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Eigenvalues of Sums of Hermitian Matrices. lIl.*

Robert C. Thompson** and Linda Freede Garbanati**

November 2, 1971

Two classes of nonlinear inequalities for the eigenvalues of sums of Hermitian matrices are
obtained. These nonlinear inequalities are shown to follow from linear inequalities established in
parts I and II of this series. A new inequality for the singular values of matrix products is also obtained.

Keywords: Eigenvalues; linear inequalities; singular values.

1. Introduction.

Let C=A4+ B where C, A, B are Hermitian matrices. In recent years a number of inequalities
have been established linking the eigenvalues of C, A, B. For the most part these inequalities are
linear, but a number of nonlinear inequalities are also known which involve convex or concave
functions of the eigenvalues. Generally speaking, the methods used to derive the linear inequalities
work equally well in deriving these nonlinear inequalities. These methods are based on the extremal
properties of eigenvalues or on induction and the Cauchy interlacing inequalities. A defect of
the use of these methods when deriving nonlinear inequalities is that they do not clarify whether
the nonlinear inequalities are consequences of the linear ones. There is, however, a third method
which derives nonlinear inequalities from linear ones. It is the purpose of this paper to use this
third method to obtain several new families of nonlinear inequalities for the eigenvalues of matrix
sums. It will turn out that our new inequalities include as a special case a generalized and sharp-
ened version of an inequality recently proved by Marcus [2].! We shall also derive a previously
unnoticed inequality for the singular values of a matrix product.

2. The Main Results for Sums

THEOREM 1: Let integersii, . . .,im»Jjis - + «»jm SAtisfy
=i <...<ip=n, I1=p<. . .<jmsn, inTJjmn— m=<n.
Set
ki=is+js—s for s=1,. . .,m
Let 0<0<1, 6+¢=1 and let A, B, C=0A + ¢B be n-square Hermitian matrices with eigenvalues
=, . . ZanBi=. . =B, . =Yy, (1)
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respectively. Let f(x;, . . ., xn) be a real-valued function, convex, symmetric, and nondecreasing in
each x for (xy, . . ., Xm) lying in the m-dimensional hypercube S X. . .X . where J is the interval

I = [min (an, By), max (a1, B1)].
Then

fyiy - - s vi) < Of(aiy, . - - ou)Fof(Byys -+ .. Biy)- )
PRroOF: The inequality

m m m
271\'3 = 02 ais+§023js (3)
s=1 s=1 s=1

is known [7, Theorem 1]. Applying this for r in place of m, we have

r r r

Sy<0Y ai,+e> B, r=1,....m.

s=1 s=1 s=1
If we let

Cs= Yiy, ds= Oati, + 0B, s=1,.. .,m,
thenc;=. . . Zcp,di=. . .=dp,andei+. . .+er<d+. . .+d,forl <r=< m. These con-
ditions are known [5, Theorem 15] to imply that f(ci, . . ., cm) <f(di, . . ., dn). From this (2)

is immediate.
This proof uses only standard techniques. Rather more interesting and surprising is that these
same techniques can be used to establish the inequalities of the next theorem.

THEOREM 2: Let C=60A+ ¢B and f be as in Theorem 1. Let Z,, . . ., Zon_m, W1, . . ., Wn_m
be integers satisfying

Z,S...Szn_mSm, WIS...ﬁwn_mﬁm, Zl+W12m.

Let 8,(y) be a jump function; 8,(y)=1ify > x and 8,(y)=0if y < x. Let

IS=S+8Z1(S)+ c o o +8Zn~m(s)’
Js=s+dw,(s)+ . . . +8w,_,(5),
Ks=s+06z4wy-m(8)+ . . . +0z,_+wy_m-m(S)s s=1, ..., m
Then
f(YKu .. -,’)’Km) < ef(alu D) a[m)+¢f(,3Jp .. -’BJm)- (4)

ProoF: The following inequality is known:

m m m
E Vis S 02 als+¢) 2 B-ls' (5)
s=1 s=1 s=1

This inequality may be obtained from Theorem 4 of [8] by using 8,*(y) = 8,-1(y). In order to prove
(4) we need to show that

D VSO0 atd > B, (6)
$=1 s=1 s=1
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holds for each r=1, . . ., m.For if this is so then the proof of Theorem 1 applies here also. Define

nonnegative integers u and v by

H=...=Zv=1<Zwvi=. . - =Znn,
Wi<...sW,sr<Wmis<...<Win
Without loss of generality let u < v. Define &< ... <§,.,.
W <. ..<wprby
&E=Zi—(m—r), .. &u=Zv—(m—r), &1=1, . . . Er=T
o =Wi, .. .,00=Wop,0ps1=T, . . ., On_r=T.

Then also & +w; = r. Set
=s+8¢(s)+ . . . +8¢,_,(s),
Qs=s5+84,,(s)+. . .+8,, ,.(s),
Ri=5+8¢1+w01-r(s) +. . .+ 8ep_rrwn_r—r(s), s=1, .. .,r

Writing down the inequality (5) with r in place of m we have

r 7 3
Z yks = 02 al’s+d)2 BQS‘
s$=1 s=1 s$=1

Now for s <r we have

Py=s+ S 8¢p(s) =5+ 8,(s) =s+ i 82,(s) =1,
p=1 p=1

p=1
because
8¢, (s)=0fors<r and p>u;

8¢, (8) =8z, -m—r) () =8z,(s) for p<u.

