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A natural generalization of the familiar second order Sturm-Liouville system is presented. This
generalization consists of considering a number of differential equations defined on different intervals,
instead of just one equation on one interval. The self-adjoint character of the differential equations is
retained in the generalization, but the boundary conditions are relaxed considerably. The most general
boundary conditions which can be accommodated by this sort of generalization of Sturm-Liouville
theory are discussed. The existence of eigenvalues is proved, and a generalized orthogonality and a
weak eigenfunction expansion theorem are derived.
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1. Introduction

The solution to a large class of problems of interest in applied mathematics can be reduced
to the solution of the second order Sturm-Liouville system,

(r(x)y" (x,N)) = (q(x) —Ap(x))y(x, N), (1)

where a < x < b, and where
ay(b, \) +By" (b, ) =vyy(a,\) +8y (a,\)=0. 2)

The primes indicate differentiation with respect to x, and the proper choice of p(x) >0, r(x) >0,
q(x), a, b, a, B, v, and & is dictated by the particular problem. The theory of such Sturm-Liouville
systems is well known [1, 2]' and will not be reviewed here. Suffice it to say that it is a very powerful
technique for handling the problems to which it is applicable.

Recently, generalizations of the second order Sturm-Liouville system have been developed
which, while retaining the distinctive Sturm-Liouville character, are applicable to problems
involving composite media [3, 4, 5, 6]. The purpose of this paper is to discuss a different general-
ization of the second order Sturm-Liouville system which retains the Sturm-Liouville character.
In particular, an eigenvalue equation, an orthogonality theorem, and a weak eigenfunction expan-
sion theorem will be derived. This eigenfunction expansion theorem is the first place where the
results of this paper deviate from the previous work on Sturm-Liouville systems. It will be shown by
counter-example, that the eigenfunctions of this Sturm-Liouville like system do not form a com-
plete set in the sense of the previously described Sturm-Liouville systems.

The generalization of the second order Sturm-Liouville system discussed in this paper, and
that which is applicable to composite media problems are similar in many ways. Each arises when
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attempting to solve time dependent heat transfer problems in complicated systems, and each
consists of considering a number of differential equations defined on different intervals, instead
of just one equation defined on one interval. In both generalizations the self-adjoint character of
the differential equations is retained, but the conditions which the solutions must satisfy at the
ends of the intervals are relaxed. In both cases, the solutions to all of the equations are coupled
by relations involving their values and the values of their first derivatives at the ends of the intervals
on which they are defined. The difference between the two generalizations is in the specific form of
the coupling. In the case of the composite media generalization, the coupling connects the boundary
values at the right end of the first interval with those at the left end of the second interval; the
boundary values at the right end of the second interval with those at the left end of the third interval,
and so forth. In the alternate generalization, introduced here, the coupling connects the boundary
values at the left ends of all of the intervals. Figures 1a and 1b show examples of the two types of
coupling schematically. It is interesting that the form of coupling introduced here results in a
simpler eigenvalue equation than that which results from the composite media generalization. In
the case where only two intervals are considered, the composite media generalization is a special
case of the generalization introduced here. Except for this case, this generalization of the second
order Sturm-Liouville system does not appear to have been studied previously. An example of an
application of the theory developed in this paper, is the calculation of the temperature distribution
as a function of time in a number of wires whose left ends are all welded together and whose right
ends are all connected to a heat sink.

A

@
$

FIGURE 1. Schematic representation of different types of Bound-
ary value coupling

Interval on which self-adjoint differential equation is defined.

° End point of interval where Sturm-Liouville boundary conditions are imposed.
® End point of interval where boundary conditions appropriate to the composite media

generalization are imposed.
O End point of interval where boundary conditions appropriate to the generalization

introduced in this paper are imposed.

