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The viscosity of a sample of di(2-ethylhexyl) sebacate has been determined by measuring the
pressure at taps along a closed channel containing the flowing liquid. By means of relative viscosity
measurements in conventional capillary viscometers, we are able to express our results in terms of the
viscosity of water at 20 °C. We find a value of 0.010008 poise. An appendix outlines the calculation of
upper and lower bounds for the geometrical flow constant.
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1. Introduction

The history of the absolute measurement of the vis-
cosity of water at the National Bureau of Standards
began about 1931 when a committee chaired by E. C.
Bingham recommended that a new determination be
made. Work proceeded spasmodically until 1952
when Swindells, Coe, and Godfrey [1]' published the
‘results of their work, and the recommended value for
the viscosity of water at 20 °C was changed from 1.005
centipoise (cP) to 1.002 ¢P. In 1957 Kearsley pointed
out that all of the previous measurements had been
made by very similar experiments and that there was
a possibility that an unknown systematic error af-
fected all of the results. At that time work was started
on two different absolute measurements. One of these
involved measuring the period of a liquid-filled sphere
oscillating in torsion. The other involved measuring the
pressure at taps along a capillary. Work proceeded,
again spasmodically, on both of these experiments.
In 1959, Kearsley published the analysis of the tor-
sional sphere viscometer [2]. Results of that work are
presented in an adjacent paper [3]. In 1968 we decided
to construct an accurate channel in order to avoid some
of the difficulties of measuring the radius and radius
distribution of small capillaries. At the suggestion of
Mr. T. R. Young of the Metrology Division we settled on
a channel formed by pressing two cylind:ical rods
against a flat plate. This suggestion led to the work
which we report here.

2. Experimental Procedure

Figure 1 shows a cross section of the channel we
used. Two 2-cm diameter stainless steel rods were
clamped against a 2-cm thick plate glass flat and sealed
with epoxy resin to produce a cuspoid-triangular
channel one meter long. This geometry allowed us to

! Figures in brackets indicate the literature references at the end of this paper.

put the pressure taps out in the corners of the channel
in a region of low velocity so that any disturbance of

the flow would be minimized. The new geometry
required us to calculate the geometrical flow constant.
This was accomplished by computer calculation of
upper and lower bounds, which agreed to better than
five significant figures. Details of this calculation are
presented in appendix 1.

The channel was placed in the apparatus shown in
figure 2. A large, well insulated, water filled thermostat
was constructed. The channel was fed from a water
jacketed stand pipe which produced a constant pres-
sure head. The stand pipe wasfed by a pump which took
the oil (a commercial grade of di(2-ethylhexyl) sebacate)
from a large reservoir through an oil filter, then through
a 50 ft coil of copper tubing to bring the oil to the bath
temperature, and then to the top of the stand pipe.
Overflow returned to the reservoir.
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FIGURE 1. Cross section of channel assembly.
1, Stainless steel rods. 2, Plate glass flat. 3, Plastic clamps. 4, Pressure tap. 5, Copper
tubing to pressure gage.
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FIGURE 2. Schematic diagram of the channel flow assembly.

1. Thermostat. 2, Channel assembly. 3, Water jacketed stand pipe. 4, Pump. 5, Oil
reservoir. 6, Flow control valves. 7, Solenoid operated diverter. 8, Pressure tap valves.
9, Oil-air interface. 10, Dead weight piston gage.

The channel was fed from the standpipe by plumb-
ing which allowed us to run the flow in either direction.
The flow was controlled by a needle valve near the
entrance end of the channel. The efluent was returned
to the reservoir. A solenoid operated device was used to
divert the effluent stream so that accurately timed
samples could be taken in beakers for weighing.

The measurement of pressure transmitted through
the small pressure taps (0.08-cm diam) required the use
of a high impedance pressure gage. A liquid filled
fused quartz bourdon tube was used. This gage
could be connected to any one of the four pressure taps
to measure its pressure with respect to the efflux tube
level by opening the tap valves one at a time. By closing
all of the tap valves and opening the connection to an
oil air interface, the quartz bourdon gage could be con-
nected to a dead weight piston gage for calibration be-
fore and after a series of test runs.

