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Problems of gamma ray and ne utron penetration in infinite, homogeneous media ca n be so lved 
in terms of infinite s um s of a ce rtain type of biorthogonal polyn"mial sys tem . Many ca lcu lations have 
used a few te rms, pe rhaps 4 to 8, successfu lly due to good apparent converge nce. This paper develops 
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given of the functions used to obtain the error bounds. 
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1. Introduction 

There is an important class of radiation transport problems for which it is feasible to calculate 
spatial moments 

1 1" Mil =, dzz"F(z) , 
n. 0 

(1) 

or 

1 J'" Mil = n! ...: " dzz"F(z) , (I') 

by numerical integration of a recursive system of Volterra integral equations of the second kind 
[1, 2].1 A detailed description of the proce,'ure for obtaining and evaluating these equations is 
not pertinent to the discussion here; but it is important that accurate calculation is feasible only 
for a limited number of the moments, say 6 to 10. 

In some of these problems every other moment is . unobtainable because the recursive system 
does not reach it; in other problems every other moment vanishes; and in still other problems it 
turns out to be advantageous to distinguish between even and odd component distributions, both 
of which utilize alternate moments only. Thus one continually runs into the problem of constructing 
distributions which depend on a space variable z, while utilizing powers of the variable Z2 through 
the use of alternate moments. 

There is by now a sizeable body of literature on this subject which references [1-13] do not 
exhaust. Two general approaches to the problem of constructing the distributions have been used, 
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namely with polynomials and with sums of functions such as exponentials [2]. The latter method 
has been referred to as "function-fitting," and a variety of algorithms for determining coefficients 
ill such representations have been used. 

The problem which has concerned us is the following: Data from "moment" calculations 
exists, has proven very useful [5-7], and has even been used as a kind of standard against which 
data from other procedures with known and possibly severe built-in limitations has been compared 
[8-10]. Yet there has been no way to assess the errors in the data constructed from the moments. 
Hence the accuracy of these data, although apparently high and generally assumed so, is not 
firmly established. 

This paper is the second in a series which attempts to put such data on a firmer foundation. 
There appear to be at least four questions which call for study: Let N be the number of moments 
which an approximation utilizes. Can one be certain of convergence in the limit N ~ 00, (1) for 
polynomial approximations or (2) for specific function fitting algorithms? Likewise, what is the 
"truncation error" due to use of only a finite set of moments, (3) in polynomial approximations, or 
(4) in specific function-fitting approximations? 

The first paper in this series, reference [4], was a study of the polynomial system, which 
essentially answered question (1). A few comments about this will be made in the next section. In 
this second paper we discuss procedures for estimating the truncation error for the polynomial 
approximations, i.e., question (3). Two approaches are given, of which one is more suited to the 
radiation transport problems which are our main concern. 

We also have ways of getting at answers to both of the questions (2) and (4), and we hope to 
make these the subject of one or more additional papers. In fact, function-fitting procedures can 
be more flexible and accurate than polynomial methods. But problems of convergence and esti­
mation of truncation errors for function-fitting approximations are intimately bound up with the 
properties of related orthogonal functions, and that is the reason for delaying study of function­
fitting approximations until the polynomial problems have been considered. 

In the next section we identify the pertinent polynomials by giving some of their main prop­
erties. Reference should be made to references [1-4], particularly reference [4], for a more complete 
discussion of the properties reviewed here. 

2. U!i Polynomial Systems and Approximations 

The polynomial representations to which we have referred are usually written 
ex> 

F(z) = 2: FI/ U7;(z), (2) 
11=0 

and our interest also lies in truncated approximations to the infinite series. The independent 
variable in (2) is written z, with 0 ~ z < 00; but it may also be Izl, with - CX! < z < 00 . The U7; are 

biorthogonal to an adjoint set of polynomials which we designate iJ~; and the weight function for 
the system is Zke -z : 

(x dzz"e - z i;~(z)u'/" (z) = 0/1111 , )0 · (3) 

where 0/1111 is Kronecker's delta. The adjoint polynomials, {;~;, are functions of Z2 rather than z or 

Izi. The two sets, U~; and [;~', satisfy adjoint third order differential equations, and have been shown 

to be the only biorthogonal .polynomials obeying differential equations of this order [3]. We also 
note that generating functions for the U~ are elementary [4], 

(4) 
11 =0 
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and that while generating functions for the O~; can likewise be written in closed form, only the 
cases k=O, 1 are as simple as (4) [4]: 

(l_q) - I cos [zv'q/ (l-q)] = i ql/U?,(z), 
n=O 

[q(l-q)] - 111 sin [zv'q/(l- q)] = i quU,:(z). (4') 
n= O 

Generally speaking, convergence of the series in eq (2) appears to be rapid enough for many 
important practical problems. Typically the first four or five terms seem to give impressive accuracy 
over a wide range of z values, say 0 0;; z :S 15. 

The Fourier transforms of the Vi;· and the Laplace transforms of the OJ:- are simple power func­
tions in the complex plane and have biorthogonality properties on an appropriate contour. From 
these functions one can show that convergence of the series (1) depends on the location of the 
singularities of the Fourier transform of F (Izl) [4]. In the gamma ray and neu tron problems of 
interest, the form of the transport equation leads one to expect the singularities to lie on the real 
axis to the right of a known point. Convergence is then expected if very simple rules are obeyed 
in choosing a scale parameter (for z) so that all singularities fall in a hyperbolic-shaped region of 
the complex plane [4]. 

