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A nove l approach to the problem of the slit correction in small-angle x-ray scattering is presented, 
based on a matrix inversion method. The integra l equ ati on for the slit correction is written as a Volterra 
equation of the first kind. This equation is reduced to a syste m of simultaneous equations, expressed 
in matrix form. The order of the matrix is equal to th e numbe r of experimentally determined points. 
To obtain these equations, one has to expand the unknown fun ctions in Taylor se ries arou nd each 
point to be subsequently determined. There is, however, a diffi culty inherent in thi s method due to the 
fact that most of the series expansions of the fun ction to be determined lead to a strong numerical 
in stabilit y. However, a ge neral method is developed, which enables us to find s hifting operators leading 
to num erica ll y s tab le systems of equations. The "unsmea ring" of th e experimental data is then performe d 
by standa rd matrix inve rsion proced ures. 

Key words: Conditions for convergence of so lutions; integra l equation of first kind ; shifting operators; 
slit correc tion; slit weighting function; s mall-angle x-ray sca tte ring; st rong num eri cal in stability. 

1. Introduction 

In a previous paper [1]1 method s for solving the integral eq uation for slit correction in s mall 
angle x-ray scattering experime nts were proposed. This equation relates the experimentally 
de termin ed intensity of scatte red ravs to the true scattering intensity as follows : 

= f oo yI(y)W(v'y2 - x2)dy 
I(x) = 2 . 

X v'y2 - x 2 
(1) 

In eq (1), I(x) is the experimentally dete rmined intensity of the scattered light , I (x) is the true 
scattering intensity, x is proportional to the scattering angle [1] , and W(x) is the experimentally 
determined slit weighting function. The dependence of W on the slit collimation system is widely 
discussed in references [2-5]. It may be given either in analytic form or only for di scr ete values of 
its argument. 

I(x) is to be calculated from eq (1), which is a Volterra integral equation of the firs t kind. 
In Reference [1] explicit and implicit solutions have been proposed. The explicit solution is based 
on transforming eq (1) into a Volterra equation of the second kind, which has for its inhomoge neous 
part a constant term, and whose kernel involves an integrated expression of the derivative of the 
experimentally determined slit weighting function W. This solution requires numerical differentia
tion of the experimental data, a process which may introduce serious errors. Differentiation is not 
required in the implicit solution method. Rather, the experimental data enter into the solution 
directly. 

AMS Subject ClassifICation: Primary 45 10. 
1 Figures in brackets indicate the lit erature references at the end of this paper. 
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This paper will deal only with the implicit solution method. In that case, eq (1) is first reduced 
to a system of simultaneous linear equations. These equations are then solved by inversion of the 
resulting triangular matrix. The solution leads to calculated approximate values of I (x) , given on a 
set of N ~iscrete points x=O, x=~x, ... , x= (N-l)~. These are the same points for which 
values of I (x) must be given by experiment. 

One of the difficulties in applying this procedure directly is that it can lead to numerical 
instability. However, one can find an interpolating polynomial for I (x) such that a system of 
simultaneous equations is obtained which is numerically stable. In this paper will explore ways 
to find an accurate interpolating polynomial for the purpose of our computation. However, the 
problem of finding a suitable polynomial can be altogether avoided if another, indirect method is 
employed. That method consists in first obtaining a zeroth-order approximation to the solution, 
based on a single-step method and which is known to be always numerically stable. Subsequent 
improvements to the solution are then computed, using standard perturbation methods to obtain 
subsequent corrections to the zeroth-order approximation. 

The first of these two approaches involves application of multi-step methods which are based 
on existence of polynomial which interpolates the function /(x) at discrete points on a given 
interval of x. The second approach is based on a single-step method, which serves as a starting 
point for the perturbation method. Both approaches are included in a computer program that 
solves the problem of slit correction in small angle x-ray scattering. Four different choices for 
the weighting function (W in eq (1)), have been used in that program: 

1. Constant weighting function (infinite slit) 
2. Gaussian 
3. Trapezoid, and 
4. Data weighting function. 

The details of these computations and an analysis of the results will appear in an NBS Technical 
Note, to be published. In this Note, the Fortran program that performs the required calculations will 
be described in detail. 

2. Algebraic Formulation of the Problem 

The kernel of the integral eq (1) has a singularity at y = x. In order to deal with this singularity, 
we follow the procedure employed in solving Abel's integral equation. Both sides of eq (1) are 
multiplied by xdx/Yx 2 - u2 and integrated over x from u to infinity. The transformed equation,· 
after exchanging the orders of integration is 1 

fO I(x)G(u, x)dx = LX: I(x)K(u, x)dx (2) 

with 

K(u, x) = 2x iVXLU ' W(t)dt 
YX 2 -u2 -t 2 

(2a) 

and 
G(u, x) = x/ Yx2 - u2 

~ 

The total number of experimental data for I(x) is N, which are given at equally spaced intervals~. 