Temperature was controlled by a proportional con-
troller which balanced an electric heater against the
heat loss to a constant temperature cooling coil.
Temperature was measured with a quartz crystal ther-
mometer which was calibrated against a platinum re-
sistance thermometer before and after a series of
test runs.

We now have all of the quantities necessary to cal-
culate the kinematic viscosity of our test fluid:

I'APR*T
VSTIM W
[" is the (dimensionless) geometrical constant,

3.64872x10-3; AP/L is the pressure gradient; R is the
radius of the rods; M is the mass of fluid flowing in
time, T; and v is the kinematic viscosity, the viscosity
divided by the density.

3. Discussion of Errors

Figure 3 shows the final results for measurements
taken on two days in two directions of flow with four
different flow rates from 1.5 to 5.2 g/s. These rates
correspond to Reynolds numbers between 6.5 and 22.
A detailed display of data is included in appendix 2.
A statistical analysis of the pressure measurements
show: (1) There is no significant day-to-day variation;
.(2) The variability of the individual pressure meas-

urements does not correlate with flow rate; (3) There
is no difference in average gradient for the two direc-
tions; (4) There is a statistically significant correlation
of viscosity with flow rate for the left to right direction
but not for the right to left direction. The total spread
of the data in figure 3 is 0.06 percent of the mean.
The standard deviation of their average is only 0.02
percent. In order to estimate the absolute accuracy of
the measurements, we will examine the accuracy
with which we know each of the various factorsin eq 1.

3.1. The Geometrical Flow Constant

As mentioned above, we have calculated the geomet-
rical factor to five significant figures. We have three
ways to estimate how well we realized the geometry.
The first was obtained from measurements of the di-
ameters of the rods along four different diameters at
thirteen places on the rods. The measurements were
made by comparison with a gage block which was cali-
brated by the Length Measurements Section. Its di-
mension was known to within =10-¢ inches. The com-
parison was made using a dial gage with a precision of
+10-3 inches. The two rods differ in average diameter
by 10~* in. This difference would produce only a negli-
gible error in the area of the channel and in the cal-
culated viscosity. The diameter measurements show a
standard deviation of 6X10~° in and a maximum range
of 3X10-* in. The reciprocal of the root mean fourth
power of the reciprocal diameters is found to be the
same as the mean diameter to seven significant figures.
From the standard deviation in diameter we calculate
an uncertainty in viscosity of 0.032 percent due to the
uncertainty in the value of R. This does not include the
effects of radial flows due to irregularities in the cross
section which we do not know how to estimate.

A second estimate of the accuracy of the geometry of
the channel was obtained from an examination of the
optical interference pattern between the rods and plate
with sodium light which showed the distance of sep-
aration due to irregularities. Figure 4 shows a typical
interference pattern. The rods were clamped to the
glass plate by means of 12 equally spaced plastic 2
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FIGURE 3. Kinematic viscosity of oil sample at various flow rates.
Closed circles, flow right to left. Open circles, flow left to right.
“Plastic components of the apparatus were constructed from commercially available
poly(methyl methacrylate) materials.
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FIGURE 4. Typical interference pattern between a steel rod and the
glass plate showing second order separation.

clamps 2-cm wide. Invariably, the zero order fringe
indicated intimate contact between rods and plate in
the regions under the clamps and within 1 ¢m of a
clamp. Of the remaining 52 ¢m of the channel, the first,
second, third, and fourth order fringes closed in about
26 ¢m, 14 ¢m, 10 ecm, and 2 cm, respectively. By tak-
ing a weighted average of the reciprocals of the squares
of the cross sections augmented by such separation,
one estimates that the observed viscosity would be re-
duced by 0.025 percent. It is not clear how these sep-
arations are related to the variations in diameter of the
rods, to nonstraightness of the rods, or to nonflatness of
the glass plate.

