
Exact

JOURNAL OF RESEARC H of the National Bureau of Standa rds- B. Mathemat ical Sciences
Vo l. 75B, Nos. 1 and 2, January-June 197 1

Solutions of Linear Equations With
Coefficients *

A. S. Frae nkel ** a nd D. Loewenthal***

(January 11, 1971)

Rational

Improvements of a congruential method for finding the exact solutions of systems of linear equa·
tions with rationa l coefficients are described. Typical execution times on the CDC 1604r-A are given ,
as well as the Fortran program.

Key words: Congruences; exact solutions; linear equations ; modular arithmetic.

1 . Introduction

An algorithm for computing the exact solutions of linear equations with rational coefficients,
and its computer implementation, were described in [1].1 The basic idea of the algorithm is to
convert the original system of equations into a system of congruences modulo various primes
Pi, and combining the solutions by a procedure suggested by the Chinese Remainder Theorem.
This process is continued until the sequence of solutions modulo PIPZ ... Ph", k= 1, 2, . . .
converges to the true solution. The major part of the computation is performed in single precision.
See also Newman [4] who used the method for computing the inverses of ill-conditioned matri ces ,
and Knuth [3, p. 256], who remarked that for ill-conditioned matrices the procedure "gives a

\ method for obtaining the true answers in less time than any known method can produce reliable
) approximate answers!"

Our program provides for a final substitution check for verifying convergence , i.e. , verifying
that the computed values satisfy the original system. It is applied after two successive iterations
produce no change in the solution vectors. If so implemented, and assuming sufficient memory
space, the method produces the exact solution space for any solvable linear system with rational
coefficients. Moreover, the algorithm is effective, in the sense that the exact solution space is
produced within a reasonable time for systems that are not too large. It cannot end up with a
wrong or no solution, as additional iterations are made should the substitution check fail.

The implementation of the algorithm has since been improved. As a result, the computation
of the 9 independent exact solutions of a system of 111 homogeneous equations in 120 unknowns
of rank 111 with integral coefficients in the range [- 2180, 2568] which took 60 min on a CDC
1604-A by the old method, now takes only 19 min on the same computer. The program is still
in the form of standard Fortran subroutines, and no pains were taken to write a particularly eco­
nomic program.

In the sequel it is assumed that the reader is reasonably familiar with the essential fea tures
of [1].

AMS Subject Classification: Primary 1006, Secondary 6535.

*An invited paper. This work was sponsored, in part, by the U.S. National Bureau of Standards. Reproduction in whole or in pari is permitt ed for an y purpose

of the U.S. Covernment, CP #966l.
**Universjty of California, Los Angeles. Permanent address: The Weizmann Institute of Science, Rehovol, Israel, and Bar lIan University, Ramal Gan.I srae l.

***Tel·J..viv University, Ramat Aviv, Tel·Aviv, Israel.

1 Fi/!:ures in brackets indicate the literature references at the end of this paper.

67

2. The Improvements

There are four main improvements: Use of larger primes; using the Cantor representation
for constructing the solution mod PIP2 . . . Pi{ after the kth iteration (by the Chinese Remainder
Theorem); a logical simplification in determining whether to retain or discard a new prime; and
using a faster algorithm for finding the greatest common divisor (g.c.d.) of the components of
any solution vector. These improvements will now be described one for one.

(i) Use of larger primes. In [1], primes of the order of 101, just less than half the machine
word length, were employed. Primes of the order of 1014, just less than one machine word are now
used. Such primes were supplied to us through the courtesy of Herschel F. Smith from IBM.
This saves about half the number of iterations (primes). In the above example, it reduced the
number of iterations from six to four. Of course, we could have used the squares of primes of the
order of 107 to obtain the same effect. However, the probability that a prime divides any of the
principal minors of a matrix decreases with the size of the prime. Hence it is of some advantage
to use the largest primes just less than a machine word.

(ii) Use of the Cantor representation. Let ml , ... , ms be odd positive integers, relatively
prime in pairs. Any number N in the range

is uniquely representable by the Cantor representation, also referred to, by several authors, as
the mixed radix representation:

where

i = 1, 2, ... ,s.

