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Given any two continuou s, convex func tions/and gon a compact, con vex se t with certain proper­
ties ("regu lar" convexity), it is shown that an infinite numbe r of homotopies of / and g exis t which a re 
also convex. One such homotopy ill partic ular (th e " basic" homoto py) is s hown to have ni ce mono­
tonicity prop erti es and can be used as a bas is for construc tin g othe r homotopies. A method of con­
s tructing the basic homotopy is g iven for the case whe re th e domain of/and g is a line segment. (Theo­
rems are for normed linear spaces on ly.) 
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1. Introduction 

In a normed linear space, a set C is called convex ifAx + Xy E C for every x, YEC and e very A 
with O ~ A ~ 1, where "X = I-A. (We shall use the notation of a bar over a quantity to denote 
1- (that quantity) throughout the rest of this paper.) A mapping f ?f C into the reals is called 
convex jf 

f(h+ >:'y) ~ Af(x) + >:'f(y) 

for all x, YEC and 0 ~ A ~ 1. Given any two continuous convex maps f and g on C, we define a ma p 

h:C X [a,b]~R , 

where - 00 < a < b < 00 and R is the real numbers , to be a convex homotopy of (f, g) if h is a con­
tinuous convex map and h (x , a) = f(x), h(x, b) = g(x), for all XEC. (Usually a= 0 and b = 1 in the 
definition of homotopy , but this definition will simplify notation and is equivalent to the us ual 
definition. ) 

The question arises whether any two continuous convex maps f and g can b e connected by 
a convex homotopy and, if so, how many such homotopies exist and what are their properties. 
The following gives an affirmative answer to the basic question for certain types of domain sets 
and shows that there are always an infinite number of such homotopies. Certain characteristics 
of a "basic" convex homotopy are also derived. 

It will be noted in the following that proofs of continuity are, for the most part, independent 
of convexity, and it would be possible to construct a "not-necessarily-continuous" convex homotopy 
of two maps, using the following procedures, with much less stringent conditions on the maps 
and their domain. This observation might lead to inquiry about the existen ce of convex sets given 
a specification of part of their boundaries. This idea will not be pursued here. 

The reader is also referred to an article by Victor Klee I which contains results similar to 
those of theorems 1,2, and 4, without the concept of continuity. 

AMS Subject CLassific ation: Primary 5225, Secondary 5540. 
'Klee, V. L. , Jr. . External s tructure of convex set s. II , Math. Zeit sch. Bd. 69 , S. 9(}-]04 (l958L 
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2. Existence; Basic and Other Homotopies 

We define a regularly convex set C to be a convex set with the following property. For each 
XEC, E > 0, and ° ~ A ~ 1, there exists Sex, E, A) > 0 such that if y and z are any points of C for 
which 

X=AY+AZ, 

then for any point x I EC with Ilx - x I II < S there exist points y', Z I EC such that 

x' = AY' + A.z' 

and lIy - y'll < E, liz - z'll < E. Not all convex sets are regularly convex, as will be shown by an 
example later, although all of the usual ones (e.g., line segment, disk in the plane) seem to be. 

Given any pair of continuous convex maps I and g on a compact, regularly convex subset 
C of a normed linear space, let 

H: Cx [0, 1]~R 
Je defined by 

H(x, r)=inf {rg(y)+if(z): y, ZEC, x=ry+rz}. 

(H, of course, is dependent on I and g, but this dependence will not be indicated unless necessary 
for clarity.) 

THEOREM 1: For f, g, and C as above, H is a convex homotopy ol(f, g) on C X [0, 1]. Further­
more, ilh is any other such homotopy, then hex, r) ~ H(x, r)/or all XEC, rE[O, 1]_ 

PROOF: First, it is clear that H(x, O)=/(x) and H(x, 1)=g(x), by the definition of H. It 
remains to show that H is convex and continuous. 

