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A collection of ele mentary formu las for calc ulating the grad ien ts of scalar- and matrix-valued 
functions of one matrix argument is presented. Using so me of the welT-known properti es of the operator 
"trace" on square matrices, alternative definitions of gradients and simple examples of calc ulating 
them using the product rule and the chain rule for diffe rentiation are treated in an expository fashion 
in both component and matrix notations with emphasis on the latter. Two examples in continuum 
mechanics are presented to illustrate the application of the so·called "matrix calculus" of differentiab le 
function s. 

Key words: Chain rule; continuum mechanics; gradient; matrices; matrix ca lculus; partial differentia­
tion; product rule; tensor function; trace. 

1. Introduction 

This is an expository article on the use of matrix notation in the elementary calculus of differ­

entiable functions whose arguments are square matrices. For example, in continuum physics, it 

is often necessary to work with partial derivatives of a class of functions whose arguments are 

elements of a square matrix and whose values can be either scalars or square matrices of the 

same order. Following the notation and basic concepts of tensor functions as treated by Truesdell 

and Noll [1, pp. 20-35]1 , we present here an elementary introduction to the proper formulation 

of the c hain rule and the product rule for differentiation in matrix notation and we include examples, 

formulas and applications to illustrate the two rules. 

The reader is assumed to be familiar with the notions of the trace and the determinant of a 
It 

matrix!!: = (A;j) , i, j= 1, 2, ... , n, i.e., tr ~ = L Ai; and det j = L (-I)hA 1a-IA 2<72 ••• Ana-n' 
- - ;= 1 -

where the last summation is made over all permutations of <T1, <T2, ••• , <Tn , and h is the number 

of interchanges required to restore the natural order.2 In particular, the following properties of 

the operator "trace" are applied frequently throughout the paper: 

(a) tr (A+B)=trA+trB; 

(b) tr (~l!.)~tr (!!~); 
(c) tr (:!T) = tr :!' where :!T denotes the transpose of ~; 

(d) :i =!!., if, and only if, tr (~f) = tr (!}f:;) for arbitrary matrix f· 

AMS Subject Classification: Primary 15,88; Secondary 69. 

I figures in brackets indicate the )jle ralure refe rences al the end of this paper. 
2 A square matrix is denoted by a symbol underlined with two bars indicating the need for two indices in component notation. In general, any quantity with, say, 

k indices in componenl notation wiU be underlined wilh k bars when Ihe indices are suppressed. For ease o(prinling, this convention is fol1owed in equations but 
ignored in lex!. 

97 



2. Gradient of a Scalar Function of a Matrix Argument 

Letf==e(A ll ,A I2 , •• • ,Aln,A21,A22, ... ,A2n , ... ,AnI ,An2 , ... ,Ann ) define a scalar·valued 

function € of n2 variables A k·m , k, m = 1, 2, ... , n, such that the set of variables Akm corresponds 

to the set of components of a square matrix A of order n. In matrix notation, the definition of the 

scalar function € assumes the following simple form: 

f == €(A). (2.1) 

If E is differentiable with respect to each variable A km , the set of first partial derivatives of 

€, i.e.,{DkmE, k, m= 1,2, ... , n}, can be defined as a matrix-valued function to be denoted by 'Ve 

where the element ('V ihm at the kth row and the mth column of 'Viis given precisely by DkniE. 
Let fA denote the value of the function 'V € for a given A, then the definition of the function 'V f, 

to be known as the gradient of E, can be stated in both component and matrix notations as follows: 

(2.2) 

For brevity, we omit the statement that all indices k, m, p, q, ... , etc., range from 1 to n. 

For the purpose of applying those properties of the operator "trace" as listed in the last 

section, Truesdell and Noll [1] presented an alternative definition of the-gradient of a scalar function 

of a matrix argument as follows: 

(2.3a) 

or, in component notation, 

(2.3b) 

where C, with components Cpq , is an arbitrary matrix of the same order as the matrix A. To see 
that (2.2) and (2.3) are equivalent, we apply the chain rule for differentiation to the expression 
i(Apq + sCpq ): 

(2.4) 

If we substitute zero for s in (2.4) and apply (2.2), we obtain (2.3b). Conversely, (2.3b) and the 

chain rule imply (2.2). The reader may wish to verify that (2.3) indeed defines a unique matrix 

fA as a result of the linearity of the operator "trace" and the arbitrariness of the matrix C. 

