JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 75B, Nos. 1 and 2, January–June 1971

The Powers of a Connected Graph are Highly Hamiltonian*

Vasanti N. Bhat** and S. F. Kapoor***

(March 9, 1971)

Let G be a connected graph on p points. It is proved that if any k points are deleted from the graph G^{m+2} , $1 \le m \le p-3$ and $0 \le k \le m$, then the resulting graph is hamiltonian.

Key words: graph, hamiltonian, power of a graph.

Let G be a graph (finite, undirected, without loops or multiple lines). A *walk* of G is a finite alternating sequence of points and lines of G, beginning and ending with points, and where each line is incident with the two points immediately preceding and following it. A walk in which all points are distinct is called a *path*; the *length* of a path is the number of lines in it. A graph G is said to be *connected* if between any two points of G there is a path. The *distance* between two points u and v in a connected graph G is the length of a shortest path between u and v if $u \neq v$, and zero if u = v.

A walk with at least three distinct points in which the first and the last points are the same but all the other points are distinct is called a *cycle*. A cycle containing all the points of *G* is a *hamiltonian cycle* of *G*, and then *G* itself is said to be a *hamiltonian graph*. A graph *G* on *p* points is *m*-hamiltonian if the removal of any *k* points from $G, 0 \le k \le m \le p-3$, yields a hamiltonian graph (see [2]).¹

Let *G* be a connected graph and $n \ge 1$. The graph G^n , called the *n*th *power of G*, has as its points those of *G*, and two distinct points *u* and *v* are adjacent in G^n if the distance between *u* and *v* in *G* is at most *n*.

For a connected graph G on $p \ge 3$ points, it is well known that G^3 is hamiltonian; in fact (see [1]) if x is any line of G, there is a hamiltonian cycle of G^3 which contains x. The main result of [1] was: the cube of every connected graph possessing at least 4 points is 1-hamiltonian. It is this result which we generalize as follows.

THEOREM: If G is a connected graph on p points, then G^{m+2} is m-hamiltonian for $1 \le m \le p-3$. The proof is by construction.

To start with we make some observations. As G^3 is hamiltonian, and $G^3 \subseteq G^4 \subseteq \ldots \subseteq G^{m+2}$, it suffices to prove that the deletion of any $n \ge 1$ points from G^{n+2} yields a hamiltonian graph. Moreover, since every connected graph contains a spanning tree, without loss of generality we may assume G to be a tree. The case m=1 is dealt with in [1]. So we take $m \ge 2$ for the rest of the discussion.

Let *T* be a tree on *p* points and let *m* be such that $2 \le m \le p-3$. Let $V(m) = \{u_1, u_2, \ldots, u_m\}$ be a set of *m* distinct points of *T*. Denote the unique path in *T* joining the points u_i and u_j of V(m) by $P(u_i, u_j)$. We define the tree \tilde{T} to be the subtree of *T* spanned by the points of all the paths $P(u_i, u_j), 1 \le i, j \le m$.

AMS Subject Classification: Primary 0540, Secondary 0545.

^{*}An invited paper.

^{**}Present address: Department of Mathematics, University of Bombay, Bombay, India.

^{***}Present address: Western Michigan University, Kalamazoo, Mich. 49001; Research partially supported by National Science Foundation Grant GP 9435. ¹ Figures in brackets indicate the literature references at the end of this paper.

For the sake of clarity we assign colors to the points of T: the points of V(m) are colored *red*, those of $\tilde{T}-V(m)$ green, and the remaining points of T blue. Obviously every endpoint of \tilde{T} is red. Designate one of the endpoints of the nontrivial tree \tilde{T} as the *initial* point. The remaining endpoints of \tilde{T} will be referred to as *reversing* points. For a point u of \tilde{T} we denote by d(u) and $\tilde{d}(u)$, the degree of u in T and \tilde{T} respectively. If $\tilde{d}(u) \ge 3$, then u will be called a *crucial* point, and this may be red or green.