This leaves unanswered the question of the size of the truncation error which results from use 
of a finite rather than infinite sum. Our approach here·is to obtain "error limit functions" which 
enable us to bound the error for all values of z. Our method for developing these functions is simple 
and not particularly new. Nevertheless, because neither the study of truncation errors nor the use 
of biorthogonal systems is familiar to many physicists and engineers, we put the problem in a fairly 
general context and in the process inc lude older material to make the discussion more complete. 

3. The Adjoint Function and the Norm 

One can often, though not always, construct an adjoint function to F (z) which we designate 
F(z) , 

F(z) = i F"U:dz). (5) 
n=O 

In addition, the number IIFII ,2 

(6) 

has the properties of a norm. Since these series mayor may not converge depending on the sequence 
of F" values, these concepts are useful mainly when (6) converges so that the function has afinite 
norm of this type. 

In this connection we can bring out some important ideas by rewriting (2), (5), and (6) with an 
arbitrary renormalization of the polynomials: 

x 

F(z) = 2)cI/FI/) {C;;-l V;; (z) }, (2' ) 
n=O 

F(z) = i (c"F,,) {c"U:;(z) }, (5 ') 
n=O 

1 The asterisk in (6) indiC'at es complex conjugate. 
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where the subscript indicates a renormalization, and 

" 
IIFII~= L IcnF n1 2 . (6' ) 

n=O 

A comparison with eq (2) makes it clear that the biorthogonality relation holds for the renormalized 
polynomials (U~/Cn) because the Cn, Cm in (2) can be canceled for all nand m. Further, the distribu· 
tion F(z) is not changed by this renormalization. But the adjoint function and the norm are changed, 
hence the use of the subscript r in (5') and (6'). If the constants Cn decrease with n, it is possible 
for IIFllr to be finite when IIFII is not. Correspondingly, the series for Fr(z) may converge where 
F(z) does not. 

Before proceeding further, we should note that this discussion, and the discussion to follow, 
applies to orthogonal as well as biorthogonal systems. But the indicated renormalization generates 
a difference between two sets of functions which would otherwise be identical for the orthogonal 
case. Hence application of the argument to orthogonal systems involves treating them as two dis· 
tinct biorthogonal sets. 

4. Transformation Kernels 

We need to refer to one other type of function before turning our attention to the problem of 
estimating limits for the error of truncated series. We denote this bivariate function by P'(y, z), 

YO 

P'(y, z) = L {cW~(y) }{cnlU~(z)}. (7) 
n=O 

This series may diverge. But if integrals over p' (y, z) converge, one can assign to this function 
the properties 

(8) 

and 

(8') 

Hence we refer to p' as a transformation kernel for the system. 
The diagonal case, P(z, z), is more useful to us than P(y, z), and we give this one·variable 

function a special notation, -----

YO 

[D"'(z))Z= P(z, z) = L {CnlU~(z) F (9) 
n=O 

If this function exists, it is clearly positive; and it is smaller the larger the Cn'S. 

5. Some Special Properties and Cases 

The normalization for the U~ polynomials was chosen fortuitously in reference [1]. One can 
show that for cn = 1, all the P(y, z) can be expressed in terms of modified Bessel functions [4]; 
while for other choices of Cn such simple expressions probably don't exist. Specifically, for k = 0, 

'J'O(y, z) = (2/7T)Ko(Vy2+ z2)e(Y+Z), (10) 

and 
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[DO (z»)2 = e2Z (2/7T )Ko (zY2). (11) 

Since Ko diverges logarithmically as its argument tends to zero, the series expression for these 
functions converges except for y= z = O. Divergence at this point also follows from the asymptotic 
expression for UMO): for n ~ 00 [4], 

(12) 

with Ao= 1/v:;;.. Further, one expects that the series (2) will converge for all values of z if 

x 1 
L Vn+JIFnl < 00. 
,,=0 n+ 1 

(12') 

Since this condition is barely more restrictive than the condition that the norm IIFII be finite, we 
expect that for k = 0, the series (2) usually converges for all values of z when the norm defined by 
(6) is finite. 

For k ;3 1, the T" and D" are more complicated: 

[D4(z)]2 =l {.!.K _3/V2K_+21/2K._9V2K 9/2K} 2z 
8 H '., 6 .j 5 + . 4 e 

7T z z- z· z~ 

(13) 

Divergence for z ~ 0 occurs for all k, and becomes progressively stronger as k increases. In fact, 
to guarantee convergence at z = 0 in (7), it is necessary to choose Cn values which tend to 00 as 

Cn = Vn+lh·+<, E > 0. (14) 

This follows from eq (12). Basically, this factor compensates for weight functions which include 
the factor Zk, a factor diminishing the amount of information about z near zero which the moments 
contain. In any case, use of (14) or a different choice which similarly assigns values other than 
unity to the en means that p. and Dk are not obtainable in such an attractive form as (10) and (13). 
Such choices also place greater demands on the convergence of the F,,'s, if Cn increases without 
limit. 

