 
to a hot spot is inc reased. The r adial g radi ent e lsewhere 
includes a co mponent due to the hot spot that may be 



negative along the entire radius or positive near the axis 
and negative near the heater; the latter characteristic is 
illustrated by the data in the tables for zll = 0.25 and 
0.35. Longitudinal gradients are also modified. The 
tables show a slight asymmetry in the gradients above and 
below the plane of the irregularity as a result of the tem
perature asymmetry along the heater. 

TABLE 5. Temperature potential within a cylindrical fur
nace : surface temperature, a rectangular function of 
finite width (f(z) = 0 for 0 < z < g and h < z < I, 
fez) = D for g < z < h, g = 0.2951, h = 0.3051 ), 
1= 8a 

ria 
zll 0.0 0.3 0.6 0.8 1.0 

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 
.95 .0000 .0000 .0000 .0000 .0000 
.90 .0000 .0000 .0000 .0000 .0000 
.85 .0000 .0000 .0000 . 0000 .0000 
.80 .0000 .0000 .0000 .0000 .0000 
.75 .0000 .0000 .0000 .0000 .0000 
.70 .0001 .0001 .0000 .0000 .0000 
.65 .0002 .0002 .0001 .0000 .0000 
.60 .0005 .0004 .0003 .0001 .0000 
.55 .0013 .0011 .0007 .0003 .0000 
.50 .0033 .0029 .0018 .0009 .0000 
.45 .0083 .0074 .0048 .0024 .0000 
.40 .0199 .0185 .0132 .0071 .0000 
.35 .0400 .0405 .0391 .0280 .0000 
.30 .0530 .0579 .0810 .1408 1.0000 
.25 .0400 .0405 .0391 .0280 0.0000 
.20 .0199 .0185 .0132 .0071 .0000 
.15 .0083 .0074 .0048 .0024 .0000 
.10 .0032 .0028 .0018 .0009 .0000 
.05 .0011 .0009 .0006 .0003 .0000 
.00 .0000 .0000 .0000 .0000 .0000 

I 

TABLE 6. Temperature potential within a cylindrical fur
nace: surface temperature, a rectangular junction of 
finite width (f (z ) = 0 jar 0 < z < g and h < z < I, 
fez) = D for g < z < h, g = 0.2751, h = 0.3251) , 
1= 8a 

ria 
zll 0.0 0.3 0.6 0.8 1.0 

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 
.95 .0000 .0000 .0000 .0000 .0000 
.90 .0000 .0000 .0000 .0000 .0000 
. 85 .0000 .0000 .0000 .0000 .0000 
.80 .0001 .0000 . 0000 .0000 .0000 
.75 .0001 .0001 .0001 .0000 .0000 
.70 .0004 .0003 .0002 .0001 .0000 
.65 .0010 .0008 .0005 .0003 .0000 
.60 .0025 .0022 .0014 .0007 .0000 
.55 .0065 .0057 .0036 .0018 .0000 
.50 .0169 .0148 .0094 .0046 .0000 
.45 .0428 .0382 .0249 .0126 .0000 
.40 .1017 .0948 .0692 .0379 .0000 
.35 .1987 .2026 .2029 .1620 .0000 
.30 .2588 .2807 .3757 .5599 1.0000 
.25 .1987 .2026 .2029 .1620 0.0000 
.20 .1016 .0947 .0691 .0379 .0000 
.15 .0427 .0381 .0249 .0126 .0000 
.10 .0165 .0145 .0092 .0045 .0000 
.05 .0055 .0049 .0030 .0015 .0000 
.00 .0000 .0000 .0000 .0000 .0000 

3. Solution for Uniform Heating Along the 
Full Length of the Heater 

In the problems considered thus far, we have prescribed 
the surface temperature variation along the cylindrical 
heater. We now prescribe a particular power dissipation 
along it. Consider a special form of a general problem 
treated by Laubitz [5]. A composite cylinder of length I 
and radius c, shown in figure 1, contains a coaxial cylin
drical heater of the same length, negligible thickness, and 
radius a, whose power dissipation per unit length Q is 
independent of time and position; the thermal conductiv
ity is kl for 0 .<:::::: r < a and k2 for a < r < c, and the 
boundary conditions are v(c,z) = v (r,l) = v(r,O) = O. The 
distinction between the conductivities, which are assumed 
to be independent of temperature and pressure, arises 1 

because the temperature along the heater is not pre
scribed. The boundary conditions express the physical 
fact that the apparatus surrounding the furnace acts as a 
heat sink . 