Finally, using linear elasticity theory, we can esti-
mate the penetration of the rods into each other and
into the glass plate. These effects could reduce the
cross-sectional area of the channel by less than 10-*
percent and so produce an error of less than =2X10-4
percent in viscosity. Such penetration would, of course,
tend to compensate for errors due to separation which
were observed by means of the optical interference pat-
terns. One cannot say with certainty how much these ir-
regularities will disturb the flow; however, we estimate
that we know the geometry of the channel well enough
to assign an uncertainty of +=0.04 percent from these
sources.

3.2. Flow Rate Measurements

Uncertainties in flow rate can be estimated in several
ways. First, duplicate determinations made before and
after a series of pressure measurements show a stand-
ard deviation of 0.01 percent. Second, uncertainties in
weighing 100- to 500-gram samples using calibrated
weights are less than =0.005 percent. Our time inter-
val measurements were made with a digital counter

controlled by the National Bureau of Standards’
standard frequency. Therefore the uncertainty in the
time required to move the diverting mechanism con-
stitutes the principal timing error.? From measurement
of the mass of this mechanism and the forces used to
move it we calculate that it takes about 0.02 s to move
the diverter between its on and off positions. The flow
during 0.02 s is 0.02 percent of the total flow. The un-
certainty in flow rate due to the timing error is certainly
less than this.

3.3. Pressure Gradient Measurements

Errors in the pressure gradient measurement could
arise from errors in measurements of pressure, from
uncertainty in measurements of the distances between
the pressure taps, or from irregularities in the cross
section of the channel, such as a possible constriction
between two of the taps.

a. Distances Between Pressure Taps

The distances between the pressure taps in the glass
plate were measured with a cathetometer. The cathe-
tometer was checked against a standard Invar meter in
1952 with no correction larger than 10~* em. The mid-
points of the holes were located to within +=2X10-% ¢m
from an arbitrary reference point near one end of the
channel. The holes were approximately 0.08 ¢m in di-
ameter. Since we wish to determine a pressure gradi-
ent, we have assumed that we measure the pressure at
each of the holes at the same point with respect to its
midpoint. We then determine the pressure gradient by
a least squares technique of fitting the pressure meas-
urements to a linear function of distance along the
channel. The same values of pressure gradient are
obtained to six digits whether the errors are attributed
to pressure measurements or to measurements of posi-
tion of the holes. The statistical analysis of the pressure
measurements indicates that there is a barely signifi-
cant systematic deviation of the individual pressure
measurements from the constant gradient line. The
pressure reading deviations from the center two taps
are consistently positive for one direction of flow and
negative for the other direction. These deviations from
the constant gradient line could be explained by uncer-
tainties of 8 X103 c¢m in the position of the holes. This
is approximately one-tenth of the diameter of the holes.
Deviations from this source are indistinguishable from
those due to irregularities in the cross section of the
channel.

b. Pressure Measurements

Pressure measurements were made with a liquid
filled, fused quartz bourdon gage with a resolution of
about =0.1 N/m? Pressure measurements were repro-
ducible to within #=0.1 N/m? both during the viscosity
measurements and during the calibration of this gage
against a dead weight piston gage. The effective area

3 The diverter was removed from the oil stream during the timed period, thus drainage
from it did not contribute to error.
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of the piston gage certified by the manufacturer, and
checked by the Pressure Measurement Section of
NBS, is within 0.01 percent of its nominal value. The
weights used were found to be accurate within 0.005
percent of their nominal values.

Since air was used in the piston gage, the calibration
was made through an oil-air interface of 4-cm diameter
which might introduce an uncertainty of =0.1 N/m?
due to surface tension effects. A reproducible perio-
dicity of 0.5 N/m? amplitude in the calibration curve
was traced to the gears in the system used to measure
the angular displacement of the quartz bourdon tube.
The calibration curve was found to be reproducible
over the period of the measurements to within =0.15
N/m2, or £0.03 percent for the smallest pressure dif-
ferences measured.