Let (x, r) and (y, s) be any two points of C X [0,1]' with rand s not both ° or 1. If Xl, xz, Yl, and 
Y2 are any points of C such that x = rXI + rX2 and y= SYI + SY2, then for any A with 0< A < 1 we have 

A (x, r) + A. (y, s) = (Ax + A.y, Ar + ~s) = (Arxi + ArX2 + ~SYI + ~SY2' Ar + ~s) 

where 

Thus, 

= ([A + ~ ] ArXI + ~sYI + [Ar+ ~s] ArX2+ ~SY2 Ar+ ~s) 
r s Ar+AS Ar+AS ' 

= (p,[alxl + alYI] + iL[aZx2 + aZY2] , p,), 

p,= Ar+ A.s, 

Ar 
al=-, 

p, 

Ar 
a2 =--=-. 

p, 

H(A(X, r) + A.(y, s)) = H «p,[alxl + alyd + iL[a2x2 + a2Y2], p,)) ~ p,g(alxl + alyd + PI( a2X2 + a2Y2) 

(by the definition of H) 

~ p,alg(xd + P,alg(Yl) + IWz!(X2) + iLaz!(Y2) 

(by the convexity of I and g) 

48 



Since Xl, X2, YI and Y2 were chosen arbitrarily, satisfying only the conditions 

it follows that 

H(A(X, r) + ~(y, s)) ~ inf {A( rg(xI) + f!(X2)) :XI, X2EC and x= rXl + fX2} 

+ inf {~(Sg(YI) + S!(Y2) ) : YI , Y2 EC and y= SYI +SY2} = AH(x ,r) + ~H(y,s), 

proving convexity of H. 
A proof of continuity of H is as follows. First, we define a norm on C X [0 , 1] as the sum of the 

norms on C and [0 , 1]. 

That is, 

II(x , r), (y, s)II= llx - YiI +l r-s l· 

Next , note jf C is regularly convex, then C X [0 , 1] is also regularly convex. For, given 
(x, r) EC X [0,1]' O ~ A ~ l ,andE > O,if 

(x, r) = A (y, s) + ~ (z, t), 

then there exists 8 > 0 such that , if x' EC and II x - x'il < 8, then there exist y' and z' such that 

X'=AY'+~', 

where lIy-y'll < E/2, Ilz- z'll < E/2. Thus if 

II(x, r) - (x', r')11 < 8 

and , say, s < r < t , while r' > r, we merely take 

and 
t' = t 

r'-r 
s'=s+--

A 

(where 0 is chosen small enough so that r' , s' E [s, t] and Is - s' I < E/2). Of course, if A = 0 we take 
s' = s, t' = r' . A similar construction is followed if r' < r. 

It is clear, then, that the points (y', s') and (z', t') satisfy the conditions 

(x', r')= A(Y' ,S')+~(z', t'), 

II(y, s) - (y', s')11 < E, II(z, t)- (z', t')11 < E. Thus C X [0, 1] is also regularly convex. 
The proof of continuity of Ii will be given first for points (x, 0) and (x, 1), and then for other 

points. 
Given any point (say) (x, 0), if (y, s) is any point for which 

II(x, 0) - (y, s)11 < 0, 
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for some 8 > 0, then s < 8. Let u and v be two points of C for which 

y= su+sv, 
and 

H(y, s) = sg(u) + sf(v). 

(Such points exist by the compactness of C.) Then 

s(y- u) = s(v-y), 
or 

if 8 < 1/2, where D is an upper bound on the distance between pairs of points of C. 
Thus, 

IH(y, s) -H(x, 0)1= Isg(u) +sf(v) -f(x) 1 

~ slg(u) 1 + slf(v) - fey) 1 + slf(y) - f(x) 1 + s If(x) 1 ~ 0 as 8 ~ o. 

Thus H is continuous for each (x, 0) (and also for each (x, 1)). 
Now let (x, r) be any point of C X [0, 1]. We will show that, if {(Xn, rn)} is a sequence con· 

verging to (x, r) , then 
H(x, r) ~ lim inf H(xn, rn), 

and 
lim sup H(xn, rn) ~ H(x, r). 

