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The time dependent rotation of o ne orthogonal coord in ate sys te m with respect to a fix ed on e is 
considered in the parametrization based on the effec tive ax is and angle of th e rota tion , a parame tri ­
zation which has rece ntly been used to discuss the irreducible rep resen ta tion s of the rotat ion group. 
Th e me thod of the int rinsic vec tor is used to de rive th e eq uations of motion fur th e in s ta ntan eous 
e ffec tive ax is and angle. A ne w represen tat ion of the angul a r ve loc it y is obta in ed in a rotatin g or· 
thogonal coordin ate sys te m gene rated by a unit vector along the e ffective ax is, and a ne w geometri cal 
interpretation of the effec ti ve angle is give n. 

Ke y words: A ngula r ve locity; effec tive ax is and an gle of ro tation; intrins ic vector; kin e mati cs of a 
ri g:id body; rotat ion g roup ; s pa ti a l rota ti on. 

1. Introduction 

The most common parametrization of the rotation group is by means of the Euler angles 
[l, 2].1 Recently , there has been some interest in the parametrization of thi s group by the direct 
use of the effective axis and angle of a rotation. Moses [3 ,4] has calculate d the irred ucible represen­
tations in that parametrization, and [5] has computed the orthogonality relations between the 
matrices of any two such irred ucible representations. Carmeli [6] has ob tained the same results 
us ing a technique which differs from Moses', and which is ori gi nally due to Weyl. The outstand­
ing feature of these results is their remarkable s implicity, compared to the corresponding results 
in the parametrization through the Eulerian angles. 

The most familiar use of the Euler angles is of course in the description of the rotational 
motion of an orthogonal coordinate syste m. The ins tantaneous angular velocity is related to the 
time rate of change of the orien tation of the rotating coordinate syste m by the well known equations 
[7] 

de rI-. + 0J!. . e . 
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where W I , w~, and W:I are the compone nts of the angular velocity in a space-fixed coordin ate sys­
te m, and ~, e, and t./J are the Euler angles whi ch describe the in stan taneous orientatio n of the 
rotating coordinate system in th e spaced-fixed system. If w(t) is regarded as known , eqs (1) are 
the differential equations governin g the time develo pm ent of th e orientation of the rotating system. 

AMS Subject Cla.ssijicat,ioll : Primary 2080. 
>I< An in vilI'Cj paper. 
** Present address: Department 1)- 81 , The MITRE Corpora tion, Bedford , Mass. 01730. 
I Figures in brackets indica te the literature references at the end of this paper. 

165 



With the increased use of the effective axis and angle to parametrize a rotation, it is of interest 
to examin e the relation between the instantaneous angular velocity of a rotating coordinate system 
and the time development of its orientation when the orientation is specified by an effective axis 
and angle. Such an examination would give additional insight into this simple, yet rarely used 
parametrization of rotations. That examination is the purpose of this paper. 

In section 2, the method of the intrinsic vector [8, 9] is used to derive expressions for the time 
rate of change of the effective axis and angle of rotation, induced by the angular velocity. A de­
composition is then given of the angular velocity in an orthogonal set of vectors generated by a 
unit vector along the effective axis. This decomposition is the analog of eqs (1) in the parametriza­
tion based on the effective axis and angle. It is used to construct a new geometrical interpretation 
of the effective angle of rotation. The question of the extent to which the motion of the effective 
axis differs from the rigid rotation of an axis fixed in the rotating system, is briefly considered. It 
is shown that the motion of the effective axis fulfills the condition of rigid rotation only in the simple 
case when the rotating coordinate system rotates about a fixed axis. 

b' I 

w 

FIGURE 1. Instantaneous orientation of a coordinate system 
rotating with respect to a fixed one. 