The range of x is de termined in such a way that puttingl(x) equal to zero for all x ~ N~ does not 

affect the solution. In the physical problem we are investigating, the assumption that I(x) = 0 for 
x ~ N ~ implies that I (x) = 0 for the same values of x. Therefore, both the upper limits of integrals 
in (2) are replaced by ~~x. Thus, the function lex) represents a discrete set of function values Ii, 
i= 1,2, ... , N. Both I(x) and lex) may therefore be viewed as N-dimensional vectors. The first 
components 11 and II of these vectors correspond to u = 0; i = N corresponds to u = (N -l)~x. 
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It should be remarked, that consistent with t.h e above restrictions on the fun c tions I (x) and 
/(x), the method of solution presented in this paper is not necessarily res tric ted to the particular 
representations of K (u, x) and C (u, x), which in the problem bein g in ves tigated are given by 
eqs (2a) and (2b). Hopefully, the meth od presented here is general and might be applied to other 
physical problems which can be simulated by eq (2). 

The left-hand side of eq (2) is calculated from known quantities . The res ults are represented 
by the vector h with components 

1,1'£1.1' 

hi = 
(i - I )£I~' 

I(x)C( u , x) dx . (3) 

In our particular problem , C (u, x) is sin gular at x= u and is given by eq (2 b)_ For this reason, 
a direct numerical e valuation of the integral (3) will not be practical, sin ce we will have to sub
divide the integrand very closely at its lower e nd in order to achieve sufficie nt accuracy. To evaluate 
(3) we re place the integral by summation as follows: 

~ 

J x x;(~)dx, == i J j£lX, xl( x) dx ., .,
" Yx--u- j = i (j - I )£lxYx--( ~ - l)- Lh-

Next,/(x) is expanded in a Taylor series around x = j!1x: 

~ 

(4) 

(5) 

AI, A 2 , etc., are the first , second , e tc. derivatives of I(x) e valuated at x= j!1x . These d erivatives 
can be approximated by one of several difference relations. We may use the following finite dif
ference expression: 

::; ::::: ::: ::::: :::::: 

Ai = (/j+I - I j)/fh, A2 = (/j+2 - 2Ij _ 1 + Ij ) / (!1xV 

~ 

Only two derivatives are used in the Taylor seri es in (5); I N+I and I.V+ 2 are set eq ual to zero. After 
I performing the indicated integrations and rearranging eq (5), the res ult is written in the form 

tV ::::: 

hi = ?Yi, ;!j; t=o forj > N. (6) 
) = 1 

or h= AI. A is an upper triangular matrix with entries the coeffi cients Y i,j. The matrix elements 
Yi , j, have different representations depending on the following three cases: (1) j - i = 0, (2) j - i 
even, and (3) j - i odd. In addition, in order to close the system, one has to consider , se parately, 
the cases j = Nand j = N - 1. This is because the last integral, if taken from x = (N -1) !1x, cannot 
include second-order differences if forward extrapolation is employed. Also for the case i = 1 (u = 0) 
we have to avoid the ex pression (i-1)log(i-l). Details will be given in an NBS Technical Note 
describing the computer program. 

We now expand the r.h. s. of the integral equation (2) in terms of the discrete values h as 

J I' tV 
. l (x) K (u, x)dx= L bi,j l j; 

(i - I )£lx j = i 

j > N . (7) 

to obtain a set of sim ultaneous equations 

(8) 
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bi, j(i=l, 2, ... , N; j=i, i+1, ... , N) are coefficients which we have not yet determined. 
These coefficients depend on the functional form of the kernel K(u, x), and, therefore , on the as
sumed form for the weighting function W of eq (1). In addition, they also depend on the coefficients 
of the interpolating polynomial which approximates the function I (x). 

The solution of eq (8) can be expressed in matrix form: 

(9) 

I is the N-dimensional solution vector. h is an N-dimensional vector whose elements were already 
computed from the experimental data and the indicated numerical integrations. The inversion 
of an upper triangular matrix B can be rapidly performed by a back substitution [5], starting with 
the last equation. With this method, the elements Ci,j of the inverse matrix B- 1 are obtained by 
first calculating the elements di,j from the following recurrence equations: 

di,i=l, 

k~j - I ( b ) 
di,j= I - b:":' di,k 

k~ i 

(10) 

and then 

For certain forms of K(u, x), the ke rnel of the r.h.s. of eq (2), there is a repetitious pattern in 
the representations of the elements di,j. In this case, the number of differe nt elements in the matrix 
B is less than (1/2)N(N + 1). In particular, if K(u, x) is independent of u (e.g., when W of eq (2a) 
is constant and therefore, K (u, x) = 2x) the elements of the matrix B (after multiplication by the 
diagonal matrix 

{ 1 o.} . 'J 
L 

depend only on Ij - i I. This has an important practical aspect: computer computations with large 
matrices require storage capacity which is often not available. It is then necessary to employ vectors 
b j (formed separately for each row of the matrix B), or, to compute bi , j each time it appears in 
computations, separately. The problem is, that these computations will be repeated many times. 
However, for this case, only the first row of the matrix, in form of a vector hN needs to be computed, 
and the problem of storing large matrices is avoided. 