First, let {(Xn., rn.)} be any subsequence of {(Xn, r,,)} such that 
I I 

By the compactness of C, for each (Xni' rni ) there exist points Yni and zni in C such that 

By the compactness of C X [0, 1], there exists a subsequence of {(xn;' rn;)}, which we assume for 
convenience to be {(Xn., rn.)} itself, and points y, ZEC, such that 

I I 

yni~Y' 

while 

But then 

proving the first part. 
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Now let u and v be two points of C suc h that 

x = ru + rv, 

H( x, r) = rg (u) + rJ( v) . 

(Such points exist by the compactness of C.) By the regular convexity of C X [0, 1], given E > 0 
there exists 8 > 0 such that for any point (w , 5) with 

II(w, 5) - (x , r)11 < 8, 

there exist points (WI , 51) and (U2' 52), suc h that 

and 
II(wl, 51) - (u, 1)11 < E , 

II(w2, 52) - (v, 0) 11 < E. 

But the convexity of H implies 

By the continuity of H at (u , 1) and (v, 0), 

H(w, 5) .;; rH(u , 1) +rH(v, 0) +YJ = H(x , r) + YJ , 

where YJ > 0, YJ ~ 0 as E ~ O. Thus, for a given YJ > 0 , there exists 8 > 0 su ch that 

H(w , 5) .;; H(x, r) +YJ 

whenever II(w, 5) - (x, r)ll < 8. 
Applying this inequality to the sequence { (Xn , rn)}, we have 

H(x", rll ) .;; H(x, r) +YJ , 

when II (x, r) - (XII' r,,) II < 8, and hence 

lim sup H(xlI' rll ) .;; H(x, r). 
Since 

lim inf H(xlI' rll ) .;; lim sup H(xn , rn), 

it follows that 

H(x, r) =lim H(xll , rll), 

and hence that H is continuous on C X [0, 1]. 
Finally, if h is any other convex homotopy of (J, g), then 

hex, r) .;; rh(y, 1) + rh(z, 0) = rg(y) + rJ(z) 

for any y, ZEC such that x = ry+ rz. Thus 

hex , r) .;; H(x, r). 
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This completes the proof of theorem 1. 
We shall call the map H the basic convex homotopy of (j, g) on C X [0, 1]. A basic convex 

homotopy H' on C X [a, b] is defined by 

( r-a) H'(X, r) =H x, b-a . 

At this point it is appropriate to give examples of convex sets which are not compact or not 
regularly convex, and show that the H defined for a given f and g need not be continuous. 

First, let C be the set of points in the plane defined by 

C={(O,O)} U {(x,y):O<x<l,-l<y<l}, 

and let f(x, y) = y and g(x, y) = - y. Then for every (x , 0) except (0, 0), we have 

H ((x, 0), t) =tJ(x, -1) +tg(x, 1) = -1 
while 

H( (0 , 0), t) =t/(O, 0) +tg(O, 0) 

=0. 

For the next example, let C be the convex hull of the set of points in three·space 

C' = {(O, 0, -l)}LJ{(O, 0, l)}U{(x , y, 0):y=x2 , y~ l}. 

Then C is clearly the union of two convex cones, from (0,0, -1) and (0, 0, 1) respectively, to the set 

{(x , y, 0):x 2 ~ y~ I}. 

Letf(x, y, z) =z, while g(x, y, z) =-z. Again, for x # ° we have 

while 
=0, 

H( (0,0,0), t) =tJ(O, 0, -1) +tg(O, 0, 1) 

=-1. 

Next we show that the basic convex homotopy is by no means the only convex homotopy joining 
two convex maps. From this point onward in the discussion we shall use the term "convex map" to 
refer only to a continuous, convex map on a compact, regularly convex domain set. 

