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Two classes of nonunear inequalities for the eigenvalues of sums of Hermitian matrices a re 
obtained. These nonlinea r inequa lities are shown to follow from linear inequalit ies es tablished in 
parts I and II of thi s series. A ne w inequalit y for the singular values of matrix products is a lso obtained. 
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1. Introduction. 

Let C= A + B where C, A, B are Hermitian matrices. In recent years a number of inequalities 
have been establi shed linking the eigenvalues of C, A, B. For the mos t part these inequalities are 
linear , but a number of nonlinear inequaliti es are also known which involve convex or concave 
functions of the eigenvalues. Generally speaking, the methods used to de rive the linear inequalities 
work equally well in de riving these nonlinear inequaliti es . These methods are based on the extre mal 
properties of eige nvalues or on induction and the Cauchy interlacing inequaliti es. A defect of 
the use of these methods when deriving nonlinear inequalities is th at they do not clarify wh ether 
the nonlinear ineq ualities are consequences of the linear ones. There is , however, a third method 
which derives nonlinear inequalities from linear ones. It is the purpose of thi s paper to use thi s 
third method to obtain several new families of nonlinear inequalities for the eigenvalues of matrix 
sums. It will turn out that our new inequalities include as a special case a generalized and s harp­
ened version of an inequ ality recently proved by Marc us [2].1 W e shall also derive a previously 
unnoticed inequality for the singular values of a matrix product. 

2. The Main Results for Sums 

THEOREM 1: Let integers ii , ... , I m,] .... . , jm satisfy 

Set 

for s =l, . .. , m. 

Let 0 ::::; () ::::; 1, () + cp = 1 and Let A, B, C = ()A + cpB be n-square Hermitian matrices with eigenvaLues 
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respectively. Let f(xt, ... , xm) be a real-valued function, convex, symmetric, and nondecreasing in 
each XI for (XI, ... , xm) lying in the m-dimensional hypercube fi x ... X fi, where fi is the interval 

Then 

f(Yk, .. . , Y/,J ~ ef(ai1 ,' •• , aim) + cpf(,Bil" ... f3im)' (2) 
PROOF: The inequality 

m m m 

L Y"'s ~ e L ais+CP L f3js (3) 
s=1 s=1 s=1 

is known [7, Theorem 1]. Applying this for r in place of m, we have 

r r r 

LYles ~eL ais+cp L f3js' r=I, . .. , m. 
s=1 s=1 s= 1 

If we let 

s=I, . . . , m, 

then CI ~. . . ~ cm , d l ~ •• • ~ dm , and CI +. . . + Cr ~ d l +. . . + dr for 1 ~ r ~ m. These con­
ditions are known [5, Theorem 15] to imply thatf(ct, . . . , Cm) ~f(dI, ... , dm). From this (2) 
is immediate. 

This proof uses only standard techniques. Rather more interesting and surprising is that these 
"ame techniques can be used to establish the inequalities of the next theorem. 

THEOREM 2: Let C=eA+cpB and f be as in Theorem 1. Let ZI, ... , Zn-m, WI, ... , Wn- m 
be integers satisfying 

ZI+WI~m. 

Let ox(y) be ajumpfunction; Ox(y) = 1 ify > x and Ox(Y) = 0 ify ~ x. Let 

s=l, ... , m. 

Then 

(4) 

PROOF: The following inequality is known: 

m m m 

L YKs ~ eL als + cP L f3Js' (5) 
8=1 8=1 s=1 

This inequality may be obtained from Theorem 4 of [8] by using Ox *(y) = OX - I (y). In order to prove 
(4) we need to show that 

r r r 

L YKs ~ e L als+cp L f3 J s' (6) 
s=1 s=1 s=1 
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holds for each r= 1, . . ., m.F or if this is so then the proof of Theorem 1 applies here also. Define 
nonnegative integers u and v by 

ZI ~ ... ~ ZlI ~ r < ZlI+1 ~ ... ~ Z1l - m, 

Without loss of generality l~t u ~ v. Define ~I ~ ••• ~ ~I/ _ '" 

WI ~. • • ~ Wn - r by 

. ,gU = ZII-(,n - r) , fU + I = r , .. "gll - r == r , 

., W v = Wv , W v+ 1 == r, ... , wn - r = r. 

