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An improve me nt of the c lass ical Fische r inequality for the determinant of a pos itive defin ite 
hermitian matrix is proved. It is used to analyze the Hadamard determinant theore m. 
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1. Introduction 

Let H = (hij) be an n-square positive semidefinite hermitian matrix , n ~ 2. The jus tly famous 
Hadamard de terminant theorem [3; 1, p. 64; 5 , p. 114]1 states that 

11 

IT hll ~ det H. 
1=1 

Two of the many generalizations of this theorem are of interest to us. 
Partition H, 

so that H22 is k square. E. Fischer [2; 5, p. 117- 118] proved that 

de t HII de t H 22 ~ det H. 

One obtains Hadamard 's theore m from Fischer's by induction. 

(1) 

In 1918, I. Schur [7] extended Fischer's inequality. He defined certain matrix func tions: 
Let C be a subgroup of the symmetric group 51/. Suppose A is a charac ter of degree s on C. Then 

/I 

d(H) =1; A(U) D h((T(t). 

If C = 51/ and A = sgn, d = det. If C = 51/ and A = 1, d = per (permanent). Finally, if C = {l} then 
/I 

d (H) = s IT hit. Schur proved that 
(=1 

d(H) ~ s det (H ) . 
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If S~. is the symmetric group on {n-k+1, . .. , n}, G=SII_kXS~" and A.=sgn, one obtains 

Fischer's inequality. 
In this note an inequality improving Fischer's is derived. Though the methods are simple, 

the result allows a sharp analysis of Hadamard's theorem. 

2. Results 

THEOREM 1: Let H be a positive definite hermitian matrix partitioned as in (1). Then 

with equality when k = 1. 
When n = 2k, the result becomes 

det HII det H22 -det Hi2 det HI2 ~ det H, 

a special case of Schur's theorem. 

Before proving Theorem 1, we introduce the Schur complement of H I I in H as 

LEMMA (known): If H is positive definite hermitian, so is (H/H II); and det H = det H II det 
(H/HII ). 

PROOF: Haynsworth [4] has noticed that 

Hence, (H/ H II) is POSItIve definite because the nonsingular congruence, Q* HQ , preserves 
positive definiteness. The determinant formula (due originally to Schur) follows because det Q = 1. I 

PROOF of THEOREM 1: It is a well known and elementary fact that if A and B are positive ( 
semidefinite hermitian matrices of the same size then 

det (A + B) ~ det A + det B. 

(In fact, a much stronger result is known, namely the Minkowski determinant theorem [5 , p. 115].) 
Using this fact, the definition of (H/HI d, and the lemma, we see 

(Clearly, (2) is equality when k = 1.) Multiplication of (2) by det H II yields the result. 
We proceed to use Theorem 1 to analyze Hadamard's theorem. 
THEOREM 2: Let H be positive definite hermitian. Suppose Ut is the row vector (h t, 1, ... , ht,H), 

and H t is the leading tXt principal sub matrix ofH. Then 

and 

/I 

hll IT (htr-utHt~lun =det H. 
1= 2 
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In a certain sense, Theorem 2 gives the final word on the Hadamard theorem. It shows just 
what is being thrown away to obtain the inequality. 

PROOF: The proof is by induction on n. From Theorem 1 (with k = 1), 

But, det H II _I, det H > O. Hence (h llll - UIIH-;;~ I u~) > O. By induction, 

/I - I 

detHII _I = h ll IT (hll-UtH(.lluj) 
(= 2 

and (h ll - UHf_II un > O. 
(Alternatively, one can prove, using the Laplace expansion theorem [5, p. 14] , that 

detHt 
det H t - I 

Using different methods, Marcus and Soul es [6] obtain ed Theorem 1 for the case k= 1. They 
also obtained a n analog of it for the permanent. They used their result to prove Theorems 3 and 4 
(below) but failed to notice Theorems 2 and 5. 

THEOREM 3: Let H be positive definite hermitian. Let U t and H t be as in Theorem 2. Then 

II IT hlt-det H =(det HII'_ I )UIIH -;;~ IU II 
/ = 1 

The proof is an easy induction on n. 
THEOREM 4: Let H be positive definite hermitian with minimum eigenvalue 11-. Then 

/ = 1 i<j 

PROOF: Let pn - k be the largest eigenvalue of H n - k. Cauchy's inequalities [5 , pp. 119] yield 

II 

(i) IT hu ~ 11- ,," - 1, 
/ = n - k +2 

(ii) det Hn - k ~ Pn _ kl1-" - k - l , 

The result follows from (i), (i i), (iii), and Theorem 3. 
THEOREM 5: Let H be positive definite hermitian with largest eigenvalue p. Then 

n det H IT hu - det H ~ -2- L Ihijl2. 
/=1 P i<j 

(3) 

PROOF: For 1 ~ k ~ n, let H(k) denote the submatrix of H obtained by deleting row and 
column k. Then 
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(i) (=nU+2 htt ) det H n - k ~ det H(n - k + 1) , 

(ii) det H(n - k + 1) ~ p - I det H, 

( ... ) H I * III 112 III U n - k + l n - kUn - k + l ~ p - U n -k+ l . 

Number (i) follows by induction on Fischer's inequality or from Schur's theorem. Numbers (ii) 
and (iii) follow from Cauchy's inequalities. The result follows from (i), (ii), (iii), and Theorem 3. 

Theorem 5 can be restated as 
THEOREM 5': Let 11.1 , ., An be the eigenvalues of the positive definite matrix H. 

Then 

n (htt) 1 n II ~ - 1 ~ 22 L (AT - hit) ~ o. 
t = 1 P t = 1 

PROOF: Divide (3) by det H = Al ... An and observe that 

i <j i = 1 i = 1 

The author is pleased to acknowledge helpful discussions with Alan Goldman. 
Note Added in Proof: It has been pointed out to me that theorem 1 was proved by Frederic 1'. 

Metcalf, A Bessel·Schwarz inequality for Gramiams and related bounds for determinants, Ann. 
Mat. Pura ed Appl. 68,201-232 (1965), corollary 10.2. 
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