2. Postulates and Principal Results
Consider the N self-adjoint differential equations obtained by letting =1, 2, . . ., N in
the equation,
0 0 ——
(ri(xi)y; (xi, X)) "= (qi (xi) —Api (xi) ) yi (xi,N) 3)
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which is to hold for a; < x; < b;, where ri(x;) >0 and pi(x;) > 0. For the present, retain the usual
Sturm-Liouville boundary condition,

aiyi(bi,N) + Biyi (bi, N) =0, )

at the right end of each interval, but at the left end of the intervals employ a generalized bound-

ary condition, consisting of the N—1 equations obtained by letting =1, 2, . . ., N—1 in the
equation,

yivi(ai,N) + 8iyi (@i,N)=Yic1Yiei (@iv1,0) +8iv1y; 4 (@iv1,A) #0. (5)

One more coupling condition is needed to give a total of 2N boundary conditions, so introduce
the general relation,

N
Z(iji((li,)\)—f“l)iy;- (ai,\) =0, 6)

=1
where

Diyi—C;6; >0, (7)
fori=12, . .., N.

Equations 3, 4,5, 6 and 7 define the system. Now it is necessary to determine under what con-
ditions a set of functions, (v, (x;,A), 2 (x2,A), . . ., yv(xv,N) ). exists such that these five equa-
tions are satisfied.

First concentrate attention on eqs (3) and (4). For any positive integer value of i <N, it can
be shown, following Ince [7], that for every value of A, eqs (3) and (4) determine, except for the
specification of a multiplicative constant, one and only one solution which is continuous and
has a continuous first derivative on the interval, (ai,b;). Keeping this in mind, divide eq (6) by
Ay (ar, N)+ 8,y (ai, ) and substitute the N —1 equations represented by eq (5) into the result,
to obtain the equation,

A Iy1 au )\) +Dl}’1 (aH A)
E YiYi (au )\) +Sz)’l (az’ }\)

=0, @)

which is generally a transcendental equation in A, and which is independent of the multiplicative
constant which is as yet unspecified in y; (x;, ). Equation (8) is called the characteristic or eigen-
value equation of the system, since its roots are the eigenvalues of the problem; that is, the only
values of A for which eqs (3), (4), (5), and (6) are mutually consistent. The existence of a countably
infinite number of such roots is proved in appendix A of this paper. Let A\, be the mth root of eq
(8), then it is called the mth eigenvalue of the system, and yi(xi,An) will be called the mth eigen-
function on the ith interval of the system. This completes the discussion of the eigenvalue equation.

Now attention will be turned to exhibiting the Sturm-Liouville like properties of the eigen-
functions. Other than the mere existence of eigenvalues, the most distinctive characteristic of
Sturm-Liouville theory is the theorem expressing the orthogonality of the different eigenfunctions
and the related eigenfunction expansion theorem. For the system described in this paper, the
orthogonality theorem, which is proved in appendix B, takes the form,

ﬁW f e o o ) )
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for m # n, where

Diyi —C;;

rl(af)

W= (10)
Now the problem of an eigenfunction expansion theorem will be considered. Since the func-
tions, y;(xi, Am), are determined only to within a multiplicative constant, it is convenient to define

¢m=[f“pxxom<m,mnymn,xmnuj’i (11)

and

dim(x:) = yi(xi, Am)/dim. (12)

Thus each of the functions, ¢im(x;i), is square normalized to unity on the ith interval with respect
to the weighting functions, p;(x;), and this property uniquely determines the function, ¢in(x;).
Of course, the d;, are as yet undetermined, since the y;(x;, A,,) are determined only to within a
multiplicative constant.