Then also ~I + WI ~ r. Set 

Ps= 5+ 0{. (5) + . . + 0{II _r(5), 

5=1, ... , r. 

Writing down the inequality (5) with r in place of m we have 

T r r 

L YR s ~ 6L (Xl's + 1> L f3Q s ' 

S= I S= I s= I 

Now for 5 ~ r we have 

n - r u u 
Ps =5+ L 0{p(5) =5+ L 0{p(5) ~ 5+ L ozp(S) =18' 

p = 1 p = 1 p = 1 

because 

and O{p(S) =0 fors ~ r 

O{p(S)=Ozp - (m - r) (S) ~ Ozp(S) 

P > u; 

for p ~ u. 

For S ~ r we have 

n - r v v n - m 
Qs=s+ L owp(s) =s+ L owp(s) =s+ L OWp(5) =s+ L oWp(s) =Js, 

p=l p=l p=l p=l 

since 

Owp(S)=O=OWp(S) for p>v. 

(7) 

(8) 

Furthermore, for 5 ~ r (using Zp+ Wp-m=~p+ wp- r for p ~ u and Zp-m+ Wp ~ wp [or all p) we 
have 

u v u v 
Ks ~ S+ L ozp + wp - m(S) + L oZp + Wp - IIl(S) ~ S+ L O{p+wp - ,·(s) + L oWp(s) 

p=l p=U+1 p = 1 p=U+1 

U n - r 

=s+ L O{p+wp - ,·(s) + L O{p+wp - ,·(s) =Rs. 
p=l p = lI + 1 
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Thus, for s = 1, ... , r, we have Ps ~ Is, Os = ls, Ks ~ Rs. From this it follows that (6) is a con­
sequence of (8). This completes the proof. 

REMARK 1: In fact we have proved that if f(xt, ... , Xr) IS convex, symmetric, and non­
decreasing then 

for r~m. (9) 

That the inequality (9) for r < m is valid is a new result even when f is linear. 
As a consequence of theorems 1 and 2, we obtain theorems 3 and 4. 

THEOREM 3: Let A, B, C be as in theorem 1. Let g(xt, ... , xm) be a real-valued function, 
symmetric, convex, and nonincreasing in each variable when (xt, ... , xm) E: ~ X ... X~. Let 
i~, . .. , i~, j~, . .. , j:n, k~, . .. , k:n be integers with 

1 ~ i; < ... < i~ ~ n, 1 ~ j; < ... < j~ ~ n, 

k~ = i~ + j~ - s + m - n, 1 ~ s ~ m. 

Then 

g(Yk\, ... , k'm) ~ Og(ai\, ... , ai'm) + c,o g(j3i 'I , ••• , {3i'rJ 

THEOREM 4: Let A, B, C, g be as in theorem 3. Let integers Z;, ... , Z~-m' W;, .. . , W~-m 
satisfy 

o ~ Z; ~ ... ~ Z~_m' O~W'I~" .~W' , n- m 
Z' +W' ~ m. 

n- m n- m 

Let 

n- m n- m 

I~ = s + L oZp(s), 
p = 1 

J~=s+Low' (s), 
p= l p 

n- m 

K~ = s + L oZp + w; (s), s=I, ... , m. 
p - I 

Then 

g(YK\, ... , YK~) ~ Og(aI\, ' .. , aI 'm) + c,og(j3J\' .. . , {3J~J 

PROOF: Letf(xt, ... , Xm) =g(-x), . .. , -Xm) and apply theorems 1 and 2 to -C=O(-A) 
+c,o(-B). This yields theorem 3 in a straightforward manner. To obtain theorem 4 take Zs=m 
- Z;n+l- s and use 1- oz(m + 1- s) = Om-z (S). 

