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On Entire Functions of Exponential Type* 
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Let J be a n en tire fun c tion and le t p. "" 1 and 

1(1 , r)= {f:~ 1 f1 1)( re iO ) I "dO} 1/". 

Le t C > O. If the re ex is ts a positive integer N such that for k= 0, 1, .. . , N, 

f' (H/ , r) "" C f I (H/' r) , 
j = O J • j ::: N+ I } . 

for aU suffic iently la rge r, the n J is of exponentia l type not exceeding . {2 log (l-t. ~) + 1 + log (2N) !} .. 
If thi s condition is re placed by re lated conditions, the n a lso is of expo ne nti a l type. 
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1. Introduction 

An entire func tion f(z) is said to be of bounded index if and only if there exists a non-negative 
integer N (inde pe nde nt of z) such that 

I f(j) (z) I I f(l,)(z) I 
max -'---:-::-'--'- >- -'--,-,-'--'--'-

O"'j ",N j! - k! (1.1) 

for all k and all z, and the smallest s uc h integer N is called the index off(z) ([1], [4] , [5]).1 It is 
known that a function of bounded index N is of exponential type not exceeding N+ 1 [6] but that 
a function of expone ntial type need not be of bounded index. In fac t any entire fun c tion having 
ze ros of arbitrarily large multiplicity is not of bounded index and th ere exist fun c tion s with simple 
zeros and of exponential type which are not of bounded index [8] . In a recent paper [2] Fred 
Gross considers interesting variations of condition (1.1) and proves the following 

THEOREM A: Let f be entire and C a positive constant. If there exists a positive integer N 
such that for k=O, 1, .. , N, f satisfies one ofthefollowing,for all z with l z I sufficiently large: 

N If\k+j)(Z) I 00 l jf\k+j)(Z) I 
L ., >C L ., ' 
j~ O J . j~ N+ I J. 

(i) 

(ii) 
N I(k+j , r) 00 I(k+j , r) L ., > C L ., (p some positive integer) , 

j=O J . j~ N+ 1 J. 

(iii) 
N M(r,f(k+i)) 00 M (r,f(k+i)) 
L ., > C L ., ' 
i~ O J. j=N+1 J. 

then f is of exponential type. 
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Assuming the known properties of the maximum term and the central index of an entire func
tion we obtain a bound on the exponential type T defined by 

log M(r,!) 
limsup ----

r r-+ 00 

Also we relax the hypothesis in each case. We prove 

T_ 

THEOREM 1: Let p ;;: 1 and C > 0 be two given constants. Let fez) be entire, z = re i8 , and sup
pose that there exists a positive integer N (independent ofz) such that for k=O,l,2, ... , N, the 
following inequality 

± I (k ~j , r) ;;: C f I(k~j, r) 
j=O J . j=N+1 J. (1.2) 

holds for all z with Izl sufficiently large. Then fez) is of exponential type and 

T ~ 1 + 2 log (1 + ~) + log (2N) !. 

THEOREM 2: Let fez) be entire and C a positive constant_ Suppose that there exist two non
negative integers k and N (independent of z) such that the following inequality 

N 11 f(k+il(z) I '" I f(k+j)(z) I L ., ;;:c L ., 
j=O J . j=N+1 J . (1.3 ) 

holds for all z with Iz l sufficiently large. Then fez) is of exponential type and 

{ . ( (N + j)!(N + 1)) I / j 1 
T ~ max N, 1~~nN (N!)C J' 

THEOREM 3 : Let fez) be entire and C a positive constant. Write M(r, fl)) = max1If(t)(z)l. Suppose 
that there exist two non-negative integers k and N (independent of z) such that the following in
equality 

N M (r, f( H j)) '" M(r, f(k +j) 
L ., ;;:C L ., 
j=O J • j=N+1 J . 

(1.4 ) 

holds for all sufficiently large r. Then fez) is of exponential type and 

0< (2N + I)! )1 /(N +t) 
T ~ C(N!) 

