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Improvements of a congruential method for finding the exact solutions of systems of linear equa· 
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1 . Introduction 

An algorithm for computing the exact solutions of linear equations with rational coefficients, 
and its computer implementation, were described in [1].1 The basic idea of the algorithm is to 
convert the original system of equations into a system of congruences modulo various primes 
Pi, and combining the solutions by a procedure suggested by the Chinese Remainder Theorem. 
This process is continued until the sequence of solutions modulo PIPZ ... Ph", k= 1, 2, . . . 
converges to the true solution. The major part of the computation is performed in single precision. 
See also Newman [4] who used the method for computing the inverses of ill-conditioned matri ces , 
and Knuth [3, p. 256], who remarked that for ill-conditioned matrices the procedure "gives a 

\ method for obtaining the true answers in less time than any known method can produce reliable 
) approximate answers!" 

Our program provides for a final substitution check for verifying convergence , i.e. , verifying 
that the computed values satisfy the original system. It is applied after two successive iterations 
produce no change in the solution vectors. If so implemented, and assuming sufficient memory 
space, the method produces the exact solution space for any solvable linear system with rational 
coefficients. Moreover, the algorithm is effective, in the sense that the exact solution space is 
produced within a reasonable time for systems that are not too large. It cannot end up with a 
wrong or no solution, as additional iterations are made should the substitution check fail. 

The implementation of the algorithm has since been improved. As a result, the computation 
of the 9 independent exact solutions of a system of 111 homogeneous equations in 120 unknowns 
of rank 111 with integral coefficients in the range [- 2180, 2568] which took 60 min on a CDC 
1604-A by the old method, now takes only 19 min on the same computer. The program is still 
in the form of standard Fortran subroutines, and no pains were taken to write a particularly eco­
nomic program. 

In the sequel it is assumed that the reader is reasonably familiar with the essential fea tures 
of [1]. 
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2. The Improvements 

There are four main improvements: Use of larger primes; using the Cantor representation 
for constructing the solution mod PIP2 . . . Pi{ after the kth iteration (by the Chinese Remainder 
Theorem); a logical simplification in determining whether to retain or discard a new prime; and 
using a faster algorithm for finding the greatest common divisor (g.c.d.) of the components of 
any solution vector. These improvements will now be described one for one. 

(i) Use of larger primes. In [1], primes of the order of 101, just less than half the machine 
word length, were employed. Primes of the order of 1014, just less than one machine word are now 
used. Such primes were supplied to us through the courtesy of Herschel F. Smith from IBM. 
This saves about half the number of iterations (primes). In the above example, it reduced the 
number of iterations from six to four. Of course, we could have used the squares of primes of the 
order of 107 to obtain the same effect. However, the probability that a prime divides any of the 
principal minors of a matrix decreases with the size of the prime. Hence it is of some advantage 
to use the largest primes just less than a machine word. 

(ii) Use of the Cantor representation. Let ml , ... , ms be odd positive integers, relatively 
prime in pairs. Any number N in the range 

is uniquely representable by the Cantor representation, also referred to, by several authors, as 
the mixed radix representation: 

where 

i = 1, 2, ... ,s. 

The Cantor representation of a number given by its residues mod mj, i = 1, 2, .. . , s, can 
be determined by computations in which all numbers occurring have absolute value not exceeding 
max mj, in the present case single precision. See e.g. , [2]. The solution check of [1] is now per· 
formed when for any fixed k, ak = 0 for all components of the solution vectors. 

Thus , the main computation of the solution vectors is now performed in single precision, 
resulting in a large time saving. Multiple precision is required only in the final conversion of the 
Cantor representation to decimal representation, and in the - optional- subsequent computation 
of the g.c.d. of the components of each solution vector. 

(iii) A logical simplification. On pp. 110-111 of [1] , a method was described which guaran· 
tees that each triangularization converges to the same largest nonsingular submatrix of the coeffi· 
cient matrix A. For this, a lexicographic ordering of rows and columns of A had to be checked. This 
has now been changed as follows: The triangularization of A (mod PI) induces a certain interchange 
of rows and columns in A. If P is the rank of A mod Ph let iJ, ... , ip, h, .. . , jp be the rows and 
columns of A appearing in the triangularized principal submatrix of order p. The rows and columns 
of A itself are now reordered, so that iJ, . . . , ip , jJ, . . ., j p appear as its first p rows and col· 
umns. Call this permuted matrix B. In each subsequent iteration mod Pi (i > 1), the triangulariza· 
tion is performed without changing any of the first p rows and columns in B. In the triangularized 
matrix, denote by Pi the order of the largest nonsingular principal submatrix. If Pi < p , Pi must be 
discarded; if Pi > p, the primes PI, . . ., Pi- l must be discarded and a new matrix B with a greater 
rank is formed from A; if Pi = p , which is the normal case, the solution mod Pi is used to determine 
the coefficients ai of the Cantor representation of all components of the solution vectors. 

