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Let f be an entire function and let p =1 and

om
1(1, r)={f | fO (re i) \"(16} i
0

Let C > 0. If there exists a positive integer N such that for k(=0,1,.. ., N,

il(k+j, Cil(k-kj,r).
j=0 J=N+1 J!

(', ) +1+log (2N) !}.

for all sufficiently large r, then fis of exponential type not exceeding ,{2 log <1:L
If this condition is replaced by related conditions, then also is of exponential type.
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1. Introduction
An entire function f(z) is said to be of bounded index if and only if there exists a non-negative

integer N (independent of z) such that

) (z) £ (
! zlzlk!z)l (L.1)

max ¥

0<j<N J:
for all £ and all z, and the smallest such integer N is called the index of f(z) ([1], [4], [5]).} It is
known that a function of bounded index N is of exponential type not exceeding N+ 1 [6] but that
a function of exponential type need not be of bounded index. In fact any entire function having
zeros of arbitrarily large multiplicity is not of bounded index and there exist functions with simple
zeros and of exponential type which are not of bounded index [8]. In a recent paper [2] Fred
Gross considers interesting variations of condition (1.1) and proves the following

THEOREM A: Let f be entire and C a positive constant. If there exists a positive integer N
such that for k=0, 1, . .., N, f satisfies one of the following, for all z with| z |sufficiently large:

) N |fkti)(g)| z  fH)g)|
(1) E—]—'—> C Z 14‘ 5
=0 i=N+1

N I(k+j, = I(k+j,
(ii) 2 (]—,Jr) > C 2 %) (p some positive integer),

=0 : i=N+1 :
N M(r, £t = M(r, f(<+))
(iii) 2 i >C» T ,

=0 : =N+1 :

then f is of exponential type.
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Assuming the known properties of the maximum term and the central index of an entire func-
tion we obtain a bound on the exponential type T defined by

log M(r, f)
limsup ——=

r— o r

Also we relax the hypothesis in each case. We prove
THEOREM 1: Let p=1 and C > 0 be two given constants. Let f(z) be entire, z=re® and sup-
pose that there exists a positive integer N (independent of z) such that for k=0,1,2, . . ., N, the

following inequality

o I (k+j, 1) & I(k+j, 1)
gn ik j:%I i (1.2)

holds for all z with |z| sufficiently large. Then {(z) is of exponential type and
T<1+2log (1+) +log @N) L

THEOREM 2: Let f(z) be entire and C a positive constant. Suppose that there exist two non-
negative integers k and N (independent of z) such that the following inequality

=

o | f5(2) | 5 | f(z) |
j=0 i j:%l Y (1.3)

holds for all z with |z| sufficiently large. Then {(z) is of exponential type and

_ C((NFDNFD\E
T\ma"{NnZ‘ﬁN( N)C >}

THEOREM 3: Let {(z) be entire and C a positive constant. Write M(r, {V) = maxi|f{\)(z)|. Suppose
that there exist two non-negative integers k and N (independent of z) such that the following in-
equality

N M, f“‘“’) o % M 1)

DT

!
=0 j=N+1 J¥

holds for all sufficiently large r. Then {(z) is of exponential type and

T< ((2N+ 1! >1/<N+1>
~\ C(N)

2. Proof of Theorem 1.

We have for r > ry

I(k+], r)y NI(k+j,r) (E+))!

2 =5 G
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<@ ek

Jj=0

=N {(;ﬂ Zl)

<(2N)!<1+%)él(’ s

Here we have used the hypothesis with £#=0 and r > ro to obtain the last inequality. From the

(2.1)

Taylor expansion

f®(a+h)= if“\;#
j=0

we have
P

$LUZ 1) oy

j=0

, f‘(l\')( ret? ), P—

and so

Ik, r)= {j {i' f '”(('; De®) | }p,m}m:

We now use Minkowski inequality [3, p. 148] to obtain

Ik, r) < EI(H#I_)

=0
Using the hypothesis and (2.1), we have for r>r; > 1+ r,,

W A+j.l—l)
Ik, r)s( )
1\2 v I(j,r—1)
< 1+—,) 2N) ! _
=l IS
Hence
Y I(k, 1) 1 LIy 7=11)
S =g e 3
= Jj=0
. W N I(k,r)
erte)\=e<l+?,> (2N)! andz- i =¢&(r). Then ¢ &(r—1) and so we get, for r > ry,
p e

(2.2)



where C;=C; (N, p, r1) is a constant. Write now f(z 2 anz", u(r) = max|an|r" Then

2T
| an | rt< %TJ’ | f(rei®) | d
0

l 2m o 1/p 2 1/q
s%{ﬁ | f(re )Ipde} UO de}

1
where ll7+:1: 1. Hence (2.2) gives

w(r) < (2m)-UPCy\. (2.3)
Now [10; 32—34]

v s log log w(r) — lim sup log log M(r)

r— o l ogr r— o log iP = (SaY)’

and if p < o, then

log pu(r) ~log M(r).

These two relations along with (2.3) imply that f(z) is of exponential type and 7' < log A. The proof
is complete.