2. Proof of Theorem 1. 

We have for r> ro 

~I(k+j, r) (k+j)! 
~ (k+')! '! j=O ] ] 
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.) ,\, 

~ (2N) ! ~J(i: ,r) 
) = 0 J. 

= (2N) ! {(± +. ~ ) I(i:,r) 
j = O ) = N + I J. 

< (2N) ! (1 +l) ± I(j:,r) . 
C j = O J. (2.1) 

Here we have used the hypothesis with k = 0 and r > ro to obtain the last inequality. From the 
Taylor expansion 

we have 

and so 

'" jU +j) ( ) 
jU') (a+ h) = L ., a hj 

j = O J. 

{ 127T { '" I [( I."+ j) ( ( /- 1 )eiO) I} } [ (k, r) ~ 2: . , Pd~ I 11I 

o j = O ] . 

We now use Min kowski inequality [3, p. 148J to obtain 

I(k, r) ~ ~I(k + J:,r - 1) . 
j = O J . 

Usin g the hypothesis a nd (2 .1), we have for r> rl > 1 + ro , 

I (k , r) ~ (1 +!) ± J(k+ J~ ,r -1) 
C j = O J. 

~ (1 +!)2 (2N)! ~ I(J<,-1) 
C j = O J. 

Hence 

( 1)2 N I (k r ) 
Write t... =e l +-C (2N)! and2: ---;-= {;( r ) . Th e n (;( r) ~ t... {;( r - 1) a nd so weget,forr > rl, 

k = O k . 

(2.2) 



'" 
where CI = C I (N, p, rl) is a constant. Write now fez) = 2: a"z", J.t(r) = max I a" I r". Then 

o n 

1 f27T 
I a" I rn ~ 27T 0 I f(re i8 ) I dO 

1 { (Z7T } lip {(27T } I l q 
~ 27T Jo I f(re i8 ) IPdO Jo dO 

where l+l= 1. Hence (2.2) gives 
p q 

Now [10; 32- 34] 

1. log log J.t(r) 
1m sup 

r--+oo logr 
1. lo~ log M (r) 
1m sup 

r--+ 00 log r 
p (say), 

and if p < 00, then 

logJ.t(r) - logM(r). 

(2.3) 

These two relations along with (2.3) imply thatf(z) is of exponential type and T ~ log A.. The proof 
is complete. 

3. Proof of Theorem 2 

The proof of this theorem is essentially the same as that of Theorem 1 of [6]. We therefore out
line the proof. Write f(k) (z) = F (z). Then 

Hence for p ~ 1 

N M(r,FU)) ~ M(r,F(N+P)). 
2: j! ~ C (N + p)! 
)= 0 

Let 

1. v(r,!) 
Jm sup--=a. 

r--+ 00 r 

Then (cf: [6]) there exists a sequence rn t 00 such that for r= rn, (n > no), 

, - ' ~ bJ - q M(rFU)) (lJ(rF))j - q . 
M(r,F(q)) r ' 

0 ~q~j, j=1,2, . .. ,2N, b <a. 
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Hence if 61 < 6, we get for 1 ~ j ~ N, and r= rn , 

CM(rF (N +j)) « N+j)' I , ... _'--'_:---'-{ M( ' F(N+j))+ +M(rF(N+j))} 
, . 6N t j N!b{' 

and so we have for 1 ~ j ~ N, 

(3.1) 

If 61 < N then we get a ~ N and so T ~ N. If 61 ;;,: N then we have from (3.1) 

C6 ,v+j 6f 
(N~j)! ~ (N+l) N! 

and so 
T ~ min {(N+j)!(N+l) }I/j. 

l ~ j ~ N N!C 

The proof is co mplete. 
The proof of Th eore m 3 is s imilar and omitted. 

4. Remarks and Examples 

(a) There are functions satisfying all hypotheses (i) - (iii) of Theorem A. Take, for instance, 
f(z) = eaz , a > 0. Gross [2] has proved that a periodic function of exponential type satisfies (ii) 
and (iii) of Theorem A for sufficiently large rand i=O, 1, ... , N. 