This modification does not save much time. In practice it only saves logical operations and 
manipulations , as it almost never happens that a given large prime divides a nonzero principal 
mmor. However, the logical simplification results in a more compact and elegant program. 
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(iv) Computation of the g.c.d. The last step in [1] was to find the g.c. d. of the components of 
each of the solution basis vectors and to divide them out, so as to obtain primitive solutions, i.e., 
solutions such that the g.c.d. of the components of each solution vector is unity. Instead of com· 
puting the g.c.d. by the Euclidean Algorithm, i. e., by a series of multiple precision divisions , it 
is found by a series of shifts, using an economic algorithm of Stein [5], which, according to Knuth 
[3, p. 297], was previously given by Silver and Terzian: 

Let t be any positive integer stored in binary form in a computer register. The highest power 
of 2 dividing t can easily be determined by shifting t to the right until its least significant nonzero 
bit is located in the least significant position of the register. This results in an odd integer t' = 2 - kt. 

We shall designate this operation by shift, i. e., t' = shift(t}. 
Let a, b be two positive integers, and let 

ao =shift (a)=2 - k a, bo =shift (b)=2- lb. 

Let m = min (k, l). The algorithm now proceeds as follows: 

al = shift lao - bol , 
a2 = shift lal - bd, 

b l = min (ao, bo) 
b2 = min (aI , b l ) 

an = shift lan- I - bn- II, bn = min (an - I , bn- I ) 

an+1 = shift Ian - bn l. 

The procedure terminates when an = bn, and then (a, b) = 2 l11 a n • 

In our example, a multiple precision g.c.d. was obtained for each of the 9 solution vectors. 
The computation of these g.c.d. and di Jiding them out now takes 2.5 min instead of the previous 
7.5 min. 

Finally, we should remark that the substitution check, which is also a multiple-precision 
operation , takes 6 min for our example. It is extre mely rare that a substitution check fails when 
large primes are used, and therefore it seems reasonable to dispose of it in general. In fact , no 
substitution check is normally made in any of the conventional iterative schemes for solving 
linear equations - including those for which convergence is not guaranteed a priori even when the 
system is known to be solvable. 

On the other hand, it is easy to fabri cate a failing case. For simplicity assume that there is 
only one solution vector V = (v), V2, ... , vd, whose Cantor representation is 

where PI , P2, ... are distinct primes. For obtaining a failing case, we simply choose aik = 0, 
1 ~ i ~ t, and aij , j =1= k arbitrarily , with the only condition that ail =1= 0 for some l > k and for 
some i. 

A vector Vof this form can clearly also be characterized as follows. Suppose that V"· - I = (V~· - I, 
v~· - I, ... , V~'-l) is the solution mod PIP2 ... Pk - ), i. e., 

Vi == vjr- I (mod PIP2 ... Pk - d, 1 ~ i ~ t. 

Then 
for some i 

if and only if 
for some i. 

Disposing of the substitution check and the g.c.d. computation, solution time in our example 
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reduces to 10 min. By comparison, the approximate computation of a well-conditioned 111 X 111 
system by standard numerical floating number techniques takes about 3 min on the CDC 1604-A .. 

3. Machine Program 

The program given below is the full version, i.e., it includes computation of the g.c.d. and the 
substitution check imbedded in the program "Solve." The matrix of the homogeneous equations 
coefficients is read into the computer from magnetic tape no. 1. Other data to the program is 
provided by three data cards. The first card contains three numbers: the number of rows and 
columns of the matrix, and the number of primes supplied. The second and third cards contain 
the supplied primes. 

Functions used in this program are: 
"Inv" - computes the inverse of an integer t mod p which is required for solving the system 

mod p. 
"Irem"-IREM(tJ, t2, p) outputs an integer t satisfying t == tJtz(mod p), - p < t < p. Since 

the product t1t2 is normally a double precision number, this routine is written in machine language. 
"Shift" - shifts a multiple· precision number to the right k positions until a binary 1 appears 

at the least significant position. On its left, k binary zeros are shifted in. Because of its multiple­
precision character, this routine is also written in machine language. In the program listed below 
it appears directly after "Irem," before "Setpreci." 