The $n(\geq m)$ points of \tilde{T} are labeled 1, 2, . . ., n in the following manner (see fig. 1). The initial point of \tilde{T} is labeled 1. The unique point of \tilde{T} adjacent to the initial point is labeled 2. Suppose that the labels 1, 2, . . ., i have been assigned, $1 < i \leq n$. If $\tilde{d}(i) \geq 3$, i.e., if i is a crucial point, then a point of \tilde{T} adjacent to i and not already labeled is designated i+1. If $\tilde{d}(i)=2$, then the unique nonlabeled point of T adjacent to i is labeled i+1. If $\tilde{d}(i)=1$, then i is a reversing point. If there are no crucial points on the path in \tilde{T} between 1 and i, then \tilde{T} itself is a path, and it follows that i=n. If not, let $S(i)=(j_1, j_2, \ldots, j_{r_i})$ be the sequence of all the crucial points between 1 and i, and such that $1 < j_1 < j_2 < \ldots < j_{r_i} < i$. If there is a nonlabeled point of \tilde{T} adjacent to j_{r_i-1}, j_{r_i-2} , and so on till j_1 . If even j_1 has all the points adjacent to it in \tilde{T} already labeled, then clearly i=n.

As already noted, if \tilde{T} has at least one crucial point, then with every reversing point i of \tilde{T} we can associate a unique crucial sequence S(i) as defined above. If \tilde{T} is a path, write $S(n) = \emptyset$. Moreover, if j is a crucial point, then there are at least $\tilde{d}(j) - 1$ reversing points whose associated crucial sequences contain j. (See fig. 1.).

FIGURE 1. Examples of trees \tilde{T} ; their labeling and crucial sequences.

Every point *i* of \tilde{T} is adjacent to $d_i = d(i) - \tilde{d}(i) \ge 0$ blue points of *T*. Let the forest in T-i to which these d_i points belong be denoted F_i . For the sake of completeness, if $d_i = 0$, we will reflect this by writing $F_i = \emptyset$. If $d_i \ge 1$, let the d_i components of F_i be the trees T_t on p_t points, $1 \le t \le d_i$. (See fig. 2.) Let x_t be the point in T_t which is adjacent to *i*, and x'_t a point in T_t which is adjacent to x_t (if $p_t = 1$, we assign a second label x'_t to x_t). Since $m \ge 2$, the set of points $\{x_t, x'_t | 1 \le t \le d_i\}$ induce a complete graph in T^{m+2} .

Consider the graph $T_t^3 \subseteq T^{m+2}$. We have

(i) if $p_t \ge 3$, then by earlier remarks there exists a hamiltonian cycle in T_t^3 containing the line $x_t x'_t$, and by deleting this line from this cycle there results a spanning path P_t in T_t^3 such that x_t and x'_t are the endpoints of P_t ,

(ii) if $p_t = 2$, T_t is itself the path P_t , and

(iii) for $p_t = 1$, $x_t = T_t = P_t$.

It is now possible to construct a special path P(i) in T^{m+2} which spans F_i . Define

$$P(i) = \begin{cases} x_1 P_1 x_1' & \text{or} & x_1' P_1 x_1, & \text{if} & d_i = 1\\ x_1 P_1 x_1' x_2 P_2 x_2' x_3 & \dots & x_{d_i-1} P_{d_i-1} x_{d_i}' P_{d_i} x_{d_i}, & \text{if} & d_i \ge 2, \end{cases}$$

FIGURE 2. The forest F_i and its spanning path.

where $x_k P_k x'_k$ refers to the path P_k starting at x_k and ending at x'_k (similarly for $x'_k P_k x_k$). If $F_i \neq \emptyset$, we are only concerned with the starting and ending points of the spanning path P(i) of F_i . Towards this end we set

and

$$b_i = \begin{cases} x_1' & \text{if } d_i = 1 \\ x_{d_i} & \text{if } d_i \ge 2. \end{cases}$$

 $a_i = x_1$

Then $P(i; a_i, b_i)$ will denote the path P(i) starting at a_i and ending at b_i ; whereas $P(i; b_i, a_i)$ will be the path P(i) beginning at b_i and ending at a_i .

We now construct a hamiltonian cycle C in $T^{m+2} - V(m)$. First, an outline will be suggested. Starting at the initial point 1, we move around the points of the tree \tilde{T} in the order of its labeling. At each point i with $F_i \neq \emptyset$, the spanning path $P(i; a_i, b_i)$ or $P(i; b_i, a_i)$ of F_i is included in C in a specific order. For green points of \tilde{T} having $F_i = \emptyset$, a special procedure is adopted. Picking on C the first such green point encountered, the remaining are picked alternately while going towards a reversing point. Those missed, as well as the green points with $F_i \neq \emptyset$, are picked up while returning (through crucial points) from a reversing point to the next point of \tilde{T} in its labeling. The residual green points are picked while going from the last reversing point n to the starting point of C. Clearly, C contains all the nonred points of T, and is in fact a cycle. Also, the adjacencies in T^{m+2} are used to proceed from the considerations at the *i*th stage to the next.

