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A class of optima l quadrature formulas de fined by V. L. N. Sarma in a probabilist ic context is 
shown to be identical with a class of formulas defined previously, in a different manner , by P. J. Davis. 
As a result a contrast is drawn between the maximum of the error of a quadrature fomula over the unit 
s\.l here in a certain function space, and its average- in Sarma's sense-over that sphere. 
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A few years ago V. L. N. Sarma [1] I defined a probability measure on a certain space of func· 
tions and proposed that quadrature formulas be studied in terms of their average error on this 
space. If 

x 
Q(f) = Q.df) = 2: a,-!(x,) (1) 

1' = 1 

IS any Npoint quadrature formula, and E(l(f) =/(f) -Q(f) where /(f) is the integral which Q 
is approximating, we shall denote by "cr(EQ)" the "RMS" average of Ell with respect to Sarma's 
measure. Sarma calls a formula Q.I' "completely optimal" if cr(EC1s) :s; cr(ECl ~\,) for every N·point 
formula Q~; and he calls it "optimal in the weights" if cr(EClN ) :s; cr(EC1f..' ) for every Npoint Q ~ using 
the same points XI, X2, . • . , xx. It is the purpose of this note to point out that, in the case of 
integration of functions of one variable, Sarma's optimal formulas are identical with those defined 
earlier by P. J. Davis in a quite different manner; and to discuss some consequences ofthis identity. 

In the one·variable case, Sarma's space consists of all those functions analytic in the open 
unit disk whose Taylor series 

x 

f(z) = 2: allz" (2) 
11 = 0 

satisfy the condition 

'" 2: lalll = 1. (3) 
11 = 0 

The integral considered is 

/(1) = fl f(x)dx; (4) 
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1 Figures in brackets indicate the literature references al the end of this paper. 
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and he showed that the average error cr is given by the formula 

x 

cr2(EQ)=~ 3- 11 - 1 (EQ(X"))2 (5) 
11 = 0 

([IJ, p. 610). 

In 1953 , P. J. Davis [2] introduced another measure of quadrature error for analytic functions. 
In the notation of [3], Davis considers the integral (4) for / belonging to the Hilbert Space H2 (C II ): 

the space of all those functions analytic in the disk Izl < R (where R is any number > 1) whose 
Taylor series satisfy the condition 

x 

~ la/l1 2R2/l < 00. (6) 
11 = 0 

The inner product is defined by 

(f, g)u = 27TR i a ll bllR211= ( /(z)g(z)ds 
11 = 0 JC II 

(7) 

where all and bll are the Taylor coefficie'nts of / and g respectively and CII is the circle Izl = R; 
s denotes arc length. For any Q of the form (1), with quadrature points x,. inside CII , Ell turns out 
to be a bounded linear functional, and its norm is given [3] by 

IIEQllk = 2~R i R - 211 (E(~ (X"))2. 
11 = 0 

(8) 

A knowledge of this norm affords us the error bound 

II(I) - Q (f) 1 :s; IIEQ 11· ll/t 

and Davis defined optimality of quadrature formulas in the same manner as Sarma, with the 
norm 1 1£t~11 in place of cr(EQ). 

Comparison of (5) and (8) shows that 

\13 ; (9) 

since the two measures of EQ differ by a constant factor, it follows that the quadrature formulas 
optimal in Sarma's sense are precisely those optimal in Davis' sense for the space H2 (C V3 ). 

The H2 spaces have many convenient analytic properties, and the norms IIEQIIII have been 
studied for various Q's ([4], [5]). In [3] I showed that for Q= GN - the N-point Gauss-Legendre 
quadrature formula (for a description of these formulas see , e.g. , [6], chap. 8)-we have the bound 

(10) 

where 

(11) 

and 

A = 32e 1/27T - 3 /2p - I/4 P'J P _ 'J • ( 
1/2 + - 1/2) 1/2 

p l/_ - P 1/- (12) 
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If R= \13, then p=5+2V6, and it follows that IIP;vll v'3 goes to zero about as fast as (0.1010)N, 
'x or faster. In a recent paper [7], Sarma and A. H. Stroud calculated a(P;N) for N =2, 3, 4, ... , 

20, and observed that a(P;x)/a(E(;v - I) was very close to 0.10. Because of the relation (9), this ratio 

\ 

is the same as 

and these data seem to indicate that the left side of (10) does, indeed, give about the right rate of 
decrease for IIP;NI In-

(Sarma and Stroud remark that a(E(;N)/a(£I;.v- I) appears to be approaching 0.1 as N ~ 00. 

A closer look at their data suggests that the limit is somewhat higher. If one calculates the first 
differences of the successive values of a (EG N) / a (£I; N - 1 ) , it is seen that these differences are posi­
tive and decreasing, and the ratios of successive differences are increasing. If this behavior con· 
tinues for higher N, a(£I;N)/a(E(;N-I) must eventually become greater than 

(13) 

where 

The quantity (13) is greater than 0.1003; so it appears that the Sarma-Stroud data are consistent 
with the ratio of the a's approaching (5 + 2 V6) - I). 

It is interesting to compare Sarma's a with a very' directly related error bound. Following 
Sarma, let S be the space of all those functions analytic in the open unit disk whose Taylor series 
(2) satisfy 

00 

2: lanl < 00, (14) 
11 = 0 

and define 
x 

11/ 11s= 2: lanl· (15) 
11 = 0 

S is a Banach Space, isomorphic to the space LI of absolutely convergent series of complex numbers. 
Sarma's a(E(J) is a root-mean-square average of EQ over the unit sphere in S. In contrast, the norm 
of EtJ - regarded as a functional on S - is the supreme of IEtJ l on the same unit sphere. This nom) , 
which I shall denote by "11£l11Is" allows the error bound 

I/(f) - Q(f)1 ~ IIEtJl ls . lillis, (16) 

In the spirit of Davis ' approach, IIPJlls would be used in place of a(EIJ). Let us compare the sizes 
of these two quantities: 

For e very R > 1, if I€H2 (C n) then I€S; and if we write 

II/II/!= (f,f) It = {27TR f lanI2R2n}1 /2, 
n=O 

we may compare 11f11/! and 11f11s. Setting bn = lanlRn, we have 

(~o lalll y = (~o b"R -n Y 

~ (f b~l) (f R-2n) 
n = () 11 = 0 
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by the Schwartz inequality; and it follows that 

Ilflls ~ K(R) I lfl III (18) 

where 

( R )1 /2 
K(R) = 2II(R2 - 1) . (19) 

Therefore 

(20) 

The experimental evidence seems to indicate that, for Q = Gx , the asymptotic behavior of IIEG"'IIR 
for large N is correctly given (at least to within factors like Na) by the right side of (10). If this is 
so , then (20) shows that 11E(;Nlls =/= O(C - N) for any C > 1, while (by (9), (10) , and (11)) (T(E(;,) 
= 0(3 - NNI /2). Equation (16) may be a very conservative bound; in numerical experiments [8] an 
analogous bound has been found to be considerably larger than the actual quadrature error. Since 
Sarma's "average error" (T(E(;,\') appears to be very much smaller than the right side of (16), it 
would be interesting to know whether it does, indeed, represent the "average" behavior of quad­
rature formulas for the integrands arising in the course of practical numerical work. I do not see 
how to answer this question. 
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