"Mod" - MOD (t, p) transforms the single-precision integer t obtained as a result of an addition 
or subtraction of two numbers Xi, - (p - 1) /2 :%; Xi :%; (p - 1) /2, i = 1, 2, or of an IREM operation, 
to an integer t' satisfying t' == t(mod p) and - (p -l)/2.:%; t' :%; (p - 1)/2. 

"Setpreci" - A Fortran subroutine which controls the multi-precision package which is written 
in machine language. Because this package is in a binary deck form, it is not included in the 
program listed below. Functions used from this package are: "If(Itest(t))" - for checking if a 
multiple precision integer t is negative zero or positive; "Multout" -for printing a multiple precision 
integer. 

PROGRAM SOLVE 
COMMON Ml,M2,NZ,M,N,KP,KQ,KI,MA(111,120),IZ(120),NEW(9,9), 

1 NT( 4,120),KT(20),IY (120)J SO L(120),KSO L(120)JS(112,9 ,6),KG(8) 
2 ,KE(8),KF(8),KO(8),NA(6),NB(6),NC(6),ND(6) 

TYPE MULTIPL6(6) A,B,C,KG,D,GCD,KC ,KSOL 
COMMON/SHIFTS/KK 
EQUIVALENCE (A,NA),(B,NB),(C,NC),(D,ND) 
READ 55,M,N,NZ 
READ 797 ,(KT(I),I = l,nz) 
REWIND 1 $ DO 987 1= I,M 

987 READ TAPE 1 ,(MA(IJ)J = I ,N) 
PRINT 7 ,M,N ,NZ $ DO 63 1= I,M 

63 IY(I)= 1$ KR= 0 $ PRINT 2,(KT(I),I= I,NZ) $ DO 94 J = I,N 
94 IZ(J)=J $ DO 200 L= I,NZ $ KP= KT(L) $ KQ= KP/2. $ KD= MK= 1 

DO 75 I= I,M$DO 75 J = I,N$IS = MA(IJ) - (MA(IJ)/KP)*KP$ IF(IS)76,75,75 
76IS=KP+IS 
75 MA(lJ) = IS 
23 DO 122 K = MK,KR $ IF(IT.EQ.l)10,43 

8 PRINT 88,KP $ MS = 1 $ GO TO 201 
43 11 = IY(K) $ n = IZ(K) $ KK= MA(I1Jl) 
10 MK=MK+l$IF(KK-l)8,33,34 
34 KD = IREM(KD,KK,KP) $ 1M = INV(KK,KP) $ DO 32 JL = MK,N $ J2 = IZ(JL) 
32 MA (I1J2) = IREM(MA(IlJ2),IM,KP) 
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33 DO 122 1= MK,M $ 12 = IY(I) $ IL = MA(I2Jl) $ IF(IL.EQ.0)122,31 
31 DOl] = MK,N$J2 = IZ(j)$IS = MA(I2J2) - IREM(MA(IIJ2),1L,KP)$IF(IS)72,l,l 
72 IS = KP+IS 

1 MA(I2 ,12) = IS 
122 CONTINUE 

D06I = MK,M$II = IY(I)$D06J = MK,N$n = IZ(j)$KK = MA(II Jl)$IF(KK.EQ.0)6,5 
5 KR = MK$IT = l$IY (I) = IY (KR)$IY(KR) = II$IZ(J) = IZ(KR)$IZ(KR) = n$GOT023 
6 CONTINUE $ IW = IT-l $ KF(IT) = KP $ IS = 1 $ KE(I)= 1 $ DO 701= I,IW 

II = I + 1 $ IS = IREM(IS,KF(I),KP) 
70 KE(Il) = IS 

PRINT 51,KP,KD,IT $ IF(IT.EQ. l)47,29 
29 IS = KE(IT) $ IV = INV (IS ,KP) $ NU = 0 $ DO 944 KL = I,IW 

KS = IREM(KO(KL),KE(KL),KP) $ IF(KS)971,979,979 
971 KS = KP + KS 
979 NU = NU + KS $ IF(NU - KP)944,974,974 
974 NU = NU -KP 
944 CONTINUE $ IS = KD - NU $ MS = KO(IT) = MOD(IREM(IS,lV,KP)) $ GO TO 95 

47 MS = 1 $ KO(I) = MOD(KD) $ KI = N - KR $ PRINT 56,KR,KI,(IY(l),I = I,M) 
PRINT 58,(IZ(J),J = I,N) 

95 DO 26K = 1 ,KI$D0261 = 1 ,KR$II = I - l$Kl = KR - Il$MX = 0$D038J = 1 ,1l$K2= MK - J 
MX = MX - IREM(JSOL(K2),MA(IY(Kl),IZ(K2)),KP) $ IF(MX)78,38,38 