6. Expressions Bounding the Truncation Error 

Our approach to the problem of bounding the truncation error makes use of the Schwarz 
inequality, 

(IS) 

5 



We write the truncated approximation to (2) in the form 

N-l 

FN(Z) = L (cnFn){cn1m;(z)}. (16) 
n=O 

Let us also define two infinite sequences, one for coefficients and the other for polynomials. The 
rules which we follow are as follows: 

F =FlI , n<N, 
n 0, n ~N, 

We can then write the truncated series in alternative forms, 

'" FN(Z) = L (cnFn) }cnlU~(Z)}, 
n=O 

FN(Z) = L (CnFn){cnlD~(z)}. 
n=O 

(17) 

(17') 

(18) 

(18') 

If we subtract (18) and (18') from (2'), and apply the Schwarz inequality, we obtain the expres­
sions we seek, 

IF-F,I ~ !IF-FIII,Dk(z) , (19) 
and 

IF - FII ~ 1IFII,D~(z), (19') 

where in agreement with eq (9), 

x 

{D';.(z)}2= L {ci/ 1m;(z)}2. (20) 
JI=S 

One should note here that (19) and (19') are by no means the only such inequalities which can be 
written. One can modify (17) and (17') in many ways, each leading to an inequality. But the expres­
sions written above represent limiting cases of greater interest than some of the other options.2a 

By and large, we would expect (19) to be of greatest usefulness when the function being ap­
proximated is exactly known, perhaps through an expression which gives the F" for all values of n. 
Under these circumstances, the norm of the difference function, IIF - FIll,., can be determined 
with high accuracy and certainty, and simple expressions for an upper bound can be derived. 

Alternatively, we would expect (19') to be more useful when the function being approximated 
is known only in regards to some very general properties, such as asymptotic trends or discontin­
uous or singular behavior. Under these circumstances the norm of the difference function cannot 
be accurately known. One may have only some guidance on expected trends with large values of 
n of the coefficients F" together with the sequence of estimates of the norm provided by the terms 
up to the index of truncation. Even though this information is incomplete, it ,still permits estimates 
of error bounds for all values of z through an estimation of the likely magnitude of a single number. 
This information is useful, the more so in combination with the sequence of approximations obtained 
by changing the index of truncation. 

The case (19') is of greater use in the calculation of gamma ray and neutron distributions, 
in which we have a particular interest. 

211 :'\Jole that D~: can replace DA' in (19) 10 give a sharper form. 
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In a general way, one can say that the c,.'s provide a mechanism for translating some very 
general information about the function F(z) into a reduction of the error bounds of a truncated 
approximation. If one knows that the FII 's decrease strongly with large n- and this information 
would follow from location and type of singularities of the Fourier transform-then one can use CII 

values which increase rather strongly with increasing values of n. A proper choice would result 
in only a small increase in either IIF - F Nil,. or IIFII,., while it would decrease D" and D'Z: substantially 
for all values of z. The result is therefore a narrowing of the estimated bounds for the truncation 
error. 

6.1. Error Limit Functions 

Table 1 presents examples of "error limit functions." The second column gives D", and the 
remaining columns give ratios DUD". These data, somewhat augumented, are also presented in 
figure 1. For this case and for others to be mentioned, the CII have the form 

(21) 

and in table 1, and figure 1, the results are for j = 2. 
Note that there are N minima in figure 1, and that they are spaced more widely apart at larger z. 

Note also that from one value of N to the next a drop by perhaps a factor of V2 occurs, while the 
final rise to unity advances by about ilz = 4 to the right. 

TABLE 1. Values for the functions DO(z) and DI;JD 0 given by eqs (9) and (20), using the expression 
(21) for C n with j = 2 

z D" N = i 2 4 7 

0.00 1.124 0.4561 0.3302 0.2293 0.1643 
.25 1.048 .2997 .1607 .06876 .02627 
.50 1.019 .1903 .07817 -05558 .05302 
.75 1.009 .1334 .1007 .09329 .06760 

1.00 1.011 .1492 .1492 .1094 .06037 

1.50 1.040 .2735 .2142 .09805 .02875 
2.00 1.091 .3993 .2332 .06267 .02468 
3.00 1.246 .5970 .1860 .06151 .03530 
4.00 1.470 .733l .1308 .09293 .01661 
5.00 1.770 .8252 .2071 .07939 .02489 

6.00 2.163 .8867 .3439 .05320 .02746 
7.00 2.671 .9273 .4789 .07480 .01733 
8.00 3.328 .9538 .5971 .1147 .01821 

10.00 5.264 .9818 .7736 .1369 .02865 
12.00 8.488 .9930 .8810 .1020 .01864 

14.00 13.88 .9974 .9408 .1970 .03812 
16.00 22.94 .9990 .9719 .3750 .03721 
18.00 38.24 .9997 .9872 .5499 .03231 
20.00 64.19 -9999 .9944 .6953 .06604 
22.00 108.4 1.000 .9976 .8047 .08923 

25.00 239.8 1.000 .9994 .9084 .07327 
30.00 917.8 1.000 .9999 .9790 .2758 

Figure 2 shows the effect of changing the value of j in (21). When j is increased by unity, the 
curves are reduced by a factor which is much larger at small z than large. The positions of the 
minima are essentially unchanged. 

Figure 3 illustrates changes when k is increased. The main effects are as follows: (a) there is 
is a shift of all minima to the right, this shift being larger for large z than for small z; and (b) there 
is a substantial increase in DM Dk, particularly for values of z near zero. This increase reflects 

the reduction of the small z region's contribution to the polynomial coefficients, due to the factor 
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of z added to the weight function. Beyond the small z region, equal increases in k and j have nearly 
compensating effects on the ordinates of corresponding maxima and minima. 

Figure 4 shows a number of functions Dk(Z), for different values of k and j. The trend with 
z does not change very much, although the curves are reduced at large z when j is increased. In­
creases in the value of k show a correspondingly stronger divergence for z ~ O. Beyond this one 
might say that the main effect of unit increase in k is a shift of the curve to the right by about Llz = 1 . 