Since all of the systematic deviations of pressure
measurements from the constant gradient line are
barely significant statistically, we have chosen to use
an average of all of the pressure gradient determina-
tions weighted by the inverse of their individual stand-
ard deviations. The standard deviation of this average
is only 0.02 percent. We estimate the absolute ac-
curacy of this average to be =0.06 percent.

3.4. Temperature Measurements

Temperature was controlled in the thermostat at
25 °C by means of a proportional controller with reset
action which uses a platinum resistor as a sensing ele-
ment. Temperature was measured with a digital ther-
mometer which uses a quartz crystal as a sensing ele-
ment. This thermometer indicated temperature within
the bath constant to £10-3 °C for periods up to 8 hr.
Rapid temperature fluctuations of about £=0.003 °C
were found at the end of the bath near the heater and
cooling coil. The average temperature here was the
same as that of the rest of the bath. The digital ther-
mometer was calibrated against a platinum resistance
thermometer in a well stirred oil bath. The platinum
thermometer had been calibrated in 1960 in terms of
the International Temperature Scale of 1948. A triple
point temperature check and bridge calibration were

made in 1969. )
Temperature measurements were made both in the

circulating bath and in copper temperature wells,
shown in figure 5, which had good thermal contact with
the test oil but were relatively isolated from the water
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FIGURE 5. Diagram of channel entrance section.
1, Steel rod. 2, Plate glass flat. 3, Plastic entrance adapter. 4, Copper thermometer well.

5, Plastic streamline fillet. 6, Oil entrance tube.

of the bath. These wells were placed in the oil stream
at both ends of the channel. No significant difference
was found between the two wells; however, both well
temperatures consistently read 0.004 °C higher than
the bath temperature. The same difference was found
whether or not oil was flowing in the channel. It was
attributed to self-heating of the temperature probe in
the unagitated water in the wells. We believe we know
the temperature of the oil to better than = 003 °C which
would produce an uncertainty in viscosity of +0.012
percent.

3.5. Summary of Error Estimation

We list in table 1 the various sources of error which
we have considered. These errors can be combined
to a total probable error of approximately 0.1 percent.

TABLE 1. Systematic errors
Error source Estimated
accuracy
Percent
Geometry of channel.................. +0.04
Flow rate....................... +0.02
Pressure measurements............. +0.06
Temperature measurements....... +0.012
Total absolute value............... +0.13
Root total squares................. +0.075

One effect which might be expected in these meas-
urements is that the pressure at the hole nearest the
entrance end of the channel might deviate from the
others due to entrance effects. This effect is apparently
seen in a significant dependence of pressure gradient
on flow rate for left to right flow direction where the
first hole is only 7 ¢cm from the entrance. We attempted
to minimize this effect by streamlining the entrance
to the channel with plastic fillet pieces shown in figure
5. No effect is seen for right to left flow where the
first hole is 28 c¢m from the entrance. Eliminating
this effect by leaving out the data from the first hole
would increase our final result by only 0.01 percent.

Corrections were applied to the raw data for air
buoyancy on the weights of oil samples and on the
weights used in calibrating the pressure gage. The
local acceleration of gravity was calculated from the
value determined by Tate [4] assuming a gravity
gradient of 3 X 10-%s2. Temperature corrections were
applied using a decrement of 4 percent per degree
which was determined in a capillary viscometer.

4. Results

The direct result of this work is a value for the
kinematic viscosity of one sample of commercial
grade di(2-ethylhexyl) sebacate at 25 °C. This value
was found to be 19.555 centistokes. By means of
conventional relative viscosity measurements [5],
this value can be compared with the viscosity of water
at 20 °C. Such measurements were made immediately
before and after our absolute measurements. Neglect-
ing errors in the relative viscometry, we calculate the
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viscosity of water of 20 °C to be 1.0008=+0.0010
centipoise (cP). The corresponding value from the
torsional sphere viscometer [3] is 1.006=0.001 cP.
The discrepancy suggests the presence of an un-
identified systematic error in one or both of these
measurements of at least 0.25 percent. The com-
parison is discussed in detail by Marvin [6].