78 MX = MX + KP 
38 CONTINUE$IS = MX - IREM(KD,MA(IY(Kl),IZ(KR + K)),KP)$IF(IS)37 .27 ,27 
37IS = IS + KP 
27 JSOL(Kl) = IS $ IF(IT.EQ.l)28,90 
28 JS(KI ,K,I) = MOD(IS) $ GO TO 26 
90 NU= O $D044 KL= l,IW $ KS= IREM(JS(KI,K,KL),KE(KL),KP)$IF(KS)71,79 ,79 
71 KS = KP + KS 
79 NU = NU + KS $ IF(NU - KP)44,74,74 
74 NU = NU-KP 
44 CONTINUE $ JS(Kl,K,IT) = 0 $ IS = IS - NU $ IF(IS.EQ.0)26,45 
45 MS = 1 $ JS(Kl,K,IT) = MOD(IREM(IS,IV,KP)) 
26 CONTINUE $ IT = IT + I 

201 REWIND 1 $ DO 202 I = I,M $ READ TAPE I ,(MA(I,J)J = I,N) 
202 CONTINUE $ IF(MS.EQ.0)203,200 
200 CONTINUE $ GO TO 80 
203 PRINT 153 

KG(I)= 1 $ DO 710 I=2,IW 
710 KG(I) = KG(I - 1)*KF(I -1) 

KC = KO(I) $ DO 720 1= 2,IW 
720 KC = KC + KO(l)*KG(I) 

C = KC $ IV = 7 - IW $ IF(ITEST(C))751 ,80,752 
751 C=-C 
752 CALL SHIFT(N C(IV),IW) $ 15 = KK 

DO 49 J = I:KI $ NOS= 15 $ A= C $ PRINT 100,1 
DO 501= I,KI $ KSOL(KR + 1)=0 

50 CONTINUE $ KSOL(KR + J)= KC 
DO 40 1= I,KR $ B = JS(I,J,I) $ JSOL(l)= 1 $ DO 42 K = 2,IW 

42 B = B + JS(I,J ,K)*KG(K) 
CALL MULTOUT(B,51) 
KSOL(I)= B 
IF(ITEST(B))715,716,717 
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716 JSOL(I)= 0 $ GO TO 40 
715 B=-B$JSOL(I)=- l 
717 D0718K =1,IW$Il=7-K 
718 JS(Ij,K) = NB(I1) $ CALL SHIFT(NB(IV),IW) $ IF(KK.GE.NOS)721,722 
722 NOS = KK 
721D=A-B 

IF(ITEST(D))725 ,40,724 
725 D=-D 
724 CALL SHIFT(ND(IV),IW) $ A = B $ B = D $ GO TO 721 
40 CONTINUE $ GCD = A *2**NOS 

PRINT 669 
CALL MULTOUT(GCD,51) 
DO 7301 = 1,KR $ IF(JSOL(I).EQ.0)730,731 

731 DO 732 K= l,lW $11 = 7 - K 
732 ND(I1) = JS(IJ,K) $ NV = D= D/GCD $ J2 = IZ(I) $ IF(JSOL(I).EQ.l)733,734 
734 NV=-NV 
733 PRINT 538,(NT(KJ2),K = 1,Ml) 

PRINT 539,NV 
730 CONTINUE $ J2 = IZ(KR + J) $ NV = KC/GCD 

PRINT 538,(NT(K,J2),K = 1,Ml) 
PRINT 539,NV 
DO 611 = I,M $ A = O $ DO 52 JL = 1,N 

52 A = A + KSOL(JL)*MA(I,IZ(JL)) $ IF(ITEST(A))82,61 ,82 
82 PRINT 53J,I 
61 CONTINUE 
49 CONTINUE 
2 FORMAT(J/50X,8H PRIMES. ,//(114,2X)) 
7 FORMAT(lHl ,3H M=,13,3H N =,13,4H NZ=,13,// ,20X,7H MATRIX,!/) 

51 FORMAT(lHl ,50X6HPRIME =,114/150,12H = DETERMINANT/150,llH 
ITERATIONS) 

53 FORMA T(lHl ,20X,8H NOT YET ,20X,2120) ( 
55 FORMAT(23I5) 
56 FORMAT(J /20X,11HFIRST PRIME,5X,5HRANK =,13 ,5X,8HNULLITY =,13/ /40X,14 

IHORDER OF LINES,/ /(231ff)) 
58 FORMAT(J/ ,40X,16HORDER OF COLUMNS,//(2315)) 
88 FORMAT(50XI14,23H THIS PRIME WAS DROPPED) 