. 01"'0 --'--+--'----!:--'---±--L--:-!e----l.--:f.=--'-~,L_--'-_,J.,,__....J 

z 

FIGURE 1. Datafrom table 1 ,for functions defined by eqs (9) and (20). with C n =-Vn+l 
and k=O. 

1.0 --rIll 

FIGURE 2. The ratios D%/D°,for N=5, and c,,= (\Yn+l)i. 

Data for different values of j are compared. 
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FI GU RE 3. Th e ratios D ~/D k, Jor N = 5 and C n = (\Vn + l ) k' I. 

Data for difTerent va lues uf k arc l:ompared. 

F IGU RE 4. The Jun.ctions D k(Z), Jar several values oj k, usin.g C n = (\Vn + l) i, with j 
also takillg different values. 

6.2. Fractional Error Limits 

Using (19) and (19 ' ) , we write the ratio of error limits to function F(z) being approximated 
as follows , 

IF-FNI <Eb( ) {"F-FNlr}. 
F(z) ~ z IlFlir ' (22) 

{ Dt(Z)} 
~ Eb (z) Dk(Z) (22') 
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where Eb (z) will be referred to as an "error buildup" function and is given by 

Eb(z) =Dk(Z) r;~). (23) 

The ratio D~:jD" is shown in figures 1-3, and depends on the approximation system but not on 
the function being approximated. Further, its general characteristics are largely determined by 
the number of moments used and other input information. On the other hand, Eb(z) depends on 
the function F(z) and can be modified by making changes in this function of a manipulative type, 
which do not necessarily represent additional input information. Further, if F(z) cannot be well· 
represented, the error buildup function exhibits the situation clearly. 

Thus the representation (22') divides the error limits into system-dependent and function­
dependent parts. (This is not true if use of (19) rather than (19') results in replacing D~:/Dk by 

IIF - Fyll,./IIFII,.·) 
Clearly the fractional error limits cannot be made small unless Eb (z) is kept within a reason­

able range of values. The trend of D"(z) shown in figure 4 is strongly increasing, hence F(z) is 
ideally also a rather strongly increasing function of z. 

To illustrate these ideas let us consider the simple case F(z) = 1. Since the norm of this 
function is unity for all values of k, Eb(z) is given by D"(z). From figure 4, using k=O,j=O, one 
thus obtains a value of 8.6 for Eb at z = 10, and from calculations similar to those of table 1 we 
evaluate D9/D at O.OSI, so that the fractional error limits are about 8.6 X O.OSI, or about ± 44 
percent. On the other hand , if one uses (19) and (23), since IIF - Fyll is known to be zero for N ~ 1, 
the error limits vanish. 

For contrast we consider next the simple function F(z) =ez /;;/(1 .2S)"+I, again with k=O, and 
j=O. From eq (4) one sees that F,,=(-9/16)", hence 11F11,.=vT.46; and IIF-FIII,., with N=7, 
has the value Vl:46. 0.0178. The function Eb(z) turns out to be less than three out to a value 
of z at least as great as z= 16, and it is no greater than about 6 out to z=2S . (These comments 
omit the logarithmic divergence very close to z = 0). 

These results enable us to determine that according to eq (19), the error limits are below 
S percent out to z= 16, and below about 10 percent out to z= 2S. On the other hand, by use of 
(19'), and data for the j = 0 case similar to that of table 1 and figure 1, we determine that error 
limits fluctuate below about IS percent out to about z = 16, but rise to about SO percent at z = 2S. 

In a general way, one might say that the narrower limits given by (19) are due to use of more 
refined information about F (z) than is required by (19'). 

6.3. Scale Factors 

The two functions F(z) = 1, and F(z) = eZ/ 5 /(1.2S)"+I, can be regarded as differing mainly 
in regards to scale factor. If we multiply both by e- Z we see this more clearly. The preceding 
discussion suggests that the error buildup function can be modified to advantage by changes in 
scale factor which are very easy to make. 

To state this in general form, we depart from the practice to this point of using only e- Z as 
weight factor. More generally , we represent a function F (z) with the approximation 

(24) 

where the constants ell have the interpretation previously given, and the scale factor t is arbitrary. 
Expansion coefficients F" are given by 

(2S) 
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If the distribution F (z) has an asymptotic trend which IS exponential, with coefficient 
(IJ-II/ -lit) ¥= 0, 

F(z) ~ !(z)e- I-'II/ Z+z/{, 

where! is some function which is weaker than exponential, then a finite norm requires that 

~ < IJ-m . V2. Beyond this, however, the choice of t is a practical matter, affected by rate of con­

vergence and the resulting size of Eb(z). It turns out that Eb(z) is apt to be better behaved if t 

is chosen a little smaller than 1/ IJ-m , say t - ~. But other considerations can sharpen the se-
IJ-m 

lection of scale factor considerably. 

6.4. Trends Near Zero 

It may happen that the trend of F(z) near zero is known precisely. One can then approximate 
a modifi ed fun ction, F(z) -C(z), where C(z) has the known trend for z~ 0, tends to zero more 
strongly than F (z) for z ~ 00, but is otherwise arbitrary. The combination F (z) - C (z) can then be 
proportional to z or Z2 for small z, so that approximation by V,', or Vf, polynomials is appropriate, 
rather than V\~ polynomials. 