Now consider the possibility of choosing these multiplicative constants (and hence the d;»)
in such a way as to express the N arbitrary functions, g;(x;), i=1, 2, . . ., N, as a sum of
eigenfunctions. For any given value of i, the constants, din, which are obtained by varying m are
independent of each other. However, when m is held constant and i is varied, the resulting djm
are not independent. Once one, say djm, is specified all of the others can be obtained from the
equation,

dim _ Yidin(a;) +8,¢im () (13)
dim  Yipim(ai) + §i im(ai)

which is obtained by substituting eq (12) into eq (5). Thus in the eigenfunction expansions,

fia) =3 dinin(x1). (14)

m=1

the N functions, fi(x;), cannot be chosen arbitrarily. Once one of them is specified, all of the rest
of them are uniquely determined. This is a strong restriction, but it does not necessarily prevent
the theory from being useful. However, it does weaken the eigenvalue expansion theorem con-
siderably. The theorem stated below and proved in appendix C is the strongest that can be proved
when the functions to be expanded are left completely arbitrary.

For each value of j=1,2, . . ., N, the function,

1i(x)) *2 dimbjm (x;) = 2 ¥ (%5, Am), (15)

will be a “best” approximation to the function, gj(x;), in the sense that the expression,

I= E Wlf pi(xi) [gz (xi) fi(xi)]zdxi» (16)

i=1

is a minimum, if and only if for each m=1, 2, . . .,

N b;
E RuiiWi pi(xi) gi (%) im (x:) dxi

__i=1 %
d]m_ N
Z ijl z'

i=1
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where

dim _ Yibim(a;) + Sipjm(a;)
dj"’ ‘Yid)im (”i) + Sid)i’m ((’i) ’

iji - (18)

Since the above eigenfunction expansion theorem does not require that each function, f;(xi), be
identical to the function, gi(xi), a criterion for goodness of fit is useful. It is shown in appendix
C that the ratio,

o N N b;
R= g} ; Wildin)* / Z; Wi f pi(x) [&i(xi) ]2dx; (19)

"I
has the property that, 0 = R <1, and R=1if and only if fi(xi) = gi(x;), for i=1, 2, . . ., N. Thus
R can be used as a criterion for goodness of fit in a qualitative manner. Furthermore the set of
functions for which the eigenfunctions of the problem form a complete set are characterized by

R=1.

3. An Example

As an example, let i=1, 2, and 3, in eqs (3), (4), (5), and (6), and let a;=—1, b;=0, e= A2,
ri(xi) =1, qi(xi) =0, pi(xi)= (1)%, a;=1, Bi=0, vi=1, &=0, C;=0, and Di=1. The resulting
system arises when attempting to determine the temperature distribution, 7’ (x;, t), as a function
of time in three straight wires of identical thermal conductivity and area, whose specific heats per
unit volume are in the ratio 1, 4, 9, and whose right ends are attached to a block whose thermal con-
ductivity and heat capacity are infinite, and whose left ends are attached to a block whose thermal
conductivity is infinite, but whose heat capacity is zero. If the initial condition for this problem is
that Ti(x;, 0) =—x;, fori=1, 2, 3, then T;(x;, t) can be written in the form

o

Ti(xis [) - E dimd)im(xi) exp [ - (Gm)zl] B (20)

m=1

where €,= A\ is the mth root of eq (8), if and only if fi(xi) =—xi,for i=1, 2, 3, where fi(x;) is
defined in eq (15). However, this is not the case. The functions,
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Zi(xi):E)/i(Xiq Am), (21)

m=1

are shown in figure 2. It is clear from the figure, that these functions are not very good approxima-
tions to —x;. For this particular case, R=0.990159. There is no significant difference between
these results and the results when only the first fifteen terms are included in the sum, and presum-
ably there is no significant difference between these results and the results when all of the terms
are included in the sum. Thus in order to obtain T;(x;, t) it is necessary to add to the richt hand
side of eq (20), a nonseparable function of x; and ¢, which is a solution to the corresponding time
dependent heat transfer equation for the problem. The properties of such non-separable solutions
remain to be investigated.

Now suppose that we eliminate the third interval in the above problem, restricting i to be 1
or 2. Then the problem is equivalent to a composite media problem, and interestingly enough the
eigenfunctions form a complete set as can be seen from figure 3. In this case, R =0.999989, for
just the first fifteen terms of the sum.
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FIGURE 2. Graphs of Zi(xi) for i=1, 2, and 3, showing that Z;(x;) is not a very good approximation

to —x; in the three interval example considered in the paper.