2. Time Development of the Orientation of a Rotating Coordinate System 

We consider a pair of co-original orthogonal coordinate systems 5 and 5' , of the same handed­
ness, specified, respectively, by the triads of unit vectors (b" b 2 , b 3 ) and (b~, b~, bD, and take 
the point of view that 5' is rotating with respect to 5. The situation is shown in figure 1, in which 
w represents the instantaneous angular velocity of 5'. At any instant t the triads {bi} and {b;} are 
linearly related by the orthogonal rotation dyadic A( t) according to the equation 

b;Ct)=bi'A(t) = A(t) ·h i , (2) 

where A is the dyadic conjugate to A. The matrix elements of A in the coordinate system 5 are 
given by 

(3) 
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The time derivative of A and the instantaneous angular velocity are related by 

dA - -
- = wXA = (wXI ) 'A 
dt ' (4) 

in which 1 is the unit dyadic . Using the fac t that the conjugate of w X 1 is - w X I, and the orthog­
onality of A, 

-
A'A = A'A = I , (5) 

we may write eq (4) as 

dA 
di = - A' (wXI) . 

(6) 

In matrix ele me nt form , thi s equation is 

dAij . 
dt = AikEkJmWm, (7) 

where Ekjm is the co mple te ly antisymmetric Le vi-Civita symbol. 
The effective axis and angle of rotatIon for time t are extracted from A(t) by computmg the 

trace of A, tr A, and constructing the intrinsic vector [9], 

Vi = Eijk" A jI,' (8) 

These quanti lies are re lated to the e ffe c tive angle of rotation a, a nd a unit vector n a long the 
effective axis of rotation by the formulas 

tr A = I + 2 cos a, (9) 

V=2n sin a. (10) 

The hand edness of the description of a with res pect to n is fixed by eq (10) to agree with th e co mmon 
handedness of the coordinate systems 5 and 5 '" 

By differentiating eq (8) with respec t to t, using eqs (7) and (10) to evaluate dAjI.! dt and dV Idt 
respecti vely, and making use of the identity 

we arrive at 

dn da 
2 -/-sina + 2n -d cos a = B ' w , 

c t t 
(12) 

where the dyadic B is given by 

-
B= (1 +2 cos a)l- A. (13) 

Equation (12) is the starting point for computing the equations of motion for nand a. 
We first take the scalar product of eq (12) with n. Since n is a unit vector, it is perpendicular 
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to its time derivative. Furthermore, from Euler's theorem [10] 

n' A == A . n= n. 

The res ult of dotting eq (12) with n is therefore 

dO' 
2 - cos a = (1 + 2 cos a) w . n - W • n 

ili ' 

=2w' n cos a. 

Cancelling the common factor 2 cos a, we have 
da 
di=w' n . 

(14) 

(15) 

Equation (15) states the compellingly simple, and intuitively almost obvious result that the instan· 
taneous rate of change of the effective angle of rotation, is given by the component of the instan­
taneous angular velocity along the instantaneous effective axis of rotation. 

We now inser-t the trigonometric representation of A [11], 

A = nn+nXlsina-n X (nXI) cos a, 

into eq (13) and use the result to evaluate B . W in eq (12). After replacing da/dt by W • n and collect­
ing similar terms we have 

dn • 
2 dt sin a+ n X w sin a+ n X (n X w) (l + cos a) = 0. 

(17) 

This may also be written 

dn 1 [ a] - = - - nXw+nX(nXw)cot-· 
dt 2 2 (18) 

There is no actual singularity at 0' = 0 in eq (18) since for 0' = 0, nand ware parallel. 
Equation (15) and eith~r of eqs (17) and (18) constitute the coupled equations of motion for 

the effective axis and angle in terms of the angular velocity. The inverse problem to that of obtaining 
these equations, is the problem of constructing the angular velocity from n, a, and their time deriva· 
tives. The construction is most readily carried out by formally solving eq (12) for w. This requires 
the dyadic B- 1 which is inverse to B. To test whether the inverse exists, we compute det B, which 
is most easily done by considering the special form of A (t) when n(t) instantaneously lies along 
one of the coordinate axes, say, the h 3 axis. The result of the computation is 

det B= 4 cos a (cos a+ 1). (19) 

t:quation (19) shows that B- 1 does not formally exist when a is 1T/2, 1T, or 31T/2. In constructing 
B- 1, we shall therefore assume that a is not equal to any of these special angles. Nevertheless, 
the final result for w will be see n to be well defined for all a. 