THEOREM 2: Let f, g, and h be convex maps on C satisfying 

hex) ~ H(x, r) 

for all XEC, where H is the basic convex homotopy of (f, g) and r is some constant such that ° < r < l. 
Let HI and H2 be the basic convex homotopies of(f, h) and (h, g) on C X [0, r) and C X [r, 1], respec­
tively. If G is the map defined by 

G(X, s)= HI(x, s), 
and 

G(x, s)= H 2(x, s), 
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then G is convex and hence is a convex homotopy of (f, g). 
PROOF : It is clear that if (x, s) and (y, t) are two points of ex [0 , 1] such that s, t < r or 

s,t>r,then 
C(A(X, s) + A. (y, t)) ~ AC(X, s) + A.C(y, t) 

by the convexity of H I or H 2. It remains to show that the above inequality holds when sand tare 
on different sides of r. 

Suppose s < rand t > r. Let 

t-r 
m=­

t-s ' 

s 
p =-, 

r 

t-r 
q=---. 

r 

If XI, X2, YI, and Y2 are points of C such that 

x= PXI + j5X2 

and 

then we have 

(by the fact that h ~ H ( ., r)) 

(by the convexity of h) 

= h(mx+my) 

= C(mx+ my, r). 

Therefore, since x!, X2, YI, and Y2 were arbitrary, satisfying only x= PXl + j5X2 and y= qYl+ijY2, 

(see definition after theorem 1) 

"" C(mx+my, r), 

noting ms + mt = r. 
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This establishes the convexity condition on (x, s) and (y, t) for the critical point 'A = m, where 
the second coordinate becomes r. To prove it for any other 'A, let us take (say) 0 < 'A < m. Then 

- 'A ( 'A) 'AG(x, s) + 'AG(y, t) = m [mG(x, s) + mG(y, t)] + 1- m G(y, t) 

~~ G(m(x, s) +m(y, t)) +( 1- ~) G(y, t) 

~ G( ~ [m(x, s) +m(y, t)] +( 1- ~) (y, t)) 

(by the convexity of H 2) 

=G('A(x,s)+>:(y, t)). 

A similar argument holds when 'A > m. 
This completes the proof of the convexity of C. 
COROLLARY 3: Ifh=H(', r) in theorem 2, then G=H. 
PROOF. Because C is a convex homotopy of U, g), we have C ~ H, by theorem 1. But because 

C = HI on ex [0, r] and C = H 2 on C X [r, 1], the basic convex homotopies on these sets, whereas 
H is another homotopy of U; H(·, r)) on Cx [0, r] and of (H(·, r), g) on Cx [r, 1], we must 
have H ~ C. 

THEOREM 4: Let fo, f1, ... , fn be convex maps defined on the set C, and O=ro < rl < ... 
< rn = 1 be a set of numbers in the unit interval. Denote by Hij the basic convex homotopy of(C, fj) 
on C X [rj, rj]' 
If 

for aLL XEC and i = 1, 2, ... , n - 1, then there exists a convex homotopy G on C X [0, 1] such that 

for aLL xEC. 
PROOF: Let C(x, r) =Hi,i+I(X, r) for Ti ~ r~ ri+J. The proof is by induction on n. 
First, for n=2, the theorem is true by theorem 2. Now assume that the theorem has been proved 

for n= 2,3, ... , N -1. Let (x, r) and (y, s) be any points in ex [0, 1]. In order to show convexity 
for n=N, we must prove that 