Any algorithm in which the calculated value of the increment Ii - Ii+1 depends only on I HI and 
on the step Llx, is called a one-step method. In other words, an expression for Ii may be writte n 
in a closed form involving explicitly only Ii+1 Of course, Ii+1 depends, in its turn , on [i +2 , etc. In 
a multi-step method of multiplicity l, the increment Ii - 1;+1 depends also on I i+2, .. . , Ii+!. It 
the refore follows, that whenever one approximates I (x) in eq (1) by an interpolating polynomial of 
order higher than one, the method of calculating Ii in terms of already computed I i+I, I i+2 , etc., 
will be defined as a multi-step method of multiplicity which is equal to the order of the interpolat
ing polynomial. In a multi-step method, a special starting procedure is required to find the "initial" 
or "starting" values of IN, IN- I, . .. , I N- I. We calculate these starting values by trapezoid rule as 
follows: 

1 l(N- !)t.x 1 fNt.X 
hN- I=-2 . (IN+ I N- dK[ (N-2)Llx, x]dx+ -2/.v K[ (N - 2)Llx, x]dx 

(N - 2)t.x (.\' - 1 )t.x' 

f(N- I)t.X l (N-'+ I)t.x 
2hN- 1=IN- I K[(N-I -l)Ll x, x]dx+IN- I+1 K[(N-l + l)Llx, x]dx 

(.\' - 1- 1 )t.x (N- I - I )t.x 

fNt.X 

.+IN K[(N-l-1)Llx, x]dx 
(N - 2).lx 
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We have l equations and 1+ 1 unknown s. However , a physical ass umption was made that setting 
h = 0 for i > N, implies that Ii = 0 for i > N. For this reason , 

/ JN6.X 
/\' = 2h.\' K[(N-l) ~x,x]dx . 

( .\' - 1)6. .>:" 

Let us divide the integral hi 

J(N- I)6.X 
hi= J(x) K[(i - l)~x,x]dx 

(i - I)6.x 

into smaller integrals , each with a range of integration equal to l~x (except for the las t inte gral). 
For this purpose, le t us defi ne 

JN6. X, 
K i,j == 

(j- I )6..1' 
l (x) K [ (i - 1)~ , x ] dx (j = i ,i+ l , . .. ,N- l) (11) 

so that Ki, i = hi. 
hi is th e sum of diffe re nces of the Ki,j as follows: 

hi = (Ki, i - Ki, i+/) + (Ki, i+1 - K;,i+21) + . 

(In thi s express ion, the numbe r of brac keted term s is equal to th e neares t intege r not exceeding 
(N - i) /l. In additi on, a term is added to c lose the sys te m so that hi= Ki , i.) Next, in e ach of the 
difference equations 

jU+I- I)6.X 
K;,j - Ki , j+l= I( x )K[ (i - 1)~ , x ]dx 

V- I )6.x 
(12) 

we re place le x) by an interpolating polynomial having the values h = /(xd on a set of points Xk . 
These points might be taken as Xk= (j-1)~x, . .. , (j-l-l)ilx. In forward interpolation, the 
interpolating points are the p points j - 1 + In, j + In , .. . , j + In + p -1, with p ~ l . m de notes 
the point from whic h the differe nces are computed . W e will always have In < l , so that the point 
of refere nce lies within the range of the integral (12). The polynomial Q( x) which approximates 
and replaces le x) in eq (12), in te rm s of forward differences [6], is 

Q(x) = i ((x/~)-j-m+ l)l1qIj+m. 
q=O q 

(13) 

In eq (13), il is a forward difference operator. Thus, for q = 1, ilIj+ln+ 1 = I + 111+1 - I j+ III , e tc. 
~ ' lj+ lII= ~Ij+1n. 

Substituting eq (13) in eq (12), integrating and rearranging, the result is formally writte n as 

(14) 

CXi , j+k( k = O, 1 , .. . , p) are th e coeffi cie nts res ulting from the above steps taken in order to 
approximate eq (12) by eq (14). 

In the formal solution, writte n in matrix form as I = B- 1 h , the elements of the matrix B can 
be expressed in terms of CX;,j of expansion (14). 