EXAMPLE 1: f=i(~) =det~. 

To calculate the gradient of i, we apply the Laplace development of a determinant, i.e. ' . 

, det i = L AkmA 1.'111, In being fixed and not summed, 
k~ J 
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where A kIn de notes the cofac tor of A'- III de fin ed as (- 1)" +111 times the comple mentary minor of 
A".".. Using (2.2) and the fact that the cofactor Akm is inde pendent of the element Akm of the matrix 
A, we obtain: 

~ = [ ( EA hmJ = [Dk'" ( de t .:i )] = [AkIll J = .:iCOf (2 .6) 
- --

where A cof denotes th e cofactor matrix of A whi c h, by de finiti on , equals the transpose of th e adjoint 
matrix of A. Let us verify the result gi ven in (2.6) by applyin g the alternative de finiti on of EA as 
given in (2. 3): 

tr {E'fC } = !£. det (A + sC) I S~ O 
= A = ds = ~ 

= ( detA)!i.det(l +sA- IC ) Is~ o. 
= ds = = = (2 .7) 

Followin g Truesdell and Noll [I] , we introduce another expa nsion of a de te rminant: 

(2.8) 

whe re B is an y square matrix of orde r n a nd 11 (B ), h (B ), . . . , I" (B ) are the so· called prin cipal 
invariants of B.3 In our case, we are only interes ted in th e fir st prin cipal invari a nt II (B ) whic h 
equals tr (B). Co mbining (2.7) and (2.8), we obtain: 

tr {~;C} = ( de t i) tr (d.- If) 

= tr { ( de t d. ) d.- I~}, 

i.e., (2. 9) 

Since A- I = ( d et A) - I (ACOfF, we see immediately that (2.9) is equivalent to (2.6), and th at both 
definit~ns give n i ~(2 .2) ~-;;d (2.3) yield the same res ult. 

EXAMPLE 2 : E = E(:;1) = tr(i"') ' 1m being any positive integer. 

Since we have ye t to introduce the notion of the gradie nt of a matr ix·valued fun ction, we 

mus t rule out the poss ibility of calculating the gradient of E using the chain rule . To apply the 

de finition of the gradie nt of E as given in (2.2), it is necessary to de velop an expa nsion of the fun ction 

E in te rms of the co mponents of A. W e observe that for arbitrary positive integer m, the expansion 

of the matrix Am is cumberso me, and it is not practical to find the gradient of E using (2 .2). 

However, the definition give n in (2.3) does lead us to an answer: 

tr {E/ C} =!£. tr {(A + SC ) III }S ~O 
-== ds = = 

d {(in< + (i m-1f + i "' -2£4 + 
= ds 
= tr { ::!,n- l~ + i"'-2f1 + 

- - - --

(2.10) 

3 For a rigo rous exposition of the notion of a principal in variant of a matrix or a second order tensor, see Eric ksen [2, p. 832]. 
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Since the trace operator is linear and tr(:1'l.) = tr(!!1). Since s;;. ~s arbitrary, we conclude that 
EA = m(!i",- l )1 .. 
- -
EXAMPLE 3: E = E(!i) = det (!i2 +!D, II being a constant matrix. 

In this case, both definitions given in (2.2) and (2.3) arp not practical for us to evaluate the 

gradient of the scalar function E. The only reasonable alternative is to use the chain rule in conjunc­

tion with a practical way of evaluating the gradient of a matrix-valued fun ction as to be presented 

in the next section. 

3. Gradient of a Matrix-Valued Function of a Matrix Argument 

Let I=- / (A) define a matrix-valued function / of a matrix argument A where both I and A are 
square matrices of order n with components I"m and Ars respectively , and the n2 component func­
tions/ "m of/ are defined as follows : 

/km =- fkm(Ars) =- IA-m(t])· (3.1 ) 

If each component function.Am is differentiable, the set of the first partial d~rivatives of 
.Am, i.e., {Dpqik",} , can be defined as the gradient of the function} to be denote~ by 'V f To empha­
size the need for four indices to specify IA which stands for the value of 'VI for a given A, we 
introduce the unusual four-bar notation as it appears in the following definition: 