G ('A (x, r) + .\(y, s)) ~ 'AG ((x, r)) + .\G( (y, s) ), 

for 0 < 'A < 1. By the induction hypothesis, it is only necessary to consider the case where ro ~ r ~ rl 
and r.\'_1 ~ s ~ r.\. To simplify notation, let 

g(t) =C(ax+ay, t), 

where r < t < s and a is such that t = ar + as. Let 

and 

r2- r l 
p=-­

r2- r 

s- r·) 
q=---' 

s-rl 
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Then 

and 

by the indu ction hypothesis. Multiplying the first inequality by 1/(1- q + pq) and the second by 

pi (1 - q + pq) and adding, we have 

( ) ~ pg(r) + qpg(s) 
g rl ~ , 

1 - q + pq 1 - q + pq 

or 
g(rl) =g(vr+vs) ~ vg(r) +vg(s), 

where 
v = ---=--p-.-

l - q + pq' 

proving the convexity inequality for 'A = v. To prove the inequality for other values of A, we use the 
same technique which was applied in theorem 2. Thus if 'A < v, for instance, we write 

- A ( 'A) Ag(r)+'Ag (s)=v(vg(r)+vg(s))+ l-;v g(s) 

=g(h+Xs), 

by using the convexity of g on [rl' s]. This completes the proof. 
Theorem 4 shows a method of constructing a homotopy betwee n two given maps which has 

certain desired intermediate values. We shall call a convex map Con ex [0, 1], as in the above, 
a piecewise basic convex homotopy if C is the basic homotopy of some pair (Ji,/;+I) on each set 
ex [ri, ri + I]' where 0= ro < rl < ... < rl/ = 1. The next theorem shows that any convex homo· 
topy of maps on a convex set can be approximated by a piecewise basic convex homotopy. 

THEOREM 5: Let f and g be any convex maps 011 the set C, and let G be a convex homotopy 0/ 
(f, g) on ex [0, 1]. Then there exist piecewise basic convex homotopies GJ, G2 , ••• , such that 
Gi ~ G uni/ormly. 

PROOF: Let M; = {O, rl, r2, . .. , rill = 1} be finite subsets of the unit interval, where 
mesh (Mi) ~ 0. For any i, if rj < rj+1 < rj+2 are any three neighboring points of M i, we note that 

where Hj.j+2 is the basic convex homotopy of (C(·, rj)' C(-, rj +2 )) on ex [rj, rj+2]. Thus if C i 

is defined to be the piecewise convex homotopy of theorem 4 with points ° = ro < rl < . . . < rill j= 1 
and 

then Ci is indeed convex, by theorem 4. 
Now for any E > 0, there exists 8 > ° such that 

IG(x, r) -G(x, r') 1< E 
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whenever Ir-r'l < 8, for all XEC, by the compactness of Cx [0,1]' By taking mesh (M i ) < 0, we 
have, for any r such that rj ,,:; r":; rj+ I, 

where r= Arj+1 + >--rj. Thus, since 

IG(x, r) - [A.G(x, rj+l) + >--G(x, rj)] I,,:; AIG(x, r) -G(x, rj+d I + >--IG(x, r) - G(x, rj) I 

we have 

IG(x, r) -Gi(x, r) 1< E, 

proving the theorem. 
Finally, we note that forming a basic convex homotopy is a continuous process in f and g. 

Given two con vex maps f and g, let PC' be the operator defined as: PC' (f, g) is the basic homotopy 
HIli of (f, g) on C X [0, 1], where C is the domain set of f and g. Then PC' maps pairs of functions on 
C into functions on C X [0, 1]. We shall use the sup norm for all functions in the following. 

THEOREM 6: The operator PC' which maps pairs of convex maps on a set C into their basic 
convex homotopy on C X [0, 1] is continuous. 

PROOF: For any two given pairs of maps (f, g) and (f', g') such that 

Ilf-I'II < 8 

Ilg-g'll < 8 

it follows that, if x, y, and z are points of C such that 

x= ry+ rz (0,,:; r ":; 1), 

then 

Irg(y) + rf(z) - [rg' (y) + 1'1' (z)] I ,,:; rlg(y) - g' (y) I + rlf(z) -1' (z) I < ro+ 1'0 = o. 

From this it follows easily that 

3. Monotonicity Properties of the Basic Homotopy 

THEOREM 7: Let f and g be convex maps of the set C, and H the basic convex homotopy of 
(f, g) on ex [0, 1]. If f,,:; g (f~ g) on C, then H(x,·) is monotonic increasing (decreasing) on [0,1]' 
with strict monotonicity holding if strict inequality holds between f and g. 