Using the trIgonometric representation (16), and the identity 

n X(n X I) == nn-I, 

168 



we may write 8 in the form 

whe re 

. a 
u = sln 2 ' 

a 
v = cos 2' 

We then assume an expansion of 8- ) of the form 

8- 1 = PI + Qnn + Rn X I , 

and compute P, Q, and R from the require me nt 

The res ults are 

8' 8 - 1 = 8 - 1 • 8 = I. 

1 
P =-i' 

2 

2 U Q=-- , 
v2 - u2 ' 

1 U R =--. 
2 v 

The expression for 8 - 1 in te rms of full a ngles is 

=- nn + n X I . 8- I 1 [I + 1 - cos a si n a ] 
2 cos a 1 + cos a 

. -----------------, 

(20) 

(2 Ia) 

(2Ib) 

(22) 

(23) 

(24a) 

(24b) 

(24c) 

(25) 

If we now multiply eq (12) from the left by 8 - ), and note that n is perpendicular to its time derivative, 
and that n X I' n = 0 , we arrive at 

(26) 

Equation (26) is th e analog of eqs (1) in the parametrization of the rotation through n and a, and gives 
the expan sion of w et ) in the instantaneous mutually orthogonal trio of vectors n , dn/dt, and 
n X dn /dt. 

An in terestin g geometri cal interpre tation of the angle a emerges from eq (26). To arrive at 
this interpretation , we first construct the unit vectors which are parallel to dn/dt and n X dn/dt 
respectively. The le ngths of these vectors are equal and, from eqs (15) and (18), are given by 

(27) 
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The quantity [w 2 - (da/dt)2J1 /2 is the component of w perpendicular to n. If f3 is the angle between 
wand n, we may write 

We now define three mutually orthogonal unit vectors q1 , q2, q3 as follows: 

dn/dt 
q1 ~ Idn/dtl' 

q3 ~ n. 

In terms of these vectors and the angle f3 in eq (28), we may rewrite eq (26) in the form 

w = w( q1 sin f3 cos 1 + q2 sin f3 sin 1 + q 3 cos f3). 

(28) 

(29a) 

(2%) 

(29c) 

(30) 

From eq (30) we see that the angle a/2 is the azimuthal angle of w with respect to the plane of ql and 
q3 , that is, the plane of nand dn/dt . This interpretation is illustrated in figure 2, which shows the 
polar representation of w in the coordinate system formed by (qt, q2 , q3). 

w 

f3 

~----------------------~-. q2 

a 
2 

/ 

n x dn/dt 

I dn/dt I 

FIGURE 2. Polar representation of the instantaneous angular velocity in a rotating 
coordinate system generated by a ullit vector along the effective axis. and by the 
time derivative of that unit vector. 

The condition that the effective axis rotate rigidly with 5 I IS 

dn Yt = w X n. 
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From eq (18), it is clear that in general, the motion of n departs significantly from a rigid rotation. 
The condition (31) is so restrictive that th e only class of motions of 5' for which it is obeyed is that 
for which n is fixed in both 5 and 5', with 5' co nsequently rotating about the fixed direction of n. 
This can be shown directly from eq (26), but is most easi ly shown from Euler's theorem. Differentiat­
ing eq (14), and making use of eq (6), we have 

A' (~ - w X n ) = ~~. (32) 

From eqs (31) and (32) we see that the condition that n rotate rigidly with5' leads to 

dn = 0 
dt . (33) 

Equation (26) th en reduces to 

da 
w = n -- ' 

dt 
(34) 
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