4. Discussion

The fact that nonseparable solutions appear in a prominent way in the generalization of Sturm-
Liouville theory discussed here certainly limits the usefulness of the theory to some extent. How
serious this limitation is in various applications will depend upon the general properties of these
non-separable solutions. Thus an investigation of such non-separable functions would appear to be
quite worthwhile.

Nowhere in the derivation of the results presented in this paper does the assumption that
a; < x; < b; play a fundamental role. All of the results would have been identical if for some of the
values of i, b; < x; < a;, but the discussion would have been somewhat more complicated. To further
generalize the second order Sturm-Liouville system, the boundary conditions at the points, b;,
could be relaxed. It is possible to replace them by generalized boundary conditions identical in
form to those stated earlier in this paper, by introducing a number of new intervals on which more
self-adjoint differential equations are defined. The type of coupling envisioned here should be
obvious after glancing at figure 1c. The detailed development of this further generalization of the
second order Sturm-Liouville system introduces no new ideas, and it is fraught with notational
difficulties. Consequently it will not be pursued here. However, a few remarks are in order.
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FIGURE 3. Graphs of Zi(xi) for i=1, and 2, showing that Z;(x;) is an excellent approximation to
—x; in the two interval (composite media) example considered in the paper.

First, cross-linking among the branching intervals will not generally allow a nontrivial solution.
But it is possible to cross-link any two intervals for which r(a) =r(b) for both intervals. Second,
both the composite media generalization and the generalization described earlier in this paper are
special cases of this generalization of the second order Sturm-Liouville system. Third, in a detailed
development of this theory, it will not be possible to derive a simple eigenvalue equation as was
done here. A determinantal equation, similar in principle to, but more complicated in actual detail
than that in reference [4] will have to be derived.

5. Appendix A

In this appendix, eq (8) will be proved to have an infinite number of roots. In discussing eq
(8), it is convenient to define,

' _C,'y,‘((li,)\)+[),‘y;' ((l,',)\)
B = v N F ot (an ) °

(1A)

and,

FO) =S Fi(A). (24)

i=1
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First it will be proved that for each i =1 to N, F;(A) has an infinite number of singularities, and
that it is positive in some interval immediately to the right of each singularity, and negative in
some interval immediately to the left of each singularity. In order to prove this, it is necessary
to consider each of the four cases,C;=8;=0,D;=v;=0,C;y;+0, and D;8; # 0, separately. Every
possible choice of C;, y;, D;, and &; which is consistent with eq (7) is covered by at least one of
these cases. Before looking into each of these cases separately, it is necessary to review some
of the properties of y;(ai,\). Ince [8] has shown that if y;(x;,\) satisfies eqs (3) and (4), then the
equation, yi(ai,A) =0, has a countably infinite number of roots. These will be denoted by wim,
where the wim are labeled so that pim < wim+1. Ince [9] has shown that as \ is increased from
Mim t0 Wim+1, the expression,

yi(ai’ )\) ’
decreases monotonically from +o to —o, Thus yj(ai,\) also has an infinite number of roots,

denoted by win, and as A is increased from wim to wim+1, the expression,

yi(a‘i’ )\)
yl{(ai9 }\) ’

increases monotonically from — o0 to + .
Case l: Ci=6=0
In this case,

Fiy =2oian )

vivi(ai, \) 34)
and dividing eq (7) by (yi)? shows that D;/y; is a positive number. Thus F;(\) decreases mono-
tonically from + o to —o, as A is increased from fim to Mim+1, so it has an infinite number of
singularities and it is positive immediately to the right of each singularity and it is negative im-
mediately to the left of each singularity.

Case 2 D,-=7,-=0

In this case,

_Ciyi(ai,\) :
PO Vican v .

but dividing eq (7) by (8;)? shows that C;/§; is a negative number. Thus F;(\) decreases monotoni-
cally from + o to — as A is increased from wim to ®im+1. So again, Fi(\) has an infinite num-
ber of singularities, is positive to the right of each singularity, and is negative to the left of each
singularity.