Before proceeding, le t us s top and see what will happen to our computations with I (x) of eq 
(12) being replaced by polynomial Q(x), for the specifi c case of m = O and l = p = 2. In thi s case, 
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all three interpolated values of Ii are within the range of the integral of eq (12). Let us assume that 
K(u, x) ex x . This is the case whe n the weighting function W is constant (W= constant is descrip
tive of an infinitely-wide sli t in small angle x-ray scattering). For i ~ 1, the ele ments of a typical 
row of the B matrix are found to be 

The coefficients O:i.j of eq (13) are: 

O:i'i =}; O:i' i+ I =~ (i+l); o:=~ (i + 2). 

The absolute values of the e lements of the inverse of the B matrix can be shown to grow exponen
tially as one moves away from th e diagonal elements. Consequently, th e numerical calculation s 
are affected by strong num erical in stability. 

3. Stability Conditions for Integral Equations of First Kind 

3.1 . General Theory 

Consid,er fir s t the differe nce eq (14) written for Ki,i- K i,i+1 and for p = l _ The associated 
homogeneous equation, ob tained by setting 

Ki . i-Ki, i+I = O , is 

(15) 

Solution of (15) can be found for every c hoice of starting va lues lx, I I - I,. ., /1'-1+ 1. (These are 
computed using the trapezo id rule and the one-step method.) In particular , if these starting values 
are all equal to zero , then there corresponds a trivi al solution Ii = 0 for every i . 

Consider first a simplified homogeneous equation for the starting values of I , with const(lnt 
coefficients, replacing eq (15), 

0:"/.1 - 1 + 0:11.1 - 1+ 1 + . .. + 0: 11 .1' = 0. (16) 

We determine the conditions for convergence of solution of eq (16) for N ----> 00, while re tamm g 
finite value for N t1x. That is, the intervals between success ive points becomes smaller and s maller 
as N increases, and, as N ----> 00, t1x ----> 0. If the multi-ste p method for s olving eq (16) converges, 
then it will converge also for the special value of /1 = 0. 
Therefore, 

lim 11-' = 0, I-t =N, N-l, ... , N- / (17) 
.6.x- 0 

is a condition for convergence of multi-step method for solving eq (16). Accordingly, if condition 
(17) is not satisfied, the solution of the general homogeneous eq (15) wi II diverge in the limit of 
t1x----> 0. This divergence implies the divergence of the solution of the inhomoge neous eq (14). 
The procedure to determine the conditions for convergence of solution of eq (15) in the li mit of 
t1x ----> 00 ° (or N ----> 00) , is identical with the one employed in connection with numeri cal solution of 
difference-differential equations [7], and proceeds as follows: The homoge neous eq (15), with con
stant coefficients, is expressed as: 

(18) 
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In eq (18), we substitute 

Equation (18) becomes afte r divi sion by common factor 'Y} -(i+m+/): 

(19) 

Therefo re, 'Y} mu st be a roo t of the c harac teris ti c polynomial ~('Y}): 

(20) 

We require that the multi -s te p method be convergent. The necessary condition for the con
vergence of the gene ral multi-step me thod for our integral e quation of the firs t kind is the sam e 
as the condition for the convergence of diffe rence equations of fi rst orde r [8], a nd is s tated by the 
followin g: 

THEOREM: A necessary condition for the co nverge nce of the multi-s te p solution (14) for in 
tegral equation (1) is tha t the mod uli of all roots of the associated polynomial'0('Y}) do not exceed 
unity, and that the root of modulu s 1 is s imple. 

Th e condition imposed on 0('Y}) is also th e co ndition of stabilit y [9]. Violation of thi s condition 
leads to "s trong" numerical ins ta bilit y. Thi s insta bility manifests itself by th e e rror growth a t a 
fixed point x= (i -l) llx as the spacing be tween th e points decreases. Strong ins tabiJity is the refo re 
charac terized a s a pointwise phenomenon, as it invol ves e rror growth at fixed points as the inte rval 
between th em decreases. In contradi s tinc tion to thi s, a " weak" ins tab iJity, to be di scussed sub
seque ntly in connection with even-odd oscillations in computed valu es of Ii, is associated with the 
truncation error, and exists e ven when the method e mployed is co nve rgent. Since the weak ins ta
bility is associated with th e total range of x, while keeping th e inte rval be twee n s uccess i ve points 
co nstant , th is instability is a lso known as a s tepwise phenome non [7 , 10] . 