(3.2) 

Clearly IA is not a square matrix in the usual sense, and, thereiore, is not suitable for calculations 
in matrix notation. Following [1], we introduce the so-called contraction operation on/A with respect 
to an arbitrary square matrix C whose order is the same as that of A : 

(3.3) 

The new quantity , /A[C], to be known as the gradient of/ with respect to A and contracted with 

C, requires only two indices for component representation. Hence the symbol lAC] will replace 

IA wherever matrix operations are used. . I 

The definition of the gradient of} as given in (3.2) is equivalent to the following alternative I 

definition based on the chain rule : 

(3.4a) 

or, in component notation, 

n n 

LL (3.4b) 
p=l q=l 

As a rule, both qefinitions given in (3.2) and (3-4) are useful for simple matrix-valued functions 

such as those listed below: 

(3.5) 
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C [G] = CT. 
(3.6) 

j}~) = I},i, B being a constant matrix; fA [G] = BG. 
= == 

(3.7) 

l}~) = 41}" B being a constant matrix, J:I [G] = ~!i. (3.8) 

For moderately complicated matrix-valued functions such as/(A) = AIIl, m being a positive integer 
greater than 1, the matrix definition given by (3_4a) is far superior and sometimes becomes the 

sole means of evaluating the gradient of a matrix-valued function. The reader can easily verify , 

using (3.4a), the followin g useful result : (Note:: AO == 1). 

l (A) = t!'", m =2,3,4, ... ; 
'til - I 

fA[G] = L 4ifi lll-i- ' . (3.9) 
i = O 

4. Product Rule for Differentiation of Matrix-valued Functions 

Let j be th e prod uct of two matrix-valued fun ctions g and h with f == I(A) == g(A) h. (A) == gh, 

where the order of the matrix multiplication is important. The product rule for partial differen­

tiation yields th e gradient of I in the following matrix notation: 

.£JQ = &Jg!!:..+ghA[G] 
-- --- == 

for f=gh 
= == (4. 1) 

Using the elementary formulas given in (3 .S) and (3.6), we obtain immediately the followin g formula 

based on (4.1): 

(4.2) 

To derive the formula for the gradient of the matrix inversion operator, we apply the product 

rule to the identity 4- ' 4=~: 

.fA [G] = - .:i - I~:i- I . (4.3) 
- - ---

Using the product rule and (4.3), the reader can easily verify by induction: 

m - i 

f'(A) = A -m - . ? 3 . = == ,nl- ... " ... , L,[CJ = - L ~- IIl + i £ ~- l + i. (4.4) 
i = O 

Whenever the inverse of a matrix is mentioned, the restriction to the class of square matrices 

with nonzero determinants will be understood. 

5 . Chain Rule for Differentiation of Scalar- and Matrix-Valued Functions 
L 

Co nsider a sc ... !ar·valued function E of a matrix ar~ument A whose co mponents Aklll are func-

tions of a single scalar parameter t. The chain rule for differentiation with r espect to t assumes 

the following form in component notation: 

1/ It 

i}(t) = L 2: (EA)h'IIlA"IIl(t) , (S.Ia) 
k= t 111 = 1 
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where the dot symbol denotes the operator :r. In matrix notation, (S.la) becomes 

7} ( t) == E (d ( t )) ; i](t) = tr(EATd (t)). (S.lb) 

In applications, it is common to work with a scalar-valued function 4> of a matrix argument 

fwhich depends on another matrix argument A. The chain rule for differentiation with respect to 

A can be written in the following component notation: 

n II. 

E(A,.t) == 4>cluv(Aij)); (EA)pq = ~ '~l (¢fh", (JAh",pq. (S.2a) 

To write (S.2a) in matrix notation, let lIS contract both sides of (S.2a) with an arbitrary matrix C; 

tr( E~ C) = tr( ¢T fA [C)). 
(S.2b) 

Returning to Example 3 given in section 2, we are now equipped to evaluate the gradient of the 
function E defined by E = E (d) = det (d2 + !D , B being a constant matrix. Using (2.9), (3.9) and the 
chain rule given by (S.2b) , we-have: - -

6. A Collection of Some Elementary Formulas in "Matrix Calculus" 

Based on the product rule and the chain rule for dIfferentiation in matrix notation as presented 