(b) Letf(z) be entire and suppose that it satisfies the differential equation 

Po(z) f (l,)( z) + PI (Z)f(l, - I)(Z) + ... + Pdz) fez) = Q (z), (4.1 ) 

where p ./(z), J = 0, I, ... , k, Q(z) are polynomials andPo(z) (+0) is of degree not less than 
that of any PJ(z). Then fez) is of bounded index [7]. Furthermore fez) satisfies the hypothesis 
of Theorem 2, that is , inequality (1.3) with k = 0 and for all z. For let a = 1 + C and F (z) = f (az). 
Then F(z) also satisfies a differential equa tion of the form (4.1). Hence F(z) is of bounded index 
N say, and for all k and all z 

This implies that 

If(k)(z) I . If(s)(z)1 
k ' ~ aN- kmax , • 

• O~s~N s. 

Hencefork=N+I,N+2, . .. , 

M(r,f lk»),.::: N-kA () 
k! ~ a H r 

where 

D(r) = mllx {M(r,j<s»)}. 
fFi{s,;;N s! 
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This gives 

00 M(r,f(k» 1 1 N M(r,ps) 
L k! ~CO(r)<CL s! . 

',=N+ I 0 

Similarly the entire solution f (z) of (4.1) satisfies the hypothesis of Theorem 3 with k = ° and for 
all z. It also satisfies the hypothesis of Theorem 1, that is, given p ;;,: 1 and C> 0, there exists a 
positive integer N such that for k=O, 1,2,. ., N and for all r=lzl, (1.2) holds. To prove this 
we let a= 1 +C and denote by M == Mo, Mt, . .. , MM, the indices of the functionsf(az) == F(z), 
F'(z), . .. , PM)(Z) and let 

N= maxMJ • 
o~J~M 

Then the inequality (1.2) holds for k=O, 1, ... , N. We omit the details. 
(c) We now show, in Example 1, that there exist entire functions which satisfy the hypothesis 

of Theorem 3 (with k = 0, N = ° and given C) but which do not satisfy the hypothesis of Theorem 
2. In Example 2 we give a function which does not satisfy the hypothesis (i) of Theorem A but which 
satisfies the hypothesis of corresponding Theorem 2. 

EXAMPLE 1: Let C > ° be a given constant. Let 

00 ( z)n 
fez) = D 1 + nan+1 

where we choose a;;': 2 such that 1 ~ log(l + C). Then fez) is entire and satisfies the condi· 
a(a-l) 

tions of Theorem 3, with k=O, N=O and given C. Sincefhas zeros of arbitrarily large multiplicity, 
the hypothesis of Theorem 2 cannot be satisfied. 

EXAMPLE 2: Let al = kl = 10; kj +1 = k; , 

00 ( Z)k f(z)=TI 1--: j,F(z)=f(z)-l. 
) = 1 a) 

Then F(z) is an entire function of bounded index [9] and F' (z) has zeros of arbitrarily large multi· 

plicity. Let C > 0, a = 1 + C, g(z) = F(~)- Since F(z) has an infinity of zeros, the index N of F(z) is 

a positive integer and we have for all z and k, 

!F(j)(z) I IF(k)(z) I 
max ·1 ;;,: 1 • 

O,,;; j ,,;;N J. k. 
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Hence for all z 

f I gU).~z) 1 = f IF U)(z/a) 1 
j = N+ l J . j = N + l ~j! 

00 1 ,-I "_(k--,)(...:..:.z/_a )'-1.1 
~ L - max-

j = N+ l a) O", ', ,,,N k! 

a 
max 
~k~N 

aN +1 N Ig(k)(z) 1 

< aN+ 1 (a -1) &:0 k! 

1 LV Ig(k)(Z) 1 =-L . 
C k = O k! 

This shows that g(z) satis fi es the hypothesis of Theore m 2 with k= O. Further g' (z) has zeros of 
arbitrarily large multipli city and so g(z) cannot sati sfy the hypothesis (i) (whe n k= 1) of Theore m A. 
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