This situation has many advantages. The V'i systems for higher k values are not so accu­
rate for small z, but extend their accuracy considerably farther in the direction of large z values. 
But if the small values of z cause no problem, due to use of known trends, the accuracy at larger 
z values is obtained esse ntially without cost. Use of this additional information thus turns out to 
give greater accuracy for all z values , small as well as large, as well as narrower bounds on the error. 

If, in addition, many moments of the unknown function are available for use, it is possible to 
omit the lowest moments, while at the same time increasing the value of k even more. This de­
creases the accuracy for small z values somewhat, but in such a way that the decrease in both 
accuracy, and knowledge of the accuracy, is not necessarily large enough to be important. At the 
same time, the approximation for intermediate and large z may be considerably improved. This 
suggestion of omitting low moments and usin g large k values was made by E. Morris [13]. Morris 
did not attempt to obtain a single approximation, but used this approach to extend a low k approxi­
mation to much larger z values. 

Example 1: The Sievert Integral. Standard tabulations exist of the Sievert integral [14], 

(25) 

but due to the fact that two variables are involved, additional representations may well prove 
useful. Hence the evaluation in terms of Vn polynomials is perhaps a nontrivial example of the 
use of error functions of the type (20'). Writing 

cos ()= \1'1- f3 

and expanding by means of eq (4), we evaluate the integral term by term to obtain: 

x (sin ())211 +' 
S(z, ()) = L 2n+ 1 e-zV~(z). 

n=O 
(26) 

If we evaluate thi s expression , using In terms in the series, the error according to eq (19) is gov­
erned by the inequalities 

{
X (sin (})411 +2} 2 

(Error)2,,;;; '~n (2n+1)2 ; Ko(zV2), (27) 
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or, say, using c,, = (2n + l)I /4, 

{ " (sin (J)4n+2} " 1 
(Error)2 ~ L (2n+ 1)3/2 L, ~ [e-zU~(z) F-

n=m n=O Y n+ 1 
(27' ) 

Note that the error limit given by (27') is finite at z = O. Writing v for 3/2 or 2, we have 

" ~ 1 + sm 4(J dx , 
" (sin (J)4n+2 (sin (J)4N+2 { . f'" (2N + I)"} 
~N (2n+ 1)" (2N+ 1)" .\'+ 1/ 2 (2x)" 

(28) 
< (sin 8)4N+2 { 2N + 1 . 4 }. 

~ (2N+l)v 1+ 2(v-l) sm 8 

Table 2 gives selected values of the ratio IIF-F\jl,./llFllr, obtained using (27') and (28). The latter 
gives an overestimate which for intermediate values of 8 can be up to a factor of 2 too high. The 
norm ratios of table 2 show that (26) gives very accurate values even with only a few terms , through· 
out a wide range of z values, provided 8 is small, say 8 < rr/4. 

The approximations of table 3 are given despite being somewhat unimpressive because they 
illustrate relationships between errors, error limits, scaled and unsealed approximations, and the 
two approaches to obtaining error limits. For e near rr/2, eq (26) has slow convergence due to the 
"sharp" component with cos 1> near zero. Table 3 gives a variety of types of data for the worst case, 

TABLE 2. Values of II F - F N II r/ IIF II r calculated using eq (27') 

The numbers in parenthesis give approximations in which the numerator of the ratio is obtained using eq (28). (Note that 
the form A-B means A X lO - B in the top en tri es.) 

() N = 2 4 6 

0 0 0 0 
15° 1.3- 3 (1.4- 3) 0.39- 5 (0.39- 5) 1.3-8 (1.4-8) 
30° 1.9- 2 (2.1-2) .77- 3 ( .94-3) 0.36- 4 (.48- 4) 
45° 0.079 (.11) .013 (.021 ) .0025 (.0046) 
60° .20 (.31 ) .075 (.16) .033 (.070) 
75° .36 (.52) .23 ( .37) .16 (.29) 
90° .54 ( .57) .46 ( .47) .41 (.42) 

TABLE 3. Fractional error and error limit data for S(z, rr/2) 

To obtain the quantities in parenthesis. a scaled function was calculated, with g= 0.8. This reduces the Ebfunction strongly 
at large z. N is the number of terms in the approximating series. Data in the "error" column is fractional. Fractional 
error limits can be obtained by multiplication of Eb by D~. /Do. 

z Eb D~ /Do N = 4 Error DV/Do N=7 Error 

0 0.97 (1.l6 ) 0.366 (0.366) -0.18 (-0.15) 0.287 (0.287) -0.14 (-0.11) 
0.25 .96 ( 1.08) .106 ( .079) - .014 (-.003) .046 (.047 ) .008 (.014) 

.50 1.02 (1.l1) .106 ( .137) .04 ( .04) .103 ( .120 ) .04 (.03) 

.75 loll (1.l6 ) .158 (.173 ) .06 ( .04 ) .123 (.ll2) .04 (.02) 
1.00 1.22 (1.21 ) .175 ( .168) .07 (.04) .105 (.076) .03 (.01) 
1.5 1.48 (1.31) .148 ( .108) .05 (.01) .050 ( .041 ) .002 (- .01) 
2 1.76 (1.40) .095 ( .070) .01 (- .01) .045 ( .060 ) -.02 (- .01) 
4 3.17 ( 1.79) .128 (.106) -.08 (-.02) .027 (.038) .007 (.006) 
7 8.09 (2 .61) .098 (.164 ) .17 (.05) .025 (.036) -.004 (- .008) 

10 19.4 (3 .69) .163 (.130) .29 (- .04) .038 (.030) -.07 (.01) 
15 91.2 (6.79) .313 ( .640) 4.0 (- .42) .051 (.052) .35 (- .03) 
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-- --------

(} = 1T/2. Two sets of data, corresponding to 4-term and 7-term approximations , are shown. In all 
calculations, k=O and j= 1. Data (in parenthesis) are also given for another calculation in which 
a scalin g of ~ = 0.8 was used to reduce both the error and the error limits. The two factors giving 
error limits, Eb(z) and D~/ DO, are presented separately. 