For the region inside the heater, 0'<:::::: r < a, 0 < z < I, 
the temperature potential is 

2Ql 00 1 
V (r, z) =---a-k - L 2 7r 2a,,_1 n 

[ (l/n7ra)10 (n7rc/1) 

• 10(n7rc/I)KoCn7ra / l) -KoCn7rc /1) 10 Cn7ra/l) 

( kl )1 ( )] -I (n7rr) . 2(n7r) + k2 -1 1 n7ra/ 1 fo - z- sm 2" 
. (n7rz) • sm -z- , (9) 

where Io(x) and L (x) are the modified Bessel functions 
of the first kind and of zero and first order and Ko (x) is 
the modified Bessel function of the second kind of zero 
order. If kl = k2, eq (9) red uces to 

vCr, z) =-'!;Q :t....!. [Ko('!.7ra) -Ko( n7rC )]10 (n7ra/lJ... 
7r-k 2 n_l n t t 10C n7rc/ l) 

• 10 Cn7rr/l) sin2 Cn7r/ 2) sin Cn7rz/ I). (10) 

The temperature potential inside the heater of a furnace 
for which 1= 4c = 8a is shown in tables 7 through 9 for 
kdk2 = 0.1, 1, and 10. As in the earlier tables, the poten
tial is scaled to a maximum value of unity . 

Three observations may be made regarding the tables . 
Near the midplane the temperature along the heater is quite 
uniform for k d k2 < 1 and becomes more nearly parabolic 
as kdk2 increases. To be more specific, for ri a = 1.0 the 
potential at zll = 0.40 is 0.2 percent less than that at 
zit = 0.50 for kdk2 = 0.1, 2.8 percent less for kd kz = 10, 
and 4 percent less for the parabolic surface temperature of 
table 1. In practice an experimental sample is commonly 
located in the vicinity of the axis and the midplane - for 
example, within the cylindrical volume bounded by 
zll = 0.40 and 0.60 and ri a = 0.6. Within this volume 
the maximum potential difference is 0.5 percent of the 
reference value of unity for kdk2 = 0.1, 3.8 percent for 
kl / k2 = 10, and 5.1 percent for the parabolic surface tem
perature of table 1. For constant Q and k z an increase 
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in kl causes a decrease in the temperature for r < a. 
This result follows directly from eq (9) and is related 
physically to the greater flux of heat to the anvils. It is 
not apparent in the tables because of the scaling. 

TABLE 7. Temperature potential within a cylindrical/ur
nace: uniform heating along the /ulllength 0/ the heater 
0/ radius a, I = 4c = 8a, (thermal conductivity for 
o L. r < a ) = 0.1 (thermal conductivity for a < r < c) 

ri a 
zl l 0.0 0.3 0.6 0.8 1.0 

0.50 0.9975 0.9978 0.9985 0.9992 1.0000 
.45 .9965 .9968 .9978 .9986 .9996 
.40 .9931 .9937 .9951 .9965 .9981 
.35 .9858 .9868 .9895 .9920 .9950 
.30 .9714 .9732 .9783 .9830 .9886 
.25 .9439 .9472 .9565 .9655 .9760 
.20 .8920 .8979 .9150 .9316 .9512 
.15 .7967 .8068 .8365 .8662 .9022 
.10 .6290 .6439 .6902 .7400 .8042 
.05 . 3596 .3740 .4249 .4919 .5985 
.00 .0000 .0000 .0000 .0000 .0000 