Le t us de mon stra te the co nce pt of s trong in s tabilit y by a co nc re te exa mpl e. Assume that 
1 = 2 and m = O. Also, le t f( (u, x) a: x. so th a t K iJ - Ki,jH = h i - hi+ ~. We subs titute e q (13) int o eq (12) 
a nd int eg rat e. Since th e r.h .s. of eq (12) is a func tion ofj on ly, (Xi.j, th e e le me nts of the ma tri x B , 
are sho wn to be equal to j tiU- il for j ~ i a nd to ze ro for j < i. tiU- il is a fun c tion of j - i onl y. If, in 
addition , p = I , then , for i ;;> 1, 

(2 1) 

where 

a nd 

For a par ti c ul ar case wh e n (Xu = (X~ (as in the exam pi e di scussed at th e e nd of c ha p. 2), t he el e
me nts b*i,j of the in ve rse matrix B - 1 ca n be ex pressed direc tl y in te rm s of th e roots of th e c harac
te ri stic pol yno mial ~(rl )' eq (19). One obtain s 

ib*i , j = [f- (- (X I + vi (Xf - 4(X I (Xu) J "+ [f (- (XI - vi (Xi - 4(XI(Xu) J" 
(j > i ) (Xu (Xu (22) 

a nd b*i , i= l /i. 
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In eq (22), k = j - i. When a~ oF- ao, the relationships between b*i,j and the roots of eq (19) are 
more involved. However , for sufficiently large k, the leading term in the expression for b*i, Hi can 
be show n to be equal to 

For the case of K(u , x)ccx, the following equation is derived 

'.V 

Ii - Ii+t = 2. b'\ Jhj - (i l (i + 2) )hj+t]. 
j = i 

(23) 

Whe n k beco mes infinitely large Ii will remain finite only if lim b*i ,j converges. This happens 
U-ij-->oo 

Gnly when both expressions in parentheses in eq (22) do not exceed 1 in their absolute values. This 
implies that the moduli of the roots of the equation 

0(YJ) = YJ~+ alYJ+ a~= ° 
do not exceed unity. This simple example demonstrates the intimate connection between the root 
condition and the stability of the multi·step method. 

In the genera l theory of stability of the difference differential equations, the necessary and 
sufficient conditions for the convergence of the multi·step method require, in addition to the root 
condition , also the satisfaction of the consistency condition [9]. This condition requires that, in 
order that an expansion in discre te variables (e.g., our expansion eq (14)) be a good approximation 
to the original equation which it simulates, certain restrictions must be imposed on the coefficients 
in such expansion. In our problem the consistency condition requires that the sum of the coefficients 
in eq (18) be equal to L: 

r= i+ l 

2. a,. = t. (23) 
1'= 1 

Since this condition is always satisfied, the root condition becomes both the necessary and the suf· 
ficient condition for the convergence of the multi-step method. We also see why the method for 
t.he determination of the starting values of 1;, based on a one-step method, is always stable and 
convergent : The polynomial 0(YJ) is th en of the first order with its root equal to 1. 

3.2. Determination of Stability Conditions 

Our purpose is to obtain an approximation to the integral 

iU+ I - 1)!lX 

I( x) K[ (i -1)llx,x]dx = Ki ,i. - Ki ,i+/ 
(i - I )..'I x 

(24) 

in terms of finit e differences, which satisfies the stability conditions. These differe nces can be re
ferred to the point x = (i -1) Ilx, to the point x = illx, and so on. Let the point ofreference be located 
at x = (i + In -1)llx, In = 0 , ... , t. We defin e a shift (displacement) operator E by 

(25) 

Applying the shifting operator to the point of r eference, one obtains 

(26) 

t is a new variable, defin ed by t = xl Il x - (i + In -1) , and it measures the di stance from the point of 
reference. Therefore, 
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I(/ - m) 

Ki,i - Ki, i+1 = bu; K (i*, i* + t *+ m *) E - I [Ii+lII - ddt. 
- Ill 

In eq (27) and in subsequent equations, i*= (i-l)llx, t* = tllx, and m * = mllx 
t* + m*) = K[ (i -l)llx, (i+t + m - l)llx]. Th e operator E can be expressed in 
the three differe nce operators, a, V , and 8 whi ch a re defined by 

aIj = Ij+1 - Ij (forward differe nce operator), 

AIj = Ij - I j _ 1 (backward differe nce ope rator), 

8Ij = Ij +I/2 - Ij - I/2 (ce ntral difference operator). 

Th ese operators are related to E through 

For the backward diffe re nce operator a we have the followin g eq: 

II- Ill 

Ki , i - Ki, H/= llx K (i* , i * + t * + m *) [(1 - a )- 'Ii+m- I]dt . 
- 11/ 

For forward differe nce operator a we have 

Ki, i- Ki , i+l= axII- 1II K(i *, i *+ t *+ m *) [O + 6. )'l i III - I]dt. 
- UI 

(27) 

and K(i *, i* + 

te rms of one of 

(28) 

(29) 

In order to derive a n equation [or Ki , i - Ki , i+l for central differe nces in terms of diffe rence 
operator 8, we have [or express E in term s of d. Let E = eo, and , the refore, 8 = 2 sinh (D /2). Thus, 

. ij3 3~8 ;; 
D = 2 SJl1h - 1 (8/2) = 8 - 223! + 245! + ' 

Retaining terms involving no higher operators than 8 2 , we have E - I = 1- 8t + t 28 ~/2. 