The Cantor representation of a number given by its residues mod mj, i = 1, 2, .. . , s, can
be determined by computations in which all numbers occurring have absolute value not exceeding
max mj, in the present case single precision. See e.g. , [2]. The solution check of [1] is now per·
formed when for any fixed k, ak = 0 for all components of the solution vectors.

Thus , the main computation of the solution vectors is now performed in single precision,
resulting in a large time saving. Multiple precision is required only in the final conversion of the
Cantor representation to decimal representation, and in the - optional- subsequent computation
of the g.c.d. of the components of each solution vector.

(iii) A logical simplification. On pp. 110-111 of [1] , a method was described which guaran·
tees that each triangularization converges to the same largest nonsingular submatrix of the coeffi·
cient matrix A. For this, a lexicographic ordering of rows and columns of A had to be checked. This
has now been changed as follows: The triangularization of A (mod PI) induces a certain interchange
of rows and columns in A. If P is the rank of A mod Ph let iJ, ... , ip, h, .. . , jp be the rows and
columns of A appearing in the triangularized principal submatrix of order p. The rows and columns
of A itself are now reordered, so that iJ, . . . , ip , jJ, . . ., j p appear as its first p rows and col·
umns. Call this permuted matrix B. In each subsequent iteration mod Pi (i > 1), the triangulariza·
tion is performed without changing any of the first p rows and columns in B. In the triangularized
matrix, denote by Pi the order of the largest nonsingular principal submatrix. If Pi < p , Pi must be
discarded; if Pi > p, the primes PI, . . ., Pi- l must be discarded and a new matrix B with a greater
rank is formed from A; if Pi = p , which is the normal case, the solution mod Pi is used to determine
the coefficients ai of the Cantor representation of all components of the solution vectors.

This modification does not save much time. In practice it only saves logical operations and
manipulations , as it almost never happens that a given large prime divides a nonzero principal
mmor. However, the logical simplification results in a more compact and elegant program.

68

r
I

(iv) Computation of the g.c.d. The last step in [1] was to find the g.c. d. of the components of
each of the solution basis vectors and to divide them out, so as to obtain primitive solutions, i.e.,
solutions such that the g.c.d. of the components of each solution vector is unity. Instead of com·
puting the g.c.d. by the Euclidean Algorithm, i. e., by a series of multiple precision divisions , it
is found by a series of shifts, using an economic algorithm of Stein [5], which, according to Knuth
[3, p. 297], was previously given by Silver and Terzian:

Let t be any positive integer stored in binary form in a computer register. The highest power
of 2 dividing t can easily be determined by shifting t to the right until its least significant nonzero
bit is located in the least significant position of the register. This results in an odd integer t' = 2 - kt.

We shall designate this operation by shift, i. e., t' = shift(t}.
Let a, b be two positive integers, and let

ao =shift (a)=2 - k a, bo =shift (b)=2- lb.

Let m = min (k, l). The algorithm now proceeds as follows:

al = shift lao - bol ,
a2 = shift lal - bd,

b l = min (ao, bo)
b2 = min (aI , b l)

an = shift lan- I - bn- II, bn = min (an - I , bn- I)

an+1 = shift Ian - bn l.

The procedure terminates when an = bn, and then (a, b) = 2 l11 a n •

In our example, a multiple precision g.c.d. was obtained for each of the 9 solution vectors.
The computation of these g.c.d. and di Jiding them out now takes 2.5 min instead of the previous
7.5 min.

Finally, we should remark that the substitution check, which is also a multiple-precision
operation , takes 6 min for our example. It is extre mely rare that a substitution check fails when
large primes are used, and therefore it seems reasonable to dispose of it in general. In fact , no
substitution check is normally made in any of the conventional iterative schemes for solving
linear equations - including those for which convergence is not guaranteed a priori even when the
system is known to be solvable.

On the other hand, it is easy to fabri cate a failing case. For simplicity assume that there is
only one solution vector V = (v), V2, ... , vd, whose Cantor representation is

where PI , P2, ... are distinct primes. For obtaining a failing case, we simply choose aik = 0,
1 ~ i ~ t, and aij , j =1= k arbitrarily , with the only condition that ail =1= 0 for some l > k and for
some i.