Case 35 Di6i +0

_(Ci Y@M\ (vi | yilaih)) !
Le‘””'(l)ﬁyi(ai,x))(ai+y,-(ai,x>> ’ GA)
then Fi(\)= (Di/5;) fi(\). Now the equations,
yiaih) Ci
yi(ai,}\)+b_;_0’ (6A)
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and

}’;(ai»)\)+2
}’i(aiJ\) Oi

=0, (TA)

each have one and only one root between win and pim1. This root of eq (7A) will be denoted by &im
and the equivalent root of eq (6A) will be denoted by 7. First supposing that 0 < D;8;, use eq (7)
to show that _'}’i/si < _Ci/Die so that Kim < Nim < fim < Mim+1- Thus

_')’i<y,{(ais)\)<__if <A<
5 yil@iN) D; Or Mim ims, (8A)
and
y;(aiﬁA) yi
<—=< im im &
yi(ai,\) l_forf, e )

Since &in is a root of eq (7A), fi(\) has a singularity at &, and eq (8A) can be used to show that fi(\)
is negative when mim < X < &im, and eq (9A) can be used to show that fi(A) is positive when &;,
< A< Wims1- Letting m=1,2, . . . in the above discussion shows that fi(\) has an infinite number
of singularities and that it is positive immediately to the right of each singularity and that it is neg-
ative immediately to the left of each singularity. Now, supposing that D;8; < 0, use eq (7) to show
that

so that Mim < tfim < Nim < Wim+1.

Thus
Ci yilaiN) i
—E< yi(ai’)\)<—3‘if0r§im <A < Mim, (10A)
and
Yi _yilai\)
—E<m,f0r/.l,im<)\<§im (11A)

Since & is a root of eq (7TA), fi (\) has a singularity at &;m, and eq (10A) implies that f; (\) is negative
when &;,, < X < nim, and eq (11A) implies that f;(\) is positive when wim < N\ < &;,0. Letting m=1,
2, . .. in the above discussion shows that fi(\) has an infinite number of singularities and it is
negative in some interval immediately to the right of each singularity and that is positive in some
interval immediately to the left of each singularity. So in both the case where D;8; > 0 and in the
case where D;6; <0, F;(\) = (Di/8;) fi(\) has an infinite number of singularities and it is positive
immediately to the right of each singularity and negative immediately to the left of each singularity.

Cased4: Ciyi+0

The proof is similar at each step to that of Case 3 and will not be presented here.
If Fi(\) has a singularity at kim, then eq (2A) implies that F'(\) also has a singularity there,
and F(\) behaves like F;(A) in some neighborhood of kim. Thus, if kim and k;j, are two consecutive
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singularities of F(\), and kim ~ kjn, then F()N) is positive immediately to the right of kin and
negative immediately to the left of kj,. Now since F (M) is continuous for kim < A\ < Kjn, it must
have a zero in this interval. Thus eq (8) has at least one root between any two consecutive singu-
larities of F(A). Finally, since F(\) has an infinite number of singularities, it has an infinite number
of roots, as was to be proved.

6. Appendix B

In this appendix, eq (9) will be proved. The proof requires a lemma which will be proved
separately, but in somewhat more general form than needed.