Therefore , 

II - III • [( t28 2 ] 
Ki , i-Ki, i+2= llx _ /II K(i*, i* + t*+ m*) 1-8t + 2 ) 1i+ 1II - 1 dt· 

(30) 

(31) 

Le t us now investiga te a few cases with simplified kernels , and find out whi ch ones lead to numer· 
ically stable solutions. For the kernel K (i*, i* + t * + m *) we again adopt the form which is descrip· 
tive of the con s tant weighting fun ction in s mall·angle x·ray scattering, that is, K (i *, i* + t * + m *) 
= (i + t + m - 1) llx. For the first case le t us take the form is which the approximating polynomial 
agrees with I (x) at x = (i - l)llx, ... , (i+ / - 1)llx . We ta ke / = 2, and m = 2. In order that all 
points will fa!] within the range of the integral , we must use the V (backward) operator. Consider 
i ~ 1. The root·de te rminin g equation is 1/3 (x2 + 4x + 1) = O. (The coe ffi cient of x 2 is the coefficient 
of I i, th e coefficie nt o[ x is the coeffi cie nt of I i+l , and the last term is the coefficie nt of li+2.) We 
detect immediately that thi s form leads to a divergen t solution . (Root condition is not sati sfi ed.) 
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Let us now consider the case with central differences centered about the mid-point of the in
tegrand. Let 1=2 , and m= 1. From eq (31), the following root-determining equation is derived: 

1/3x2 + 4/3x+ 1/3 = ° (32) 

and the method is unstable. It is interesting to notice that this particular case, which is the most 
obvious one since it is symmetric and does not involve odd powers of t (in the integrand of eq (31), 
leads to an equation which is equivalent to the extended Simpson rule for numerical integration. 
The same result would be obtained if we evaluated the integral as 

(NflX f (il1x,x) dx = 1/3 (f;,;+ 41;,;+1 + 21i ,i+2 + .. Mx (33) 
JiflX 

withf(il1x ,x) = K(il1x,x)/(x) , etc. 

At this point, we are led to the conjecture that the most straightforward cases, namely the ones 
that involve points located within the range of the integral, lead to unstable solutions. If the above 
restriction is removed, stability conditions may be satisfied. For example, in the case with m = 2, 
(the finite differences refer to the point x = (i + 1 )l1x) we have, forl = 2 and the a operator, two fixed 
points which we located outside the range of the integral. The root condition can be shown to be 
satisfied. 

The method that we find to be the best for our purposes is the one in which the a operator is 
used and the absolute values of the coefficients of ar , r= 1 ,2, . . ., p, are made as small as possible. 
This can be achieved by selecting the point of reference to be located in the middle of the inte
grand, i.e., by taking m = 1/2. In this case, one is justified in retaining only the first few terms in the 
expansion of (27). We have, for 1= 2, 

(34) 

For K (i* ,i* + t*) = (i + t) I1x , and i ~ 1, the coefficients of J;+j(j= 0, 1 or 2) in the expansion (34) , 

after integration, are identical to the ones employed in Nystrom's method [I1J. Since the root de
termining equation is 

7/3x2 - 2/3x + 1/3 = 0 , (35) 

the root conditions are satisfied. We found that, of all the multi-step methods , the above method is 
the most accurate for our purposes. Part of the computer program for the slit correction in small
angle x-ray scattering is based on this algorithm. 

In conclusion, to insure stability, the differences in the expansion of the shifting operator should 
be referred to the point (Ii) to be calculated and forward differences should be used. We also con
jecture that the central difference method, which is the most accurate one in solving ordinary 
difference differential equation, is always numerically unstable. 

The following qualitative considerations indicate that the stability conditions are only slightly 
altered by the actual form of K [(i - i) I1x, x] and that a non-constant weighting function relaxes 
the condition for the attainment of the stability conditions. Consider K(u, x)=xF( Yx2-U2 ) , 

(which is the form used in actual computations of slit corrections). F is related to the weighting 
function W by 

(36) 



Now, let us form a matrix of b; ,j, wh ere b; ,j are the coefficients in the approximation of 

LVLl .I~I (x)F(V\2_u2)dx by an expansion ± b;j j . 
II j~ 

Consider, for example, a trapezoid form of W(x). It can be shown that in each row of the matrix 
B = (b i ,j ) , bi ,j will decrease as j increases, as compared with the case of constant W. This will 
result in a decrease of th e ratio of the first to the las t coefficie nts in th e root-determining equation, 
and, therefore, in a decrease in the value of the modulus of the larges t root of the polynomial, eq 
(20). 