A vector Vof this form can clearly also be characterized as follows. Suppose that V"· - I = (V~· - I,
v~· - I, ... , V~'-l) is the solution mod PIP2 ... Pk -), i. e.,

Vi == vjr- I (mod PIP2 ... Pk - d, 1 ~ i ~ t.

Then
for some i

if and only if
for some i.

Disposing of the substitution check and the g.c.d. computation, solution time in our example

69

reduces to 10 min. By comparison, the approximate computation of a well-conditioned 111 X 111
system by standard numerical floating number techniques takes about 3 min on the CDC 1604-A ..

3. Machine Program

The program given below is the full version, i.e., it includes computation of the g.c.d. and the
substitution check imbedded in the program "Solve." The matrix of the homogeneous equations
coefficients is read into the computer from magnetic tape no. 1. Other data to the program is
provided by three data cards. The first card contains three numbers: the number of rows and
columns of the matrix, and the number of primes supplied. The second and third cards contain
the supplied primes.

Functions used in this program are:
"Inv" - computes the inverse of an integer t mod p which is required for solving the system

mod p.
"Irem"-IREM(tJ, t2, p) outputs an integer t satisfying t == tJtz(mod p), - p < t < p. Since

the product t1t2 is normally a double precision number, this routine is written in machine language.
"Shift" - shifts a multiple· precision number to the right k positions until a binary 1 appears

at the least significant position. On its left, k binary zeros are shifted in. Because of its multiple­
precision character, this routine is also written in machine language. In the program listed below
it appears directly after "Irem," before "Setpreci."

"Mod" - MOD (t, p) transforms the single-precision integer t obtained as a result of an addition
or subtraction of two numbers Xi, - (p - 1) /2 :%; Xi :%; (p - 1) /2, i = 1, 2, or of an IREM operation,
to an integer t' satisfying t' == t(mod p) and - (p -l)/2.:%; t' :%; (p - 1)/2.

"Setpreci" - A Fortran subroutine which controls the multi-precision package which is written
in machine language. Because this package is in a binary deck form, it is not included in the
program listed below. Functions used from this package are: "If(Itest(t))" - for checking if a
multiple precision integer t is negative zero or positive; "Multout" -for printing a multiple precision
integer.

PROGRAM SOLVE
COMMON Ml,M2,NZ,M,N,KP,KQ,KI,MA(111,120),IZ(120),NEW(9,9),

1 NT(4,120),KT(20),IY (120)J SO L(120),KSO L(120)JS(112,9 ,6),KG(8)
2 ,KE(8),KF(8),KO(8),NA(6),NB(6),NC(6),ND(6)

TYPE MULTIPL6(6) A,B,C,KG,D,GCD,KC ,KSOL
COMMON/SHIFTS/KK
EQUIVALENCE (A,NA),(B,NB),(C,NC),(D,ND)
READ 55,M,N,NZ
READ 797 ,(KT(I),I = l,nz)
REWIND 1 $ DO 987 1= I,M

987 READ TAPE 1 ,(MA(IJ)J = I ,N)
PRINT 7 ,M,N ,NZ $ DO 63 1= I,M

63 IY(I)= 1$ KR= 0 $ PRINT 2,(KT(I),I= I,NZ) $ DO 94 J = I,N
94 IZ(J)=J $ DO 200 L= I,NZ $ KP= KT(L) $ KQ= KP/2. $ KD= MK= 1

DO 75 I= I,M$DO 75 J = I,N$IS = MA(IJ) - (MA(IJ)/KP)*KP$ IF(IS)76,75,75
76IS=KP+IS
75 MA(lJ) = IS
23 DO 122 K = MK,KR $ IF(IT.EQ.l)10,43

8 PRINT 88,KP $ MS = 1 $ GO TO 201
43 11 = IY(K) $ n = IZ(K) $ KK= MA(I1Jl)
10 MK=MK+l$IF(KK-l)8,33,34
34 KD = IREM(KD,KK,KP) $ 1M = INV(KK,KP) $ DO 32 JL = MK,N $ J2 = IZ(JL)
32 MA (I1J2) = IREM(MA(IlJ2),IM,KP)