TABLE 8. Temperature potential within a cylindrical/uf
nace: uniform heating along the /ulllength 0/ the heater 
of radius a, I = 4c = 8a, (thermal conductivity lor 
o L. r < a) = (thermal conductivity lor a < r < c) 

ri a 
zi t 0.0 0.3 0.6 0.8 1.0 

0.50 0.9932 0.9939 0.9958 0.9977 1.0000 
.45 .9908 .9916 .9937 . 9958 .9984 
.40 .9830 .9840 .9869 .9897 .9931 
.35 .9680 .9695 .9737 .9779 .9830 
.30 .9423 .9445 .9512 .9577 .9657 
.25 .8999 .9035 .914.0 .9243 .9370 
.20 .8314 .8370 .8535 .8699 .8900 
.15 .7225 .7309 .7559 .7815 .8133 
.10 .5538 .5649 .5998 .6375 .6869 
.05 .3087 .3188 .3539 .3994 .4713 
.00 .0000 .0000 .0000 .0000 .0000 

TABLE 9. Temperature potential within a cylindrical fur
nace: uniform heating along the /ulllength 0/ the heater 
oj radius a, I = 4c = 8a, (thermal conductivity for 
o L. r < a) = 10 (thermal conductivity lor a < r < c) 

ri a 
zl l 0.0 0.3 0.6 0.8 1.0 

0.50 0.9776 0.9796 0.9857 0.9920 1.0000 
.45 .9702 .9723 .9786 .9850 .9931 
.40 .9480 .9502 .9568 . 9636 .9723 
.35 .9098 .9122 .9195 .9270 .9366 
.30 .8541 .8569 .8652 .8737 .8845 
.25 .7786 .7819 .7914. .8013 .8138 
.20 .6803 .684.0 .6952 .7068 . 7216 
.15 .5551 .5595 .5726 .5863 .6039 
.10 .3993 .404.0 .4185 .4342 .4551 
.05 .2114 .2150 .2273 .2426 . 2662 
.00 .0000 .0000 .0000 I .0000 .0000 
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Further calculations have been performed to study the 
effects of varying the furnace parameters. The results, 
which are not shown in the tables, display considerable 
complexity. For example, for l = 4c the changes in the 
radial and longitudinal temperature gradients in the vicin
ity of the axis and the midplane that are caused by a 
decrease in al c from 0.50 to 0.25 depend in sign as well 
as in magnitude on the value of kdk2• Consider the 
cylindrical volume bounded by zl l = 0.45 and 0.55 and 
ric = 0.25. Within this volume the maximum potential 
difference increases slightly from 0.14 percent to 0.18 
percent of the reference value of unity as al c decreases 
from 0.50 to 0.25 for kl l k2 = 0.01. For kdh = 0.1 the 
increase is from 0.17 percent to 0.19 percent. For 
kdk2 = 1 the maximum potential difference decreases 
from 0.43 percent to 0.29 percent as al c decreases from 
0.50 to 0.25. For kdk2 = 10 the decrease is from 1.30 
percent to 0.99 percent, and for kl l fe z = 100 it is from 
1.69 percent to 1.65 percent. For kl / k z = 1000 the 
maximum potential difference is barely influenced by the 
decrease in al c, changing from 1.75 percent to 1.76 
percent . 

4. Comments 

Although the results shown in the tables are based upon 
several s implifying assumptions, we believe that they are 
suffi ciently general to be helpful in the design of high
pressure furnaces and in the esti mation of temperature 
gradients. By superposition of these results the results of 
more complicated problems ma y be obtained. This is the 
reason for the inclusion of the problem in which tempera· 
ture irregul a rities along the heater are approximated by 
the assumption that the surface temperature is a rectangu
la r fun cti on of finite width . 

Reported furna ce desig ns have not always illustrated an 
optimum choice of environmental materials so far as the 
thermal conductivities are concern ed. The tables show 
that the temperature gradients in the sample region are 
signifi cantl y affected by the relative therm al conductivity 
of neighboring components as well as by the temperature 
variation al ong the heater. In many cases temperature 
irregulariti es along the heater ma y impose a lower limit to 
the magnitud e of the temperature gradi ents in the sample 
region. 

It is a pleasure to thank Bradley A. Peavy, Jr. for sev
eral helpful di scussions. 
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