Thus , the s tability conditions severely restrict us in selecting the best procedure for nume ri cal 
computations of a system of simultaneous equations which replace the origi nal integral equation 
of the first kind. Thi s stability problem can be almost completely eliminated if the origi nal integral 
equation of the first kind is transformed into an equation of the second kind, by differentiation. 
Then eq (21) becomes 

f.l'Ll.I' . d dhu 
- K (u , u)J(u) + I (x) -d K (u,x) dx = - 1-' 

u u ell 
(37) 

If K (u , u ) = 0, th e differe ntiation is repeated , until one obtain ed 

d " I -I ,,1«u,x) "'" ° e u 
x = O 

Whe n eq (37) is replaced by a set of s imultaneous lin ear equati ons, the prese nce of th e first term 
in the 1.h. s. of eq (37) dras ticall y relaxes th e res tri ctions imposed by stability co nsiderat ion: 
Th e reason is that the presence of thi s term in creases th e values of th e di agonal terms in th e B 
matrix. This, in turn, te nds to decrease the modulu s of th_e larges t root of eq (19). For thi s reason, 

it is preferable to transform eq (2) into eq (37) whenever I (u) a nd K (u, x) are give n as analytical 
fun ctions. However, in our problem th ese functions are give n as se ts of points based on experi
me ntally determined data. Their differe ntiations would introduce a further uncertainty in the 
co mputed results. The method of solution we developed is to be prefe rred only if the num erical 
differentiations of experimental data are to be avoided. 

4 . Perturbation Methods 

One would expec t that, of all difference approximations to derivatives , the ones based on cen
tral differences would lead to the most accurate results. This would be the conclusion based on 
formal identities between the derivative operator Dr, defined by 

D'I= (D'I( x) ) 
, dx" x = (i - 1) Llx (38) 

and the various shifting operators .:1,. , ~,., and iV 

From E = eD (in unit s employed in this work, based on arbitrary se tting of Llx = 1) we have, to the 
first approximation, 

(39) 

Equation (39) shows the magnitude of the error involved in replacing an r-order derivative by various 
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r-order differe nces. It is the method, based on central differences, which leads to the standard inte
gration formulas. For example, with l = 2 and p = 2, the coefficients in expansion (31) are the same 
as in Simpson 's rule for numerical integration. With l = p = 6, Weddle 's rule is obtained. Unfortu
nately, the direct solution of the integral equation, based on the central-difference method , was 
shown to be numerically unstable. If, however, we wish to use the central difference method, we 
will have to employ other, indirect approaches to the algebraic solution of the integral equation. 
These approaches will be discussed now. 

We start with 

j = :V 

L 
j= i, i + I , .. 

j = N (U-1+ 1/2)!lX 

bi . }j "" j = i, i+ I '~21' ... Ij J(j-I-I/2)I1X K[(i-1)~x, x]dx 

1 (j -1+ 1/2)l1x 
+ 1/2 [Ij+1 -2Ij + IH ] (x- j-1)2K[(i -l)~x, x]dx + ... = hi . 

(j - I - I/ 2)I1:r 
(40) 

In matrix form, BI = h. Expand B = Bo + B2 + B.j + . . .. The elements of the matrix Bo , bo(i , j), 
are 

1
(j - 1 + 1/ 2)11~' 

60 (i, j) = K [ ( i - 1) ~x , x] dx 
(j - I-I/2)l1x 

forj = i, i + l , i+2l, . .. and 6o(i, j) = 0 for all other values of}. B2 is the matrix of b2(i , j), and 

lU+I' Z- I)I1 X 
62 (i,j) = - [x-(j-l)~x]2K[(i-l)~x,x]dxforj = i, i+l, i + 2l, 

(j - 1/2-1)l1x 

1 (j - 1+1/ 2) tJ.~' 

b2 (i, j) =+ (x - j~xFK [(i -l)~x, x]dx 
(j - I - I/ Z)I1 :L' 

for j = i + 1, i + l + 1 ... , 

lU- 1+1' 2)I1X 
6z(i, j) = 1/2 [x- (j-1)~x]ZK[(i-1)~x, x]dx 

(j - 1- 1/2)l1 x 

for j = i-I and 62 (i, j) = 0 for all other values of j. Similarly expressions for b4 (i , j), etc., can 
be formulated. Let the zeroth·order solution be 

Bol(O)= h. (41) 

Application of perturbation theory leads to the following; 

(42) 

(43) 

Equating equal powers of A. in equation BI = h leads to the following expressions for I(I) and 1(2) ; 