70

33 DO 122 1= MK,M $ 12 = IY(I) $ IL = MA(I2Jl) $ IF(IL.EQ.0)122,31
31 DOl] = MK,N$J2 = IZ(j)$IS = MA(I2J2) - IREM(MA(IIJ2),1L,KP)$IF(IS)72,l,l
72 IS = KP+IS

1 MA(I2 ,12) = IS
122 CONTINUE

D06I = MK,M$II = IY(I)$D06J = MK,N$n = IZ(j)$KK = MA(II Jl)$IF(KK.EQ.0)6,5
5 KR = MK$IT = l$IY (I) = IY (KR)$IY(KR) = II$IZ(J) = IZ(KR)$IZ(KR) = n$GOT023
6 CONTINUE $ IW = IT-l $ KF(IT) = KP $ IS = 1 $ KE(I)= 1 $ DO 701= I,IW

II = I + 1 $ IS = IREM(IS,KF(I),KP)
70 KE(Il) = IS

PRINT 51,KP,KD,IT $ IF(IT.EQ. l)47,29
29 IS = KE(IT) $ IV = INV (IS ,KP) $ NU = 0 $ DO 944 KL = I,IW

KS = IREM(KO(KL),KE(KL),KP) $ IF(KS)971,979,979
971 KS = KP + KS
979 NU = NU + KS $ IF(NU - KP)944,974,974
974 NU = NU -KP
944 CONTINUE $ IS = KD - NU $ MS = KO(IT) = MOD(IREM(IS,lV,KP)) $ GO TO 95

47 MS = 1 $ KO(I) = MOD(KD) $ KI = N - KR $ PRINT 56,KR,KI,(IY(l),I = I,M)
PRINT 58,(IZ(J),J = I,N)

95 DO 26K = 1 ,KI$D0261 = 1 ,KR$II = I - l$Kl = KR - Il$MX = 0$D038J = 1 ,1l$K2= MK - J
MX = MX - IREM(JSOL(K2),MA(IY(Kl),IZ(K2)),KP) $ IF(MX)78,38,38

78 MX = MX + KP
38 CONTINUE$IS = MX - IREM(KD,MA(IY(Kl),IZ(KR + K)),KP)$IF(IS)37 .27 ,27
37IS = IS + KP
27 JSOL(Kl) = IS $ IF(IT.EQ.l)28,90
28 JS(KI ,K,I) = MOD(IS) $ GO TO 26
90 NU= O $D044 KL= l,IW $ KS= IREM(JS(KI,K,KL),KE(KL),KP)$IF(KS)71,79 ,79
71 KS = KP + KS
79 NU = NU + KS $ IF(NU - KP)44,74,74
74 NU = NU-KP
44 CONTINUE $ JS(Kl,K,IT) = 0 $ IS = IS - NU $ IF(IS.EQ.0)26,45
45 MS = 1 $ JS(Kl,K,IT) = MOD(IREM(IS,IV,KP))
26 CONTINUE $ IT = IT + I

201 REWIND 1 $ DO 202 I = I,M $ READ TAPE I ,(MA(I,J)J = I,N)
202 CONTINUE $ IF(MS.EQ.0)203,200
200 CONTINUE $ GO TO 80
203 PRINT 153

KG(I)= 1 $ DO 710 I=2,IW
710 KG(I) = KG(I - 1)*KF(I -1)

KC = KO(I) $ DO 720 1= 2,IW
720 KC = KC + KO(l)*KG(I)