We gratefully acknowledge the assistance of many
members of the staff of NBS. Particularly, we would
like to thank Marion Brockman, who assisted with
many of the measurements, Henry Pierce, who made
density and relative viscosity measurements, and
James Filliben of the Statistical Engineering Section,
who assisted with the analysis of our results.

5. Appendix 1. Calculation of Bounds for
the Geometrical Flow Constant

For unaccelerated viscous flow of an incompressible
fluid through a channel the Navier-Stokes equations
may be reduced to:

(A-1)

where v(x, y) is the velocity profile, 7 is the viscosity,
dP/dz is the pressure gradient in the direction of flow,
and K is a positive constant. The total flow

OzﬁvdS (A-2)

over the cross-sectional area, S, of the channel. By
Green’s Theorem, since v=0 on the boundary, by
the adherence condition

J(UVZU+Vv'Vv)dS=f vVo-dB=0 (A-3)
N B

where B is the boundary of the channel, and dB is in
the direction of the outward normal. Combining equa-

tions (A—1), (A—2), and (A—3), we obtain

1
Q‘EL Vo - VodS. (A—4)

From equations (1) and (A—1) which define I' and K,
respectively,! it is possible to express the relationship
between K and I as

Q

P=xr"

(A=5)

4 The equations M/Tp=(Q and AP/L=— dP/dz relate the quantities of the two equations.

Since I' is a dimensionless geometric constant, we
can arbitrarily set K and R equal to one and I' will
be numerically equal to the corresponding value of Q.

5.1. Upper Bound

To obtain an upper bound for Q, one chooses a trial
velocity function, ¥, which satisfies the differential
equation (A—1), but does not necessarily satisfy the
boundary condition. Then, by Green’s Theorem and
the adherence condition

f (VA + V- Vi)dS :L oW dB=0. (A-5)

S

By Schwarz’ inequality:

Kﬁ'vdS=i L (VU'Vlb)dS‘
< (L(W - Vp)dS - L (W"W)ds)”z
Ko=(xe J v uds)”

1
QSEJ;(V‘JI'VJI)JS- (A—6)

Equation (A-6) defines an upper bound for the total
flow.

5.2. Lower Bound
To generate a lower bound for Q one chooses another
trial velocity function, ¢, which satisfies the boundary
condition, ¢ =0 on B, but does not necessarily satisfy

the differential equation (A—1). Then, by Green’s
Theorem:

J’g(cpv2v+V<p-Vv)dS=fchv-dB:O (A-T7)
L B

since ¢ =0 on B. Again, by Schwarz’ inequality
24 2
(Kf ¢ds> =(f (Ve - Vo)as )
s s

< L (Ve - Ve)dS fs (V- Vo)dS

&Ll

sf (Vo - Vo)dS = KQ-
[ e voras
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Thus,

K(LgodS)z }

<Q (A-8)
f (Vo - Vp)dS
LS

which defines a lower bound for the total flow.

5.3. Optimization of Bounds

For the upper bound we can choose as a trial function

Y= by2 - Eanhn (A_g)

where b=K/2, «, is an arbitrary coefhicient and h,
is a harmonic polynomial of degree n in x and y.

V2h,=0.

There are two such polynomials of each degree;
one is even and one is odd in y. In the present problem
we may choose our axes such that the channel is
symmetric about the x axis, with origin at the point
of contact between the cylinders. Then we need not
include the polynomial which is odd in y.

The integral

1 R
0v=1 L(W V) dS

will be quadratic in the a,s. Qu can be written in
matrix component notation with the usual summation
convention as:

I(Ql'= aH oo '*"I‘I)CYIYI'Fll‘b2 f y-)dS (A_lo)
S

where the arbitrary coefficients «, form a vector;
H is the symmetric matrix,

dhn dh Ohy, Oh
Hnm: f’ n (’ m L (' n (' m dS:
s\ dx dx dy dy

and Y is a vector,

v, L () ) s

To find the values of the arbitrary coefficients which
minimize Q, we differentiate eq (A—10) with respect
to a and set the derivatives equal to zero to obtain

3 _ o+ 4bY, =0,

e (A-11)

We can solve for the coefficient vector,
o= — 2bH7]l Y[.