First we settle the only extreme case. Suppose that \tilde{T}_0 is a path on n = m+1 points, $d_1 = d_n = 1$, and $F_i = \emptyset$ for $2 \le i \le n-1$ (see fig. 3). Let g denote the only green point of \tilde{T}_0 . Then

$$C = \underline{P(1; a_1, b_1)} \underline{gP(n; b_n, a_n)} \underline{a_1}.$$

FIGURE 3. \tilde{T}_0 with n = m + 1, $d_1 = d_n = 1$.

Now suppose that $\tilde{T} \neq \tilde{T}_0$. We construct the hamiltonian cycle C as follows, keeping in mind that the first point that is picked on C will be considered as its starting point.

Step 1: Consider $1 \in \tilde{T}$. If $F_1 \neq \emptyset$, pick $P(1; a_1, b_1)$ and proceed to the next step. If $F_1 = \emptyset$, we go to step 2.

Step 2: $F_2 \neq \emptyset$: Pick $P(2; a_2, b_2)$ and proceed to step 3. For n=2, either $P(1; a_1, b_1)P(2; a_2, b_2)a_1$ or $P(2; a_2, b_2)a_2$ is the cycle C.

 $F_2 = \emptyset$ and the point 2 is red: Proceed to step 3 directly. If n=2, then $P(1; a_1, b_1)a_1$ is C.

 $F_2 = \emptyset$ and the point 2 is green: Pick 2 on C and proceed to the next step.

Continuing this process, suppose we have considered the points $1, 2, \ldots, i-1$, i.e., step i-1 has been taken.

Step i: Suppose $\tilde{d}(i) \ge 2$.

 $F_i \neq \emptyset$: Pick $P(i; a_i, b_i)$ and proceed to the next step.

 $F_i = \emptyset$ and the point *i* is red: Proceed to step i + 1.

 $F_i = \emptyset$ and the point *i* is green: Pick *i* on *C* if an immediately preceding green point *j* with $F_i = \emptyset$ has not been picked and then move to step i + 1, otherwise go to step i + 1 directly.

Suppose $\tilde{d}(i) = 1$.

Here *i* is a reversing point.

Let $i \neq n$. If $F_i \neq \emptyset$, pick $P(i; a_i, b_i)$ (if $F_i = \emptyset$, this is absent) and pick up in reverse succession all the unpicked green points on the path in \tilde{T} between the points *i* and *i*+1.

Let i=n. If $F_n \neq \emptyset$, pick $P(n; a_n, b_n)$ (if $F_n = \emptyset$, this is absent) and pick up on *C*, all the remaining green points in reverse succession towards 1, and reach the starting point of *C*. This completes the construction

This completes the construction.

The result proved above is the best possible in the sense that the graph G^{m+2} is not necessarily (m+1)-hamiltonian. For example, let P be a path on m+4 points, $m \ge 1$. Let V(m+1) be any set of m+1 points of P, excluding the end points. Then the graph $P^{m+2} - V(m+1)$ is a path on 3 points and clearly nonhamiltonian. On the other hand, if G is a connected graph on $p \ge 3$ points, then G^n is the complete graph K_p for all $n \ge p-1$, and hence it is always (p-3)-hamiltonian (see [2]).

The theorem does not hold for m=0, i.e., the square of a connected graph need not be hamiltonian. But if *connected* is replaced by *block*, the proposition reads—*the square of a block on 3 or more points is hamiltonian*. M. D. Plummer has conjectured that this is true.

Added in proof. H. Fleishner has confirmed Plummer's conjecture.

References

(Paper 75Bl&2–344)

Chartrand, G. and Kapoor, S. F., The cube of every connected graph is 1-hamiltonian, J. Res. Nat. Bur. Stand. (U.S.), 73B (Math. Sci.), No. 1, 47-48 (Jan.-Mar. 1969).

 ^[2] Chartrand, G., Kapoor, S. F. and Lick, D. R., n-Hamiltonian graphs, J. Combinatorial Theory, Vol. 9, No. 3, 308-312 (Oct. 1970).