C = KC $ IV = 7 - IW $ IF(ITEST(C))751 ,80,752
751 C=-C
752 CALL SHIFT(N C(IV),IW) $ 15 = KK

DO 49 J = I:KI $ NOS= 15 $ A= C $ PRINT 100,1
DO 501= I,KI $ KSOL(KR + 1)=0

50 CONTINUE $ KSOL(KR + J)= KC
DO 40 1= I,KR $ B = JS(I,J,I) $ JSOL(l)= 1 $ DO 42 K = 2,IW

42 B = B + JS(I,J ,K)*KG(K)
CALL MULTOUT(B,51)
KSOL(I)= B
IF(ITEST(B))715,716,717

71

716 JSOL(I)= 0 $ GO TO 40
715 B=-B$JSOL(I)=- l
717 D0718K =1,IW$Il=7-K
718 JS(Ij,K) = NB(I1) $ CALL SHIFT(NB(IV),IW) $ IF(KK.GE.NOS)721,722
722 NOS = KK
721D=A-B

IF(ITEST(D))725 ,40,724
725 D=-D
724 CALL SHIFT(ND(IV),IW) $ A = B $ B = D $ GO TO 721
40 CONTINUE $ GCD = A *2**NOS

PRINT 669
CALL MULTOUT(GCD,51)
DO 7301 = 1,KR $ IF(JSOL(I).EQ.0)730,731

731 DO 732 K= l,lW $11 = 7 - K
732 ND(I1) = JS(IJ,K) $ NV = D= D/GCD $ J2 = IZ(I) $ IF(JSOL(I).EQ.l)733,734
734 NV=-NV
733 PRINT 538,(NT(KJ2),K = 1,Ml)

PRINT 539,NV
730 CONTINUE $ J2 = IZ(KR + J) $ NV = KC/GCD

PRINT 538,(NT(K,J2),K = 1,Ml)
PRINT 539,NV
DO 611 = I,M $ A = O $ DO 52 JL = 1,N

52 A = A + KSOL(JL)*MA(I,IZ(JL)) $ IF(ITEST(A))82,61 ,82
82 PRINT 53J,I
61 CONTINUE
49 CONTINUE
2 FORMAT(J/50X,8H PRIMES. ,//(114,2X))
7 FORMAT(lHl ,3H M=,13,3H N =,13,4H NZ=,13,// ,20X,7H MATRIX,!/)

51 FORMAT(lHl ,50X6HPRIME =,114/150,12H = DETERMINANT/150,llH
ITERATIONS)

53 FORMA T(lHl ,20X,8H NOT YET ,20X,2120) (
55 FORMAT(23I5)
56 FORMAT(J /20X,11HFIRST PRIME,5X,5HRANK =,13 ,5X,8HNULLITY =,13/ /40X,14

IHORDER OF LINES,/ /(231ff))
58 FORMAT(J/ ,40X,16HORDER OF COLUMNS,//(2315))
88 FORMAT(50XI14,23H THIS PRIME WAS DROPPED)

100 FORMAT(lHl,//50X,I3///)
153 FORMAT(J ,20X,32HCONVERGENCE OBTAINED AND CHECKED,//)
538 FORMAT(J,20X,10I3)
539 FORMAT(I20, 8HXl X2 X3,/J)
669 FORMAT(lHl,//50X,6H G.C.D//)
797 FORMAT(5(114,2X))

80 RETURN $ END
FUNCTION INV(KX,KP)
Kl=KP $ K2=KX $ Ml=O $ M2=1 $ IF(K2-1)2,4,5

4 INV = K2 $ RETURN
6 Ml = M2 $ M2 = M3 $ Kl = K2 $ K2 = K3
5 IQ =Kl/K2 $ M3=MI-M2*IQ $ K3=KI-K2 *IQ $ IF(K3-1)2 ,7,6
7 K2 =M3 -(M3/KP)*KP $ IF(K2)8,2 ,4
8 K2=K2+KP $ GO TO 4
2 INV=O