This result can be put inte eq (A-10) to

desired upper bound.
For the lower bound, we can choose a trial function

o=F-G

where F is a function which vanishes on the boundary
B and G is an arbitrary function. We have used?

F=(x*+y*=2y) (x*+y*+2y) (x—1)
and

C— 2 ajxiy¥,

i.i=0

Then, since F vanishes on 3,

o ( L FGdS)z

K [ (G2VF - VF —FGV2G)dS

(A-12)

is the functional to be maximized by adjusting the
a;’s. This can be done by minimizing the denominator
under the condition that

f FGdS=1
s

by Lagrange’s method of undetermined multipliers.
If we call the denominator of (A-12) D and [sFGdS =N
then

oD oN
Ejj A 67,] =0 (A-13)
N=1

form a set of (n+1) (m—+1)+1 equations which are
linear in the a;’s. If we relabel a;;:

Aijj = m+1)i+j »
A= Qnt1) (m+1)

then eqs (A—13) can be written as

%D N 0
()a,-aaj (90(,' 0
0

ai | = (A-14)

. T
@y | j
do;

where the matrix on the left is indicated as a par-

5 This F is lhe lowest nrdf’r pulynumldl whu h v.im:hes un B lt ls mumrtdn! that F does

aQ 1
1ot vanish wiihin S in vrder iha given
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titioned matrix. The problem is thus reduced to finding
the inverse of this matrix and from that to calculate
the optimum «,,’s through (A-14) and then the bound
through (A-12). In fact, the element at the bottom of
the diagonal of this inverse matrix is the reciprocal
of the bound.

For both of the bounds the matrix elements involved
are composed of sums of integrals of the form

Lin= [ [x"ymdydx
over the cross-sectional area of the channel. This
integral can be expressed as a sum of beta functions
[7] since:
Inm = Bnkckm

where

(=D*(m)!

Cron= 0 =k F D 1A

and

/n+1 k
p .:B<n+l 5+1)=l< ) )r<§+1)
e l‘<n+k+3)
2

Both of these calculations were coded for the

UNIVAC 1108 computer. With the inclusion of the

first 21 harmonic polynomials for the upper bound
and 31 terms up to x°y® in the lower bound calculation,
the two bounds converged to 3.64872 (=+0.00002) X
10-3

6. Appendix 2. Data

Tables Al and A2 show flow rate and pressure data
taken on two days. Table A3 lists measurements of
the distances of the midpoints of the four pressure taps
from one end of the channel. The individual masses
of oil listed in tables A1 and A2 have not been corrected
for air buoyancy. The average flow rates have been so
corrected. The appropriate factor is 1.0012. The
pressure measurements have been corrected for the
nonlinearities in the quartz bourdon gage. They have
not been corrected for the local gravity of 980.0972
cm/s? nor for air buoyancy on the calibrating weights.
The appropriate factor is 0.99927. The viscosity values
listed should also be so corrected. They are shown in
the table for the operating temperature of 25.035 °C.
They should be multiplied by 1.0014 to adjust them to
25 °C. The appropriate factor to convert the pressure
gradient-flow rate ratios to kinematic viscosity is
207.404.

Run number eight gave a value of viscosity more than
three standard deviations from the average of the other
fifteen runs. Although we could find no reason for this
difference we have assumed that it is not due to
random error and we have not included it in our
final average.