Comparison of the data in pare nthesis for Eb with that not in parenthesis demonstrates the 
reduction of thi s factor which the scaling brings about. The other factor, D~/Do , is not greatly af­

fected by th e scaling except that the eventual rise to unity is moved to smaller z value, as already 
noted. 

Errors given for the scaled approximation are almost uniformly smaller, and this is especially 
marked for large z values. 

Error limits calculated by multiplyingEb by DgJDo are usually two or more times larger than the 

actual errors. The pattern of error sizes shows a marked tendency to follow the pattern of error­
limit sizes. This is expec ted, because both are affected by the maxima and minima of the first few 
polynomials not included in the approximation. 

Example 2: Point and Plane Isotropic Gamma Ray Distribut ions. In th e calculation of gamma 
ray distributions, one can classify components of the distribution by an index which gives the 
number of scattering inte raction s that the photons have had with atoms of the surrounding materiaL 
Thus one speaks of unscattered , once-scattered , twice-scattered , etc., components. Th e multiply­
scattered compone nt is the sum of all com ponents scattered at least twice. 

The advantage of this classification sys tem is in part due to the fact that unscattered and once­
scattered components can be described by analytic expressions for many configurations. The 
multiply-scattered component re presents the primary objective of the polynomial representation 
referred to in this paper; and for a configuration in which the photon source is idealized as a point, 
the multiply-scattered com pon ent is known to vary approximately as Z2 near the source. 

One procedure for accurate calc ulation of distributions is thus to determin e un scattered and 
once-scattered components by direct functional evaluation and quadrature, and to evaluate th e 
multiply-scattered compone nt by polynomial representation. Due to the known z 2e- z dominance in 
the spatial trend of this component , we have used UT, polynomials. It turns out that the z-dependence 
of the function multiplying z2 e- Z, which is our F(z) to be determin ed , has a trend which produces 
an error buildup ratio (22') which does not increase satisfactorily. He nce we have used a value 
~ = 1/1.2 to decrease the error limits. Because the norm is not known , but the convergence of the 
norm appears to be very good , we have used the largest of the sequence of norm values shown in 
table 4, together with an error limit expression of th e type (19') with CIII = '\Y m + 1, i. e. , j = 1, to 
give the values in the next to last error column of table 4. 3 

Table 4 shows unscattered and once-scattered components as well as the multiply-scattered 
compone nt. The sum of all components is given in the "Total" column. The last column on the right 
gives an indication of the truncation error, through use of the difference between approximations 
using 6 and 8 moments. Both error columns are divided by " Total", rather than by the multiply­
scattered result. This explains the tende ncy for errors to vanish as z ~ 0, since the " Total" contains 
the unscattered component, which is finite in this limit. 

The data of table 5 were obtained from the data of table 4 by numerical integration, using 

ll" dr I/'I./(z) =-2 -II'TI(r), 
Izi r 

(30) 

:1 We lI SC a s maller val ue of j than (14) would sugges t because a factor z ~ is applied to the e rror limits here. Resulting convergence 10 zero s hown on the table al 

z = 0 is conjectured, ra ther than proven. 
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TABLE 4. Gamma ray energy deposition/rom a point isotropic, Cs·137 source in air 

The first two columns give distance in f!./cm~ and in feet. The next three columns give ullscallered. once scattered, and multiply scattered component s. respectively. 
The column labeled "Est imated Err Lim" I!ives an estimated fractional erro r limit to the 'Total " co lumn. The final column gives the fractional contribu tion of 
the last two terms in the se ri es. For this calculation a tolal of 8 terms was used in the expansion. Int e/!ration of the total with respect to distance (in g/cm t ) gives 
unity. 

Energy deposition in air 

g/cm" Feet o Scat 1 Scat 2+ Scat Scat/Unseat Total Estimated Final Two 
Err Lim Terms 

0.0000 0.00 2.943-02 0.000 0.000 0.000 2.943-02 0.000 0.000 
.1102 + 00 3.00 2.919-02 2.189 - 04 2.049-06 7.571-03 2.941-02 7.610-04 4.147-06 
.1205+00 3.28 2.916-02 2.389-04 2.447-06 8.274-03 2.940-02 9.063-04 4.946-06 
.1469+00 4.00 2.910-02 2.898-04 3.628-06 1.008 - 02 2.940-02 1.335-03 7.314-06 
.2204+00 6.00 2.894-02 4.288-04 8.098-06 1.510 - 02 2.938-02 2.925-03 1.620-05 

.2938+00 8.00 2.878-02 5.643-04 1.428 - 05 2.011-02 2.935-02 5.063-03 2.834-05 

.3673+00 10.00 2.861-02 6.967-04 2.214-05 2.512-02 2.933-02 7.702-03 4.358-05 

.4407+00 12.00 2.845-02 8.262-04 3.162-05 3.015-02 2.931-02 1.080-02 6.176-05 

.5509+00 15.00 2.821-02 1.015 - 03 4.881-05 3.771-02 2.927-02 1.620-02 9.420-05 

.7346 + 00 20.00 2.781-02 1.317-03 8.506-05 5.041-02 2.922-02 2.693-02 1.609-04 

.9182 + 00 25.00 2.742-02 1.604- 03 1.303 - 04 6.324-02 2.916-02 3.931-02 2.414-04 