100 FORMAT(lHl,//50X,I3///) 
153 FORMAT(J ,20X,32HCONVERGENCE OBTAINED AND CHECKED,//) 
538 FORMAT(J,20X,10I3) 
539 FORMAT(I20, 8HXl X2 X3,/J) 
669 FORMAT(lHl,//50X,6H G.C.D//) 
797 FORMAT(5(114,2X)) 

80 RETURN $ END 
FUNCTION INV(KX,KP) 
Kl=KP $ K2=KX $ Ml=O $ M2=1 $ IF(K2-1)2,4,5 

4 INV = K2 $ RETURN 
6 Ml = M2 $ M2 = M3 $ Kl = K2 $ K2 = K3 
5 IQ =Kl/K2 $ M3=MI-M2*IQ $ K3=KI-K2 *IQ $ IF(K3-1)2 ,7,6 
7 K2 =M3 -(M3/KP)*KP $ IF(K2)8,2 ,4 
8 K2=K2+KP $ GO TO 4 
2 INV=O 

END 
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FUNCTION MOD(IX) 
COMMON M1 ,M2;M3,M4,M5,KP ,KQ 
IF(IX)1,2,3 

2 MOD = IX $ RETURN 
1 IF(KQ + IX)4,2,2 
4 MOD = KP + IX $ RETURN 
3 IF(KQ - IX)5,2,2 
5 MOD=IX-KP 

END 
IDENT IREM 
ENTRY IREM 

IREM SLJ ** 
SID 1 IR3 
LIU 1 *-1 
SIL 1 IR1 
INI 1 1 
SIL 1 IR2 
INI 1 1 

IR1 SIL 1 IR3 
LIU 1 ** 
LDA 1 
LIL 7 IR1 

IR2 MUI 1 
LID 1 ** 
DVI 1 
LLS 48 

IR3 ENI 1 ** 
SLJ ** 
END 
IDENT SHIFT 

"\ ENTRY SHIFT 
/ 

SHIFTS BLOCK 
COMMON NSHIFT 

SHIFT SLJ ** 
SID 1 EX 
SIL 2 EX 
LIU 1 SHIFT 
ENA 
STA =SNZ 
LDA 1 
SAL N 
ARS 24 
INI 1 1 

N SID 1 EX + 2 
LIL 1 ** 
INI 1 -1 
SAL BEGIN 
SAL CHANGE 
SAL LOOP 
INA 1 
SAU STORE 

BEGIN ENI 2 
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LDA 1 ** 
AJP ZERO 
ENQ 

SH LRS 1 
QJP M NEG 
INI 2 1 
SLJ SH 

NEG LLS 1 
ENQ 2 
STQ NSHIFT 
QJP EX 
UP 1 LOOP 

EXIT STA 7 BEGIN 
EX ENI 1 ** 

ENI 2 ** 
LDA NZ 
RAD NSHIFT 
SLJ ** 

LOOP STA =ST 
LDA 1 ** 
ENQ 
LRS 2 
STA =STl 
QRS 1 
LDA T 
ADL =03777777777777777 

STORE STA 1 ** 
LDA Tl 
UP 1 LOOP 
SLJ EXIT 

ZERO SIL 1 =SNN ( 

ZER01 INI 2 47 
UP 1 CONT 
ENA -1 
STA NSHIFT 
SLJ EX 

CONT LDA 7 BEGIN 
AJP ZER01 
SIL 2 =SNZ 
LIL 2 NN 

CHANGE LDA 7 BEGIN 
STA 2 ** 
INI 2 -1 
UP 1 CHANGE 
ENA 

+ STA 7 CHANGE 
UP 2 * 
LIL 1 NN 
SLJ BEGIN 
END 

SUBROUTINE SETPRECI(NUM,LOG) 
COMMON / MULTINCM / N,IA(50),IC(50),ID(50) 
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DATA (N=6) 
RETURN 
ENTRY ERR2 
PRINT 100,NUM,LOG 

100 FORMAT (46H ERROR IN ADDITION TYPE OVER-FLOW CALL FROM 
1,016, ,18H FIRST LOCATION ,016) 
STOP 
ENTRY ERRl 
PRINT 101,NUM,LOG 

101 FORMAT (49H ERROR IN DIVISION TYPE ZERO-DIVISOR CALL 
IFROM ,016, ,16H FIRST LOCATION ,016 ) 
STOP 
ENTRY PRINTOUT 
WRITE (NUM,102) (ID(K),K = 1 ,N) 

102 FORMAT (5X,5(1l4,X)) 
END 

DATA 
III 120 10 

7908189600581 7908189600583 7908189600587 7908189600589 7908189600593 
7908189600599 7908189600601 7908189600607 7908189600611 7908189600613 
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