III the last two sections, a calculus of differentiable functions of square matrices, to be referred 

Formula Function Gradient Remark 
number 

1 f(A) =A fA [C] =C 
2 j(4) =AT CT 

3 j(A)=BA BC B being a constant matrix. 
4 f(A) =A B CB B being a constant matrix. 

j (A)=AM 
m-I 

S ~AiC A"' - i- l m=2, 3,4, ... ---- . 1.=0 
6 I(A) =AT A CT A +ATC 

7 f(A) =A-I -A- I CA-I 

j(A) =A-m 
m=1 

8 -2: A - m+iC A-I+i m=2, 3,4, .. 
i=O 

9 E(A) = tr A EA= 1 First invariant. 
10 E(A) = det A detA (A-I)T nth invariant. 
11 E(A) =¢(AT) (¢.4{ )T 

12 E(A)=4>(BAD) BT (¢BAD) DT B, D being constant 
matrices. 

13 E(A) =;P(A - I) - (A - I)T (¢r l) (A - I)T 

14 E(A) = 4> (A AT) 2 (¢AA T) A Note (¢AA7')T= (¢AAT). 

IS E(A) = ;P(AT A) 2A (¢A7'A) Note (¢A'1A)T= (¢/rA). 

16 E(A)=trA - 1 detA detA (A-I)T(ltrA - l Second invariant for 
-(A-I)T) n=3. 
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to as the "matrix calculus," can be defined in an analogous way as the elementary theory of calculus 

based on the field of real or complex numbers. Obviously, for matrix calculus, the underlying 

mathematical object is not a field, but a noncommutative ring, i.e., the ring of square matrices of 

order n over the familiar ring of differentiable functions. An excellent account of the theory of 

matrices over rings was given recently by Newman [3], but here we merely present a collection of 

some elementary formulas in "matrix calculus" without studying its mathematical structure. 

For the convenience of the reader, the table on page 102 lists some of the most co mmonly used 

formulas in matrix calculus. 

Using the properties of the operator "trace" as listed in section 1, we observe that the deriva­

tion for formulas Nos. 11-15 presents no difficulty. For example, formula No. 13 can be derived 

as follows: 

From (S.2b) and formula 7, we have 

tr (E~ C) = tr (- (4)r l)TA - ICA - l) = tr (-::! - I (4)rl)T::!- I~). 
= == === 

(6.1) 

Since C is arbitrary, we obtain immediately the desired result. 

7. Applications 

To illustrate the ease with which certain problems in continuum physics can be treated by 

using some of the formulas listed in the last section, we shall present two examples in continuum 

mechanics: 

EXAMPLE 1: (All indices i,j, k, m, p, etc. range from 1 to 3.) 

Let the material coordinates of a particle in a continuous body be denoted by Xi. Let the 

position coordinates of the same particle at time t be given by Xk == Xk(Xi, t). Two basic quantities 

can be defined: 

, axk 
! == FHXj, t) == ax; (Xj, t); (deformation gradient); (7.1) 

a'k 
l!. == vk(Xj, t) == ~ (Xj, t); (velocity vector). (7.2) 

It is useful to express Xi as functions of x'" and t so that the velocity components have the alternative 

representation vk = :Uk (x tn , t). This allows us to define another useful quantity: 

1\ avk 
~ == L~,(xp, t) == ax ln (xp, t), (velocity gradient). (7.3) 

An important relation to be needed later follows immediately from the above definitions and the 

interchange of the order of partial differentiations: 

(7.4) 

where the dot symbol denotes the partial derivative with respect to t holding the material coordi­

nates Xi constant. 

The notion of "mass" of a continuous body leads to two notions of "mass density", namely, 
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the mass density PR with rt;3pect to a unit volume in the reference configuration where each particle 
is labeled with the material coordinates Xi, and the mass density PI with respect to a unit volume 
in the spatial configuration at time t where each particle is observed to occupy the position at 
coordinates x". The two mass densities are of course related: 

PR=PI det f. (7.5) 

The law of the conservation of mass states thatpH=O. Using (5.lb), formula No. 10, and the 
relation (7.4), we obtain the well known "equation of continuity" in classical mechanics: (Note: 

3 dvk 
div ~ == L dXk') 

k = l 

. .. 
= PI det £ + PI tr (det F (I-I)!) 