.1102+01 30.00 2.704-02 1.877 - 03 1.839 - 04 7.622-02 2.910-02 5.285-02 3.338-04 

.1205+01 32.80 2.682-02 2.024-03 2.174-04 8.355-02 2.907-02 6.079-02 3.899-04 

.1469 + 01 40.00 2.628-02 2.384-03 3.141-04 1.027 -01 2.898-02 8.180-02 5.466-04 

.2204+01 60.00 2.484-02 3.265-03 6.529-04 1.577 -01 2.875-02 1.385-01 1.040-03 

.2938+01 80.00 2.347-02 3.993-03 1.073-03 2.158-01 2.853-02 1.834 - 01 1.556 -03 

.3673 + 01 100.00 2.218-02 4.593-03 1.550-03 2.770-01 2.832-02 2.109-01 2.036-03 

.4407 + 01 120.00 2.096-02 5.085-03 2.066-03 3.412 -01 2.811-02 2.206-01 2.441-03 

.5509+01 150.00 1.925 - 02 5.652-03 2.876-03 4.430-01 2.778-02 2.076-01 2.860-03 

.7346+01 200.00 1.671- 02 6.238-03 4.230-03 6.265-01 2.718 - 02 1.491-01 3.013-03 

.9182 + 01 250.00 1.450-02 6.493-03 5.486-03 8.260-01 2.648-02 1.156 - 01 2.564-03 

.1102+02 300.00 1.259-02 6.518-03 6.579-03 1.040 +00 2.568-02 1.428 -01 1.696-03 

.1205+02 328.00 1.163 - 02 6.457 - 03 7.107-03 1.166+00 2.519-02 1.650 - 01 1.103-03 

.1469+02 400.00 9.485-03 6.136-03 8.184-03 1.510 +00 2.381-02 2.023-01 -5.241-04 

.2204+02 600.00 5.384-03 4.701-03 9.310-03 2.602+00 1.940 - 02 1.689-01 -3.517-03 

.2938+02 800.00 3.056-03 3.265-03 8.649-03 3.898+00 1.497 -02 1.002 - 01 -2.931-03 

.3673+02 1000.00 1.735 -03 2.152-03 7.221-03 5.403 + 00 1.111- 02 1.182 - 01 -3.546- 04 

.4407+02 1200.00 9.849-04 1.374-03 5.635-03 7.117+00 7.994-03 1.193 - 01 2.080-03 

.5509+02 1500.00 4.212-04 6.746-04 3.566-03 1.007 + 01 4.662-03 6.924-02 3.141-03 

.7346+02 2000.00 1.023 - 04 1.936 - 04 1.434 - 03 1.591 + 01 1.730 - 03 9.283-02 -6.928-04 

.9182+02 2500.00 2.483-05 5.308-05 5.154-04 2.290+01 5.933-04 5.801-02 -3.566-03 

.1102+03 3000.00 6.028-06 1.415- 05 1.733 - 04 3.110+01 1.935 - 04 9.285-02 -1.135-03 

.1469+03 4000.00 3.553-07 9.570-07 1.731- 05 5.140+01 1.862 - 05 9.281-02 5.780-03 

.1807+03 4920.00 2.627-08 7.747 -08 1.875 - 06 7.432+01 1.979 - 06 1.419 - 01 -3.699-03 

.1939+03 5280.00 9.480 - 09 2.879-08 7.703-07 8.429+01 8.086-07 1.288 - 01 -9.792 -03 

.2327+03 6336.00 4.769 -10 1.557 - 09 5.439-08 1.173 + 02 5.642 - 08 3.542 - 01 -1.410 - 02 

.2909+03 7920.00 5.380-12 1.904-11 9.471-10 1.796+02 9.715-10 8.743-01 6.110-02 

.3394+03 9240.00 1.282 -13 4.775-13 3.001-11 2.378+02 3.061-11 1.860 + 00 1.716 - 01 

Norm 
sequence: 0.1929-01 0.2001-01 0.2041-01 0.2043-01 0.2045-01 0.2045-01 0.2046-01 0.2046-01 

where II'/,' and 1"T1 are point and plane isotropic source distributions respectively.4 This integra­
tion was also performed using data for error limits and the difference between approximations; 
in this way the results shown in the error columns of table 5 were obtained." 

~ This elementary illtc:~ral occurs when the plane iSOlrOpi(' suurce is considered to be a uniform distribution of point isotropic sourCl'S over the plane . 