3. Proof of Theorem 2

The proof of this theorem is essentially the same as that of Theorem 1 of [6]. We therefore out-
line the proof. Write f*)(z) =F (z). Then

S 1FO( Z)l s [ F9() |
2 =C E ! '
j=0 Jj=N+1
Hence for p=1
ﬁ M(r,F0)) >CM(r,F”"+P))
2 (N+p)!
Let
lim sup (r;f)_

Then (cf: [6]) there exists a sequence r, 1 @ such that for r=r,, (n>ny),

M (r,FQ)) ~<V(r,F)

i—q
> pi-a, 0<g¢g=<j,j=1,2,... 2N, b<a.
M(r,F@) ) i “



Hence if bl < b, we get for 1 $]§ N, and r= e

L (M (r, FWND) 4 +M(r,F(‘V”))}
(N+j) == 4 —_—
CM(r, F J)<(N+j).{ b7 N1 .
and so we have for | <j=<N,
CoN I by b

If b < N then we geta <N and so T'< N. If by = N then we have from (3.1)

(: i\bj

by
N7 = WD

and so
re B (G0N

]s_jsN N!C

The proof is complete.
The proof of Theorem 3 is similar and omitted.

4. Remarks and Examples

(a) There are functions satisfying all hypotheses (i)—(iii) of Theorem A. Take, for instance,
f(z)=e*, a>0. Gross [2] has proved that a periodic function of exponential type satisfies (ii)
and (iii) of Theorem A for sufficiently large r and i=0,1, . . ., N.

(b) Let f(z) be entire and suppose that it satisfies the differential equation

Po(2) f'z) +Pi(2) f* " (z) +. . .+ Pi(2) f(2) =0Q(2), (4.1)

where P,(z), ;= 0,1, ..., k, Q(z) are polynomials and Py(z) (% 0) is of degree not less than
that of any P,(z). Then f(z) is of bounded index [7]. Furthermore f(z) satisfies the hypothesis
of Theorem 2, that is, inequality (1.3) with £=0 and for all z. For let a=1+4C and F (z) = f («az).
Then F (z) also satisfies a differential equation of the form (4.1). Hence F (z) is of bounded index
N say, and for all £ and all z

| F®0(2)] _ max| F(S)(Z)l,

k! B 0<s=<N gl
This implies that
(k) (s)
O _ 9]
k! o<s<y  S!

Hence for k=N+1,N+2,. . .,

< aN-k()(r)

M(r, f®)
k!

where

Q(r) = max {M}

O<s<N S ‘
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This gives

Similarly the entire solution f(z) of (4.1) satisfies the hypothesis of Theorem 3 with £#=0 and for
all z. It also satisfies the hypothesis of Theorem 1, that is, given p =1 and C > 0, there exists a

positive integer N such that for k=0, 1, 2, . . ., N and for all r=|z|, (1.2) holds. To prove this
we let a=1+C and denote by M = M,, M, . . MM, the indices of the functions f(az) = F (z),

F'(z),. . ., F™(z) and let

N= maxM,.

osJsM

Then the inequality (1.2) holds for k=0,1, . . ., N. We omit the details.

(c) We now show, in Example 1, that there exist entire functions which satisfy the hypothesis
of Theorem 3 (with k=0, N=0 and given C) but which do not satisfy the hypothesis of Theorem
2. In Example 2 we give a function which does not satisfy the hypothesis (i) of Theorem A but which
satisfies the hypothesis of corresponding Theorem 2.

ExXAMPLE 1: Let C >0 be a given constant. Let

7@ =11 (1+ )

where we choose a = 2 such that 1 < log(l14+C). Then f(z) is entire and satisfies the condi-
ala—1)

tions of Theorem 3, with £=0, N=0 and given C. Since f has zeros of arbitrarily large multiplicity,

the hypothesis of Theorem 2 cannot be satisfied.

EXAMPLE 2: Let ai=k=10; k;. = #2,
3 .
aj1=kj+1 exp {(log 5)]5,},] =1

f(z)—H(l——) F(2) =f(z) —1.

j=1

Then F(z) is an entire function of bounded index [9] and F’ (z) has zeros of arbitrarily large multi-
plicity. Let C >0, a=1+C, g(z) = F(‘—z>. Since F(z) has an infinity of zeros, the index N of F (z) is
a

a positive integer and we have for all z and £,

max IFU.)(Z)I = [F(z)|
o<j=n  J! k!
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Hence for all z

© ) %
2 lg (Z)| Eﬂ

j=N+1 J

Mx

J=N+1 0»’ 0<k=<N

IFU’ Z/a)l

|F(k)(z/a)|
k!

a aklgk(z) |
X

vt (@—1) o=k=n

aAV+ 1

k!

(k)(z)|

¥ s
=
aVtl(a— 1)2

_1& %6

G f= k!

This shows that g(z) satisfies the hypothesis of Theorem 2 with k=0. Further g’ (z) has zeros of
arbitrarily large multiplicity and so g(z) cannot satisfy the hypothesis (i) (when £=1) of Theorem A.
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