From theorems 1-4 we deduce 

F(y"" . . , Yh'",) ~ OF(ai" . ., aim) + c,oF ({3j" . ., {3j",) 

F(YK" . . , YK m ) ~ OF(al" . ., al",) +c,oF({3J," . ., {3Jm ) 

C(Yk" , . ., Yk lll ') ~ OC(ai", . ., LXi",') + c,oC ({3J1', . ., {3j III , ) 

C(YK," ' . , YKm') ~ OC(a/", . . , al lll ,)+c,oC({3J" , . " {3JIIl') 
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where F is symmetric, concave, and nonincreasing on Y x ... X Y , and G is symmetric, concave, 
and nondecreasing on YX .. . XY. One merely applies Theorems 1-4 to/=-F and g=-G. 

REMARK 2: Let A , B be positive definite and set C=A + B. Let g(XI' ... , Xm) =X;-I + ... 
+x;nl. Writing C=t(2A) +t(2B) , we obtain from theore m 3 the inequality 

111 m. m 
4 ~ - 10< ~ - 1+ ~ {3 - I L.J Y ks' -...: L.J O i..;;' L.J )s' . (10) 

S=I s= I s= I 

In particular if we take i; = s and j~ = n - m + s, for s = 1, . . . , m , then (10) becomes 

m m m 

4 L ysl :,,;: L a s l + L f3 ;;!.m+s ' (11) 
s=1 s= 1 s= 1 

If in theorem 4, we set Z; =. . . = Z~- lII = m, W; =. . . = W;,-m = 0 and use this same g we ob­
tain (11). The inequality (11) is clearly sharper than the inequality 

m m ttL 

2 L y s l :,,;: L asl + L f3 n~lII +S ' (12) 
8=1 s=1 s= I 

The inequality (12) was proved in [2] under the additional hypothes is m :";: n/2 . Thu s theore ms 3 
and 4 both substantially generalize a nd sharpen theorem 2 of [2]. 

By furth er specializations of theore ms 1 and 2 ma ny additional nonlinear inequaliti es may 
be writte n down. In partic ular many of the res ults in [3, chap. 2], [4] , [10, p. 110J may be generalized. 

REMARK 3 : If in theore ms 1 a nd 2, we let A, 8 , C = eA + 1>8 be not necessaril y Hermitian 
matrices and we let the numbers (1) denote the singular values of A, 8 , C respectively , the n the con­
clusions of theore ms 1 and 2 remain valid. This is because the inequalities (3) and (5) are known to be 
valid for the si ngular values of matrix sum s. By thi s type of device many of the sin gular value 
inequalities in [1 , chapter 2] and [4] may be be substantially generalized. 

REMARK 4: The results of theore ms 1 and 2 are used in [6]. 

3. A new inequality for the singular values of a matrix product. 

THEOREM 5: Let A, B, C = AB be a product 0/ not necessarily Hermitian matrices. Let (1 ) 
deonote the singular values 0/ A, B, C respectively. Let I s, Js , K s denote the integers defined in 
theorem 2. Then 

m m 

L YKs :,,;: L CXIsf3J s ' (13) 
s= 1 s= 1 

PROOF: The inequality 

111 m. 

IT Yxs :";: IT CX/ s f3J s 
8=1 s=1 

is kn own [9]. As in the proof of theore m 2 it implies 

r r 

IT "Yxs:";: IT CX/sf3J s 
8=1 S=I 
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for each r= 1, ... , m. If we set 

Cs = lOgYKs' 

then CI +. . . + C r ~ d l +. . . + d r for r = 1, . . ., m. The function f(xl' ... , xm) = exp XI +. . . + 
exp Xm is convex and increasing and hence exp CI +. . . + exp Cm ~ exp dl +. . . + exp dm. This 
immediately yields (13). The inequality 

m m 

2: Yks ~ 2: Ciisf3i s 
s= 1 s= 1 

is also true and was proved by the same method in [9]. 
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