. -, Note that if the error in II'T! is desi~nated by 5I ,.'rJ while the error limit is L, wilh I. ~ 0, then 

f dr Ifd,. I -;L ~ -;511'1"1: 

and integration of /. thus gives a limit for 15I/'ul. 
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TABLE 5. Gamma ray energy deposition/rom a plane isotropic Cs-137 source in air. 

nnterpretation of the columns is the same as in table 4.1 

Energy deposition in air 

Estimated Final 
g/cm' Feet o Scat 1 Scat 2+ Seat Scat/Unseat Total Err Lim Two Terms 

0.1102+00 3.00 6.181-02 9.241-03 9.142-03 2.974-01 8.019-02 1.210 -01 7.170-04 
.1205 +00 3.28 6.051-02 9.230-03 9.142-03 3.036-01 7.888-02 1.230 - 01 7.288-04 
.1469+00 4.00 5.762 -02 9.204-03 9.142-03 3.184-01 7.596-02 1.277 - 01 7.565-04 
.2204+00 6.00 5.173-02 9.132-03 9.140-03 3.532 - 01 7.000-02 1.383 - 0] 8.197-04 
.2938+00 8.00 4.758-02 9.061-03 9.139-03 3.825 -01 6.578-02 1.468-01 8.705-04 

.3673+00 10.00 4.438-02 8.991-03 9.137-03 4.085-01 6.251-02 1.541-01 9.137-04 

.4407 +00 12.00 4.178-02 8.922-03 9.134-03 4.322-01 5.983-02 1.605-01 9.515-04 

.5509 +00 15.00 3.862-02 8.820-03 9.130-03 4.648-01 5.657-02 1.687 - 01 1.00]-03 

.7346+00 20.00 3.459-02 8.653-03 9.121-03 5.139-01 5.236-02 1.801-01 1.068-03 

.9182+00 25.00 3.150 - 02 8.490-03 9.109-03 5.586-01 4.910-02 1.892-01 1.122-03 

.1102+01 30.00 2.902-02 8.332-03 9.095-03 6.005-01 4.645-02 1.966-01 1.165-03 

.1205+01 32.80 2.782-02 8.245-03 9.086-03 6.230-01 4.515 - 02 2.002-01 1.185-03 

.1469+01 40 .00 2.518-02 8.026-03 9.060-03 6.785-01 4.227-02 2.075-01 1.225-03 

.2204+01 60.00 1.999-02 7.457 -03 8.965-03 8.214-01 3.642-02 2.182-01 1.260-03 

.2938+01 80.00 1.651-02 6.937-03 8.843-03 9.555-01 3.229-02 2.194-01 1.208-03 

.3673 +01 100.00 1.397 - 02 6.457-03 8.698-03 1.085 + 00 2.912-02 2.153-01 1.087 -03 

.4407+01 120.00 1.200-02 6.016 -03 8.535-03 1.213 + 00 2.655-02 2.089 - 01 9.105-04 

.5509+01 150.00 9.754-03 5.417-03 8.261-03 1.402 + 00 2.343-02 1.993-01 5.725-04 

.7346+01 200.00 7.163-03 4.559-03 7.754-03 1.719 + 00 1.948 - 02 1.924-01 -9.815-05 

.9182+0] 250.00 5.421 -03 3.847-03 7.213-03 2.040+00 1.648-02 1.969 -01 -7.855-04 

.1102+02 300.00 4.185-03 3.252-03 6.663-03 2.369+00 1.410-02 2.025-01 -1.393-03 

.1205+02 328.00 3.645-03 2.963-03 6.358-03 2.557+00 1.297 -02 2.027 -01 -1.676-03 

.1469+02 400.00 2.597-03 2.339-03 5.599-03 3.056+00 1.054 - 02 1.941-02 -2.147-03 

.2204+02 600.00 1.l01 -03 1.221-03 3.792-03 4.553+00 6.114 - 03 1.498-01 -1.720-03 

.2938+02 800.00 5.015-04 6.466-04 2.485-03 6.245+00 3.633-03 1.338-01 1.653-04 

.3673+02 1000.00 2.384-04 3.449-04 1.593-03 8.]29+00 2.176-03 1.308-01 1.857-03 

.4407+02 1200.00 1.165-04 1.848-04 1.004- 03 1.020 + 01 1.305 -03 1.138-01 2.399-03 

.5509 +02 1500.00 4.132-05 7.343-05 4.916-04 1.368 + 01 6.064-04 1.002-01 9.887 -04 

.7346+02 2000.00 7.820-06 1.599 -05 1.433 -04 2.037 +01 1.671- 04 1.006-01 -2.567-03 

.9182+02 2500.00 1.557-06 3.536-06 4.042-05 2.823 + 01 4.551-05 1.007-01 -2.140-03 

.1102+03 3000.00 3.206 -07 7.903-07 1.Il8 - 05 3.733+01 1.229-05 1.244-01 1.954-03 

.1469+03 4000.00 1.451-08 4.046-08 8.211-07 5.939+01 8.761-07 1.481-01 3.143-03 

.1807 +03 4920.00 8.839-10 2.678-09 7.140-08 8.380+01 7.496-08 2.021-01 -1.130-02 

.1939+03 5280.00 2.985-10 9.293 - 10 2.726-08 9.443+01 2.848-08 2.465-01 -1.634-02 

.2327+03 6336.00 1.263 -11 4.205-Il 1.596 - 09 1.297 +02 1.651-09 5.964-01 -6.166-04 

.2909+03 7920.00 1.152-13 4.134 -13 2.197-11 1.943 + 02 2.250-11 1.415+00 1.177-01 

.3394+03 9240.00 2.365-15 8.910-15 5.840-13 2.507+02 5.953 -13 3.300+00 2.583-01 

The good quality of the results shown in tables 4 and 5 is due largely to the predominance of 
the exponential trend of the un scattered photons throughout all scattered components. The approxi­
mations would not be satisfactory otherwise. 

One should be aware that the error limits presented in tables 4 and 5 only pertain to one type 
of error. They do not include errors due to round-off in the calculation of moments, errors due to 
the finite numerical integration mesh in the calculation of moments or in the quadrature over the 
once-scattered components. And they take no cognizance of limits to the accuracy of the assumed 
interaction cross sections. 
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