TABLE Al. Flow rate and pressure data for day 1.
Flow direction Right to left Left to right
Run number 2 4 5 7 1 3 6 8
Nominal 115 3 4.5 6 115 3 4.5 6
Mass (g) 132.141 254.568 371.234 565.633 128.786 252.383 379.414 510.885
Time (s) 95.36 96.89 95.48 107.42 95.13 95.24 96.09 97.68
Flow Rate, g/s Mass (g) 147.660 285.531 411.833 534.506 142.801 315.619 416.731 530.851
Time (s) 106.57 108.67 105.91 101.51 105.58 118.98 105.55 101.51
Average 1.3873 2.6306 3.8929 5.2719 1.3548 2.6545 3.9531 5.2360
Tap 1 0.02812 0.08318 0.17314 0.22018 0.16386 0.41412 0.57984 0.78724
4 11360 .24531 .41309 .54508 .08040 .25054 .33610 .46483
2 .05388 13209 .24546 .31816 .13873 .36486 .50632 .69004
Pressure, psi 3 .09702 .21393 .36660 .48214 .09652 .28222 .38334 .52730
1 .02813 .08320 17317 .22020 .16385 .41410 .57980 .78724
4 11362 .24529 41310 .54514 .08042 .25054 33610 .46483
2 .05386 13206 .24546 .31818 .13871 .36480 .50634 .69006
3 .09710 .21390 .36660 .48212 .09646 .28221 .38335 .52730
1 .02813 .08318 17315 .22020 .16385 .41406 .57980 .78722
4 11362 .24531 .41308 .54508 .08040 .25052 .33610 46483
2 .05388 13210 .24546 .31816 .13873 .36480 50632 .69004
S .09708 .21390 .36660 .48214 .09650 .28220 .38336 .52730
Pressure Gradient  Value X 10° 94234 94222 94238 94225 94222 94221 94236 94141
Flow rate Std er X 106 19 13 5 10 36 11 L
Kinematic Stokes 0.19545 0.19542 0.19545 0.19543 0.19542 0.19542 0.19545 |..oovineinnnns
viscosity
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TABLE A2. Flow rate and pressure data for day 2.

Flow direction Right to left Left to right
Run number 9 12 13 16 10 11 14 15
Nominal 1.5 3 4.5 6 1.5 3 4.5 6
Mass (g) 164.799 248.408 427.531 521.915 159.538 316.214 415.209 505.133
Time (s) 107.24 94.47 94.92 98.72 118.38 108.20 105.28 96.45
Flow Rate, g/s Mass (g) 146.345 278.677 470.861 565.833 134.698 275.726 375.640 556.020
Time (s) 95.23 105.98 104.55 107.02 99.92 94.34 95.24 106.17
Average 1.5386 2.6326 4.5093 5.2933 1.3495 2.9261 3.9487 5.2434
Tap 1 0.02750 0.08296 0.17316 0.21586 0.16358 0.41372 0.57895 0.78789
4 12234 0.24524 0.45112 0.54216 0.08046 0.23340 0.33552 0.46466
2 .05609 0.13194 0.25696 0.31424 0.13858 0.35937 0.50552 0.69050
3 .10394 0.21377 0.39722 0.47888 0.09656 0.26837 0.38269 0.52730

Pressure, psi

1 0.02750 0.08298 0.17318 0.21586 0.16360 0.41376 0.57893 0.78789

4 12234 0.24524 0.45114 0.54214 0.08048 0.23344 0.33553 0.46468

2 .05609 0.13194 0.25700 0.31426 0.13860 0.35946 0.50556 0.69049

3 .10392 0.21377 0.39724 0.47888 0.09658 0.26840 0.38269 0.52730

1 0.02750 0.08298 0.17318 0.21586 0.16362 0.41382 0.57892 0.78789

4 12232 0.24520 0.45114 0.54216 0.08048 0.23346 0.33552 0.46466

2 .05606 0.13192 0.25700 0.31426 0.13862 0.35946 0.50552 0.69050

3 .10394 0.21376 0.39724 0.47888 0.09660 0.26842 0.38270 0.52732

Pressure Gradient ~ Valuex10% 94217 94213 94237 94238 94207 94229 94244 94252
Flow Rate Std erx10¢ 10 22 14 16 9 10 3] 10
Kinematic viscosity Stokes 0.19541 0.19540 { 0.19545 0.19545 0.19539 0.19543 0.19547 0.19548

TABLE A3. Positions of pressure taps

Tap No. Distance (meters)
1 0.93434
2 73731
3 40711
4 .28030
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