PROOF. Suppose f,,:; g. By corollary 3 it is sufficient to show that 

for all XEC and 0,,:; r":; 1. Now 

f(x) ,,:; H(x, r) ,,:; g(x) 

H(x, r) ,,:; rg(x) + rf(x) 

,,:; rg(x) + rg(x) = g(x) 

56 



proving half of the inequality. Also if 

x= ry +rz, y, ZEC, 

then 

rg(y) + rf(z) ~ rf(y) + rf(z) 

~ f(ry+ rz) 

= f(x) 

so that 

H(x, 1') ~ f(x). 

A similar proof holds if f~ g. 

To prove strict monotonicity for (say) the case f < g, let 

o = inf {g(x) - f(x) :XEC}. 

Then 0 > 0 , by the compac tness of C. In the above argument we have 

rg(y)+rf(z) ~ ro + rf(y)+rf(z) 

~ 1'0 + f(x), 

implying H(x, 1') > f(x) if 1' > 0. 
Next we consider monotonicity in the maps f and g by taking their domain to be a subinterval 

of the real line. 
THEOREM 8: Let f and g be convex maps defined on a compact subinterval C of the real line, 

and let H be the basic convex homotopy of (f, g) on C X [0, 1]. If f and g are both monotonic in· 
creasing (decreasing) on C, then H (', r) is also monotonic increasing (decreasing) on C. Furthermore, 
strict monotonicity of f and g implies strict monotonicity of H(', r). 

PROOF. Consider two points (xt, r) and (X2, 1'), with X2 > XI. 

If 

for some Y2, Z2EC, then clearly it is possible to find YI and Zl in C such that YI ",; Y2, Zl ",; Z2, and 

Thus 

by the monotonicity off and g. Since Y2 and Z2 were arbitrary, if follows that 

or 
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If f and g are strictly monotonic and X2 - Xl = 0 > 0, then we note that Y2 - YI ~ 0 or Z2 - Zj ~ 0 
in the above. Now let 

a= inf (((x) - f(x-o): x, x- OEC} 

b = inf {g(x) -g(x-o): X,X-OEC}. 

Then a, b > 0, by the compactness of C and the strict monotonicity assumption, while 

[rg(Y2) + rf(z2)] - [rg(ytl + rf(zd] = r[g(Y2) - g(ytl] + r[f(z2) -f(ztl] ~ min {rb,ra}. 

Thus 

H(x2' r) - H(xI, r) ~ min {rb, ra}. 

proving strict monotonicity. 
It should be noted that the fact thatf(x) ~ g(y) for some x and y does not imply monotonicity 

of a convex homotopy G of (I, g) along the line joining (x , 0) and (y, 1), even if the conditions 
of theorems 7 and 8 are satisfied. For instance, iff, g: [0, 1] ~ R, and 

f(x)=l, 

g(x) =x, 

then C(O, 0) =C(l, 1) = 1, but clearly 

G(tt) ~tG(O, 1) +tC(l, 0) 

4. Specific Forms of the Basic Convex Homotopy 

We have shown in theorems 2 and 4 that there are many convex homotopies connecting any 
given pair of convex maps. One interesting set of homotopies (because they can be written ex· 
plicitly) is given in the following case. Letfand g be convex maps on C such thatf-g=a, a con­
stant. If h: [0, 1] ~ R is any convex map for which 

h(O)=O, 

h(l) =a, 

then the map H: C X [0, 1] ~ R defined by 

H(x , r) = f(x) +h(r) 

is a convex homotopy of (f, g). In fact, if 

h(r) =ra, 

then H is the basic homotopy. This raises some questions, about the form of the basic homotopy, 
which will now be considered. 
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THEOREM 9: Let f and g be two convex, differentiable maps on a compact subinterval C 0/ 
the real line. IfH is the basic homotopy of (f, g) on C X [0, 1], then a necessary and sufficient condi-
tion that ' 

H(x, r) = f(x) + r(g(x) - f(x)) 

is that f - g is constant. 
PROOF. Consider any point (x, t). Then 

H (x, t) = tJ(x) + t g (x ). 