(44) 

and 

(45) 
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Since the zeroth order solution by de finiti on , sa ti s fi es the conditions for nume ri cal s tability, the 
eleme nts of the matrix B'l l are bounded. S pecifica lly, for K [( i - l ) ~x, x ] = x a nd 1= 2, BOI is 
is of the form 

the matrix B2 is 

B - I = o 

B 2=1/6 

1/2 
o 
o 

-2 
2 
0 
0 
0 

o 
1/4 

o 

4 
-4 

3 
0 
0 

- 1/2 
o 

1/6 

-6 
6 

-6 
4 
0 

o 
- 1/4 

o 

8 
-8 

8 
-8 

5 

We obtain for th e correc tion term , f \I), the followin g re la ti on: 

o 
o 

- 1/6 

-10 
10 

-10 
10 

- 10 

(46) 

Thu s, the correc tion to the ze roth order approxima ti on is evaluated by calcula ting the seco nd order 
differe nces, 82 [(0) of th e ze roth·orde r solution, a nd s ubtractin g 1/12 82[(0) from [(0). 

I I / 

The above sche me does not exhaust all possibilities in applying th e pe rturbati on me thod. 
One can use the zeroth·order solution based on a trapezoid rule. The B 2 matrix will then be con· 
s tructed differe ntly than th e one give n in the above example. However , a typi cal row of the inverse 
matrix B- 1 (again , calculated for K [ ( i - 1) ~x, x ] == x and for i ~ 1) will be 

2 
-:- [1, -2, 2,-2, ... ] 
t 

resulting in eve n-odd oscillations in the computed values off; . This is also known as weak num erical 
ins tability. This weak instability can be greatly reduced , if certain averaging procedures are 
adopted. F or example, one can replace, nl )= L f3 *(i , j)/j, where f3 *(i , j) are the ele ments of ma-

j - i 

trix BOI B2 , by Y(J) =DI, where 8(i , j) , the (i , j) element of the matrix D is given b y 8(i , j ) = 

4 [f3*(i, j) + f3 *(i+ 1, j) J. (47) 

In summary , two methods are at our di s position: 
(1) A multi-step me thod with forward differences , referred to the point bein g co mputed and 

ex tended to the points already co m puted. Thi s me thod requires precalcula ted "star ting" values. 
This number of startin g points is us uall y equal to the multipli city of the method. These starting 
values are mos t conveni e ntly co mputed usin g a single-s tep method. 

(2) A single-ste p method used as zeroth-order approximation. Higher-order approximations 
are the n co mputed b y a perturbation method. The advantage of thi s procedure is in employm ent of 
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the more accurate central differences replacing the various derivatives. This method, if employed 
in combination with certain averaging procedures, tends to remove some of the weak instabilities 
(in form of even-odd oscillations) from the zeroth-order solution. 

5 . Some Computational Details 

The two approaches outlined above, one based on a multi-step method and the other based 
on a single-step method serving as a zeroth order approximation in perturbation method, were 
employed in writing a general computer program (in Fortran) for the problem of numerical solution 
of eq (1). The first approach employs eq (34) as a starting equation for the actual computations. 
This equation is employed to the approximation that only terms up to ,::l2 are retained in the ex
pansion of the bracketed terms of eq (34). In the second approach the corrections to the zeroth 
order solution (which is given by eq (41)), were computed, by using eq (46) and also by performing 
averaging indicated by eq (47). 

In actual computations, four different forms for the slit weighting function were used: 

1. Constant weighting function (infinite slit) 
2. Gaussian 
3. Trapezoid, and 
4., Data weighting function. 

For the first three functions, parameters which describe them have to be supplied in the form of an 
experimentally determined set of values taken at a given constant interval. The kernel of the 
integral equation (given by eq (2a)) for these first three functions, is evaluated analytically. More
over, all the required moments of the kernel (that is, integrals of the form JxtK[(i-l)Llx, x]dx, 
are also evaluated analytically. For the last assumed form for the weighting function, however, 
the computations of the kernel of the integral equation and its moments, have to be performed 
numerically. The time required to perform the entire "unsmearing" of the data is considerably 
longer for the case of the data-weighting function, than for either one of the other three functional 
forms of this function. 

To our knowledge, the slit-weighting functions (1- 3) are the only functions, which describe 
the actually measured weighting functions reasonably well, and which are also analytically 
tractable. 

The results of the computations were subsequently tested by an inversion of the calculation 

procedures as follows: Using the calculated values of I, the values of I were recalculated and 
compared with their original values. The accuracy of the numerical procedure was tested both 
with various trial functions for which analytical methods for solution of the original integral equa
tions are available, and with experimental data taken from various measurements. Both approaches 
to the solution of the starting integral equation were tried with satisfactory results. 

The author thanks R. J. Rubin for helpful discussions and suggestions in preparation of this 

publication. 
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