Lemma

Since this lemma consists almost entirely of algebraic manipulations, it will prove convenient
to use the shorthand notation,

Mi=M;(ai, §), (1B)
Ni=Ni(ai, m), (2B)

and
ri=ri(ai), (3B)

where M;(x;, &) and N;(x;, n) satisfy eqs (3), (4), and (5), with A= ¢, and A=), respectively. Now let

N N
S= (yiNi+&N}) 2 (C;M;+DM;) — (yiMi+&M;) > (C:N;+D;N;) , (4B)

=1

and notice that if M; and N; both satisfy eq (6), then S=0, but if only one of them satisfies eq (6),
then S = 0.
Since both M; and N; satisfy eq (5),

ﬁ L(CM;+DM;) (s + 8N;) — (CNy+DiN;) (M + 8,M;) ] - GB)

When the indicated multiplications in eq (5B) are carried out, some of the terms cancel one another,
and the remaining terms can be combined to yield,

N
2 Dyy;—C;8;) (M;N;— N;Mj) - (6B)

Thus by eq (10),

N

J=1

Churchill [10] has shown that eqs (3) and (4) are sufficient conditions for

i
(f—’f))f(Jpj(xj)Mj(xj,§)Nj(xj’n)dszfj(M}Nj_N}Mj)- (8B)
1)
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Thus
N b;
(E=m) > ij " pi(x) M;(x;, €)Nj (x5, m)dx; =S, 9B)
=1 4

where S is given by eq (4B). This is the significant result of the lemma.
Now let ¢=\u and n=N\,. Then M;(x;, £) =v;(x;j, An) and Nj(x;, m) =y;(xj, A\n), so M; and
N; both satisfy eq (6), so S=0. And if m # n, eq (9B) becomes eq (9). This completes the proof.

7. Appendix C

In this appendix, it will be shown that eq (17) is a necessary and sufficient condition for the
expression, I, defined in eq (16), to have a minimum with respect to variation of the dj,, subject to
the constrants imposed by the N —1 equations represented by eq (13).

First notice that by the restrictions stated after eq (3), by eq (7) and eq (10), I = 0, so it has a

minimum. Also notice that /=0, if and only if fi(x;) =gi(x;) for i=1. 2, ..., N. Next take the
variation of I with respect to dj,, where m=1, 2. ..., and j is fixed. Using eq (13) to justify re-

lacing the partial derivative of d;,, with respect to djm by dim/d;m, rearrange the result to obtain,
= J y 4] i)

=3 80dm) 3 (92) Wi [ " i) a1 i) ) i (30 i =0, 1c)

m=1 i=1 J"'

Now since each dj, is independent of dj, for n # m, the coefficient of every §(d;») must be zero.
Combining eqs (15), and (18) with this result yields

N b 1 &N
E ijiWif pi(xi)gi(xi)(t)im(xi)dxi:—d' 2 f Pi (x, f(xi)}’i(xi, )\m)dxn 2C)
=1 a4 jm =

l

for m=1, 2, . . Finally applying eqs (15), (9), and (11) to the right-hand side of eq (2C), and
again using eq (18) one sees that the simultaneous equations are diagonalized and that they are
equivalent to eq (17). All of the steps in this proof are reversible, so eq (17) is a necessary and
sufficient condition for I to have a minimum value as was to be shown.

In order to obtain a criterion for goodness of fit, expand I to obtain,

I= i f" pl(Xz (gl(xl ) dx,+2 W f Pi xz)(ﬁ(ﬁh))ldx,_2 2 W f p, g,(x,)f(x')dxl

i=1

3C)
Notice that if eq (2C) is multiplied by dj» and summed over m, the result is
N
E Wi f p;(x,)gz(xx)f x,)dx, E Wi f pi(xi) (f,(x,))ldx, 4C)
i=1 a;
Substitute this result into eq (3C) to obtain
N
1= 3 W | " o) G = 3 [ ) (o e, 50)
i=1
Finally substitute eq (15) into eq (5C), and use the orthogonality theorem, eq (9) to obtain,
N b;
1= S W [ pie) e ) 2= 3 2 Wildim)?. (6C)
i=1 & m=1 i=
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Since [ =0, 0 <R <1, where R was defined in eq (19). The second property of R follows from the
property of I that it is zero if and only if gi(xi) =fi(xi) for ai<x; < b, and i=1,2,. . ., N.

I thank R. C. Kraft and W. P. Reid for constructive criticism on various aspects of this work,
and J. S. Gallagher for preparing some of the figures.
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