But if 0 > 0, then we must have 

t H(x+o, O)+tH(x - o, 1) "", H(x ,t), 

or 

tJ(x+o) +tg(x-o) ""'tJ (x) +tg(x ). 

The n, 

/(x + o)-f(x) ;=:g(x)-g(x-o), 

implying 

f'(x) ""'g' (x), 

where f' and g' are the firs t derivatives of f and g, respectively. Similarly, taking 0 < 0 , leads to 

f'(x) ~g '(x) , 

so that 

f'(x) =g' (x) . 

Since x was chosen arbitrarily, this implies thatf- g is cons tant , proving necessity. Sufficiency 
was shown above. 

THEOREM 10. Let f and g be two convex maps on a set C such that , along any line segment 
in C, f and g are differentiable except at, at most , a finite set of points. If H is the basic convex 
homotopy o/(f, g) on C X [0 , 1], then a necessary and sufficient condition that 

H(x, r) = f(x) + r(g(x) - f(x)) 

is that f - g is constant. 
PROOF. Consider any point xEC. If y is any other point of C, then by lemma 9 f - g is constant 

on the portions of the line segment L joining x and y where f and g are both differentiable along L. 
By the co ntinuity of f and g, f - g is therefore constant for all points on L, since there are at most 
a finite number of points at which the derivative along L does not exist. Therefore, 

f(y) - g (y) = f(x) - g (x) = a. 

Since y was arbitrary, the theorem is proved. 
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Finally we show something about the explicit determination of H for certainf and g. 
THEOREM 11. Let f and g be convex maps defined on a compact interval C of the real line, 

and let H be the basicconvexhomotopyof(f,g)on C X [O , I].Forany(x,r)E ex [0,1] , 

H(x, r) = rg(y) + rf(z), 

where y and z are points in C for which x=ry+rz and g'(y)=f'(z), if such points exist. If not, 
then y and z are such that x = ry + rz and 

f - (z) ~ g+(y), 

where f- , f+, g- , g+ are the left and right hand derivatives of f and g, if such points exist. If neither 
of the above exist, then 

H(x, r) = min {rg(y) + rf(z): x = ry + fZ and y or z is an endpoint ofC}. 

PROOF. Let 

h(y) = rg(y) + "f( x~ry) 

for all YEC for which (x-ry)/"EG. Then H(x, r) =inf h(y). If there exists YoEC for which 

(x- ryo) f - -,,- ~g+ (yo) 

and 

then it is clear that, if 0 > 0, 

( x-ryo-ro) 
h(Yo+o)=rg(yo+o)+"f " 

~ r(g(yo) + og+ (yo» 

( x-ryo ) =rg(yo)+ff -f-

_ (x- ryo) () ~ rg(yo) +1'1 -,,- =h Yo , 

whenever h (yo + 0) exists. (If h (yo + 0) does not exist, then either yo or Zo = (x - ryo) If is an end­
point of G.) Similarly, 

Thus, 
h(yo) =inf h(y) =H(x, r). 
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If there is no such point Yo, then for every y in the interior of C we have either 

f - ( x~ ry) > g +(y) 

or 

g - (y) > f + ( x~ ry). 

Thus if neither y nor x~ ry is a n endpoi nt of C, it is clear that there exists 8 > 0 suc h that ei ther 
r 

h(y+ 0) < h(y) 

or 
h(y-o) < h( y). 

Since h is continuous in y and the domain of h is a closed subinterval of C, it follows that h must 

take its minimum value when y or x ~ ry is a n endpoint of C. This compl etes the proof. 
r 

(Paper 75Bl&2-343) 
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