END

72

FUNCTION MOD(IX)
COMMON M1 ,M2;M3,M4,M5,KP ,KQ
IF(IX)1,2,3

2 MOD = IX $ RETURN
1 IF(KQ + IX)4,2,2
4 MOD = KP + IX $ RETURN
3 IF(KQ - IX)5,2,2
5 MOD=IX-KP

END
IDENT IREM
ENTRY IREM

IREM SLJ **
SID 1 IR3
LIU 1 *-1
SIL 1 IR1
INI 1 1
SIL 1 IR2
INI 1 1

IR1 SIL 1 IR3
LIU 1 **
LDA 1
LIL 7 IR1

IR2 MUI 1
LID 1 **
DVI 1
LLS 48

IR3 ENI 1 **
SLJ **
END
IDENT SHIFT

"\ ENTRY SHIFT
/

SHIFTS BLOCK
COMMON NSHIFT

SHIFT SLJ **
SID 1 EX
SIL 2 EX
LIU 1 SHIFT
ENA
STA =SNZ
LDA 1
SAL N
ARS 24
INI 1 1

N SID 1 EX + 2
LIL 1 **
INI 1 -1
SAL BEGIN
SAL CHANGE
SAL LOOP
INA 1
SAU STORE

BEGIN ENI 2

73

LDA 1 **
AJP ZERO
ENQ

SH LRS 1
QJP M NEG
INI 2 1
SLJ SH

NEG LLS 1
ENQ 2
STQ NSHIFT
QJP EX
UP 1 LOOP

EXIT STA 7 BEGIN
EX ENI 1 **

ENI 2 **
LDA NZ
RAD NSHIFT
SLJ **

LOOP STA =ST
LDA 1 **
ENQ
LRS 2
STA =STl
QRS 1
LDA T
ADL =03777777777777777

STORE STA 1 **
LDA Tl
UP 1 LOOP
SLJ EXIT

ZERO SIL 1 =SNN (

ZER01 INI 2 47
UP 1 CONT
ENA -1
STA NSHIFT
SLJ EX

CONT LDA 7 BEGIN
AJP ZER01
SIL 2 =SNZ
LIL 2 NN

CHANGE LDA 7 BEGIN
STA 2 **
INI 2 -1
UP 1 CHANGE
ENA

+ STA 7 CHANGE
UP 2 *
LIL 1 NN
SLJ BEGIN
END

SUBROUTINE SETPRECI(NUM,LOG)
COMMON / MULTINCM / N,IA(50),IC(50),ID(50)

74

DATA (N=6)
RETURN
ENTRY ERR2
PRINT 100,NUM,LOG

100 FORMAT (46H ERROR IN ADDITION TYPE OVER-FLOW CALL FROM
1,016, ,18H FIRST LOCATION ,016)
STOP
ENTRY ERRl
PRINT 101,NUM,LOG

101 FORMAT (49H ERROR IN DIVISION TYPE ZERO-DIVISOR CALL
IFROM ,016, ,16H FIRST LOCATION ,016)
STOP
ENTRY PRINTOUT
WRITE (NUM,102) (ID(K),K = 1 ,N)

102 FORMAT (5X,5(1l4,X))
END

DATA
III 120 10

7908189600581 7908189600583 7908189600587 7908189600589 7908189600593
7908189600599 7908189600601 7908189600607 7908189600611 7908189600613

4. References

[1] Borosh , 1., and Fraenkel, A. 5., Exac t so lutions of linea r equa­
tions with rational coeffi cients by congruence techniques,
Math. of Compo 20,107- 112 (1966).

[2J Fraenkel, A. 5., New proof of the generalized Ch inese Remainder
Theorem, Proc. Arner. Math . Soc. 14, 790-791 (1963).

[31 Knuth , D. E., The art of comput er programming, Vol. 2: se mi­
numerical algorithms, Addison· Wesley, 1969.

[4] Newman, M. , So lving eq uations exact ly, J. Res. Nat. Bur. Stand.
(U.S.), 7lB (Math. & Math. Phys.) , No.4, 171- 179 (1967).

[51 Stein, J., Computationa l problems associated with Racah
Algebra , J. Compo Physics 1,397- 405 (1967).

(Paper 75Bl&2-345)

75

	jresv75Bn1-2p_67
	jresv75Bn1-2p_68
	jresv75Bn1-2p_69
	jresv75Bn1-2p_70
	jresv75Bn1-2p_71
	jresv75Bn1-2p_72
	jresv75Bn1-2p_73
	jresv75Bn1-2p_74
	jresv75Bn1-2p_75
	jresv75Bn1-2p_76