For s <r we have

Q=5+ 3 8u,(s) =5+ 3 8, (s) =5+ 3 dw, (s) =5+ 3 dw,(s) =Js.
p=1 p=1 p=1 p=1
since

8u, (s) =0=25w,(s) for p > .
Furthermore, for s <r (using Z,+W
have

K323+2u8Zp+u'p_m(s 2 87,)-,.]4‘)7)71(3 >S+26§ﬂ+mp_r S)+ E 8‘"0
p=1

p=u+1 p=u+1

_5+28§p+mp~r(3)+ 2 8§p+wp r(s)

p=u+1
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Thus, for s=1, . . ., r, we have Py =1, Q;=J;, K= R;. From this it follows that (6) is a con-
sequence of (8). This completes the proof.

REMARK 1: In fact we have proved that if f(x;, .. ., x) is convex, symmetric, and non-
decreasing then

Sks « « o Yiy) < Of(ouys -« oy o) +0f (Biys - - -5 By) for r<m. 9)

That the inequality (9) for r < m is valid is a new result even when f is linear.
As a consequence of theorems 1 and 2, we obtain theorems 3 and 4.

THEOREM 3: Let A, B, C be as in theorem 1. Let g(xi, . . ., Xy) be a real-valued function,
symmetric, convex, and nonincreasing in each variable when (xi, ..., Xm) €3IX ... X3. Let
s o o oo Qs Jis « « «» Jms> Kis « « .» kiy be integers with

1<ij<...<i,<n, Isj<...<j,<n, ii+j;>n+1—m,

ki=ii+ji—s+m—n, l<s<m
Then
EVkp - - - k’m) < Og(ai’la BRI ai’m)+‘Pg(BJ”19 cees Bj’m)-
THEOREM 4: Let A, B, C, g be as in theorem 3. Let integers Zi, . . ., Zy_n, Wi, . . ., Wi_m

satisfy

0<Z < <7 osW'=< =W Z  +W =m

1 T n—m’ 1 e n—m’ n—m n-m :

Let

n-m n—m
=g 0 8z,(s), ==t RE N (=)
p=1 p=1 ?

n—m
K;=s+2 8z, + w; (s), s=1,..., m

=
Then
8¥kys - - o> Yir) < Oglouy, - - o5 o )+ 0gBygs - - -, Buy)

Proor: Let f(xi, . . ., xm)=g(—x1, . . ., —xm) and apply theorems 1 and 2 to —C=6(—A4)
+¢(—B). This yields theorem 3 in a straightforward manner. To obtain theorem 4 take Z;=m
—Zmii—sand use 1 —=8,(m+1—s) =8m_z(s).

From theorems 1-4 we deduce

F(Yky o o o Yiy) =0F (0, . . ., i) +oF (B, . - -, Bi,)
F(vky o« o3 Vi) =O0F (. . o, ap,) +oF By, . . -, Biy)
G(Yiys o o oo Yiw) =06 (aiys « o oy i) TG (Bors - o -1 Bi)
G(Yiys o o oo Yiw) = 0G(ouys o . s ay) @G (Brys o s Br)
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where F is symmetric, concave, and nonincreasing on £ X . . . X .#, and G is symmetric, concave,
and nondecreasing on .# X . . .X.Z. One merely applies Theorems 1-4 to f=—F and g=—6.

REMARK 2: Let A, B be positive definite and set C=4+B. Let g(x1, . . ., xm)=2x7'+. . .
~+ x;71. Writing C=%(24) +3(2B), we obtain from theorem 3 the inequality

m m m
4y 'S Y Y B (10)
s=1 s=1 s=1
In particular if we take iy=s and j;=n—m+s, fors=1,. . ., m, then (10) becomes
m m m
4 2 vil < 2 ol + 2 (B (11)
s=1 s=1 s=1
If in theorem 4, we set Zi=. . .=Zy_w=m, Wi=. . .=W,_,»=0 and use this same g we ob-

tain (11). The inequality (11) is clearly sharper than the inequality

m

2> vil= 2 a7+ i Bitmss- (12)
$=1 $=1 s=1

The inequality (12) was proved in [2] under the additional hypothesis m < n/2. Thus theorems 3
and 4 both substantially generalize and sharpen theorem 2 of [2].

By further specializations of theorems 1 and 2 many additional nonlinear inequalities may
be written down. In particular many of the results in [3, chap. 2],[4], [10, p. 110] may be generalized.

REMARK 3: If in theorems 1 and 2, we let 4, B, C=60A4+ ¢B be not necessarily Hermitian
matrices and we let the numbers (1) denote the singular values of 4, B, C respectively, then the con-
clusions of theorems 1 and 2 remain valid. This is because the inequalities (3) and (5) are known to be
valid for the singular values of matrix sums. By this type of device many of the singular value
inequalities in [1, chapter 2] and [4] may be be substantially generalized.

REMARK 4: The results of theorems 1 and 2 are used in [6].
3. A new inequality for the singular values of a matrix product.

THEOREM 5: Let A, B, C=AB be a product of not necessarily Hermitian matrices. Let (1)
deonote the singular values of A, B, C respectively. Let , Js, K denote the integers defined in
theorem 2. Then

m m
Y vk <D By, (13)
s=1

s=1

ProoOF: The inequality

m m
H VEs S H alsB-/s
$=1 $=1

is known [9]. As in the proof of theorem 2 it implies

T

r
l_[ Vi S H alsﬂ-/s
s=1

s=1
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for eachr=1, . . ., m. If we set

cs=log y,,

thenc;+. . .+e,=dy+. . .+d, forr=1, . .

(X}

exp Xq is convex and increasing and hence exp ¢;+.

immediately yields (13). The inequality

m
E Yis S
s=Il

d;=log a; B,

m. The function f(x;, . . .,xpn)=exp x;+. . .+

. .+expepn<exp di+. . .+exp dy This

m

2 a; B

s=1

is also true and was proved by the same method in [9].
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