= PI det !. + PI det f tr (f-l fT D 

= PI det f + PI det f tr (!?) 

= det f.. (PI + PI div !2 

Since det ! ~ O,PH = 0 implies PI + PI div .!'. = 0. 

EXAMPLE 2: 
One of the principles generally associated with the correct formulation of the constitutive 

equation of a material is known as the "Principle of Material Indifference" which means physically 
that the response of a material is independent of the observer. Let us confine our attention to 
"simple fluids" in the sense of Truesdell and Noll [1], where the most general constitutive equation 
may be written in the following form: 

T(t) = '9' [CI Cr) ; PI]. (7.6) - --

Here T(t) is the Cauchy stress at time t, CI (T) is the relative right Cauchy-Green tensor defined by 

(C ( » ~ dXJJ(T) dXJJ(T) . h d' . d ('Li ' f . I f h h' 
I T kill == f;;1 dxk(t) dX"'(t)' PI IS t e mass ensIty at tIme t, an ::7 IS a unctIOn a 0 t e IS tory 

of CI(r), - 00 < T ~ t, with a parametric dependence on PI. The principle of material indifference 
requires that the functional '9' satisfies the following relation for an arbitary orthogonal matrix Q: 

(7.7) 

Consider now the following constitutive equation of a simple fluid: 4 

(7.8) 

4 The theory of such a fluid was proposed by Bernstein, Kearsley and Zapas [41. Additional results on the same theory including the derivation of equation (7,8) 
appeared in a recent manuscript by Fong and Simmons [5]. 
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, 
I 
\' 

i. 

where p is a scalar-valued function of the mass density Pt, and U is a scalar-valued function of one 
matrix argument Ct( 7) and one scalar variable t -7, i_eo, U == 0 (~t( 7); t -7) _ Furthermore, 
o is required to satisfy the following condition for an arbitrary orthog~nal Q: 

(7_9) 

Differentiating eq (7.9) with respect to C/(7) and applying the formula No. 12 as li s ted in the 
last section, we obtain 

(7.10) 

where Uc de notes the partial gradient of (; with respect to C1 (7). We are now ready to show that 
eq (7.8), indeed, satisfies the principle of material indifference. Using (7.6) and (7.8), we calculate 
the left-hand side of (7.7): 

Substituting (7.10) into the above equation, we obtain 

=Q~ [~t(7); Pt]QT=R.H.S. of (7.7). Q.E.D. 

It is clear from the above two examples that the advantage of adopting the matrix notation 
and applying formulas in "matrix calculus" lies mainly in the elegance in which higher-dimensional 
problems in continuum physics can be formulated. It is also clear that even though our li~t of 
formulas was prepared for functions of one matrix argument, their applications can be easily ex­
tended to functions of several matrix arguments. 

I wish to thank Dick Kraft, John A. Simmons, Seldon L. Stewart and Justin C. Walker for 

many helpful comments. 

8. References 

[1] Truesdell , c., and Noll, W., The Non·Linear Field Theories of 
Mechanics, Encyclopedia of Physics, II1/3, Ed., S. Fliigge 
(Springer-Verlag, 1965). 

[2] Ericksen, J. L., Tensor Fields, An Appendix in Encyclopedia 
pf Physics, III/I, Ed., S. Fliigge (Springer-Verlag, 1960). 

[3] Newman, M., Integral Matrices (Academic Press (in press)). 
[4] Bernstein, 8., Kearsley , E. A. , and Zapas, L. 1., A Study of 

stress relaxation with finite strain, Transactions of Society 
of Rheology, 7,391 (1963). 

[5] Fong, J. T. , and Simmons, J. A., The scalar pot~ntiaJ of the BKZ 
theory for a co mpressible Auid (to be published). 

(Paper 75B3&4-349) 

105 


	jresv75Bn3-4p_97
	jresv75Bn3-4p_98
	jresv75Bn3-4p_99
	jresv75Bn3-4p_100
	jresv75Bn3-4p_101
	jresv75Bn3-4p_102
	jresv75Bn3-4p_103
	jresv75Bn3-4p_104
	jresv75Bn3-4p_105
	jresv75Bn3-4p_106

