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Eigh t iso thermal equations of s ta te a re analyzed to yield quantitative meas ures of the degrees to 
which equat ion pa irs can be di sc rimin ated for real data , data of limited span and precis ion. Calcula ted 
curves a ll ow one to assess the span a nd precis ion necessa ry in P·V data to a llow una mbiguous di s· 
c rimination of va rious pairs. Some di sc uss ion is presented of bias and sys tematic e rror which may 
arise in leas t squ a res fittin g. Us ing exac t synthe ti c data , we a lso illus tra te for seve n equat ion pairs th e 
very la rge re lat ive sys temati c e rrors in pa ra meter and sta nd a rd deviation es tim a tes which a ri se from 
s uch fittin g of da ta of limit ed span with a n in co rrec t but "close" equa tion mode l. Gene ra l concl usio ns 
following from these result s are di scussed. Although th e prese nt wo rk is princ ipa ll y concerned with 
d isc rimina ti o n betw een equ ations of s tat e, it s result s are pe rtin e nt to the more genera l proble m of 
choos ing a " bes t" ana lytica l mod e l (linea r or nonlinea r) to represent expe rim ental result s . 
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1 . Introduction 

Virtually a ll physical sc ience is concerned at so me 
s tage with co mparing expe rim ental data with th eo· 
retica l predi c tions. Although no theories are ever fully 
verifiable, one nearly always wants to find that theo· 
reti cal model, from th e limited set of possible models 
under cons id eration , whi ch bes t represen ts the data , 
whic h allows the unde rlyin g phe nom ena to be better 
unders tood , and, if poss ible, whi ch allows predic tion 
outside the range of th e original measure me nts. In the 
relatively early s tages of in vestigation of a given 
domain , one usually does not know whic h of several 
th eore tica l or e mpirical models is likely to be mos t 
appropriate . This state of affairs is parti cularly likely 
to occ ur wh en the physical situation being s tudied is 
too complex to allow a tractable theore tical idealization , 
whi ch is s till sufficiently close to th e expe rimental 
s ituation, to be accurate. Many·body interaction prob· 
lems , such as that of de termining the exact equation of 
state of a solid or liquid , fall in this category, 

The proble m of model discrimination is made dif· 
ficult by th e presence of random and systematic errors 
in the data. In th e present pape r, it is assumed that 
syste matic error in the data is absent or a t. leas t neg
ligible compared with other error. Systematic error can 
st ill be ge ne rated , of co urse, by the c hoice of an in
appropria te model [11 ,t and a qu es tion of considerable 
importance is: Under what conditions is it possible to 
discriminate adequately be tween several more-or·less
appropriate models , or equations? In th e present paper, 
we shall be co ncerned with typi cal syntheti c equation
of-state data ge nerated without significant error of any 
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kind . reservin g a de ta iled di scussion of th e e ffect of 
ra nd om errors to a la te r paper. It wi ll be shown that 
by us ing such exact " data" we can inves ti ga te what 
so rt of discrimination is possib le be tween var ious 
equations of s ta te in pract ical cases where meas ure· 
ment s are of limited precis ion. 

In real life, ex perim e ntal data have only limited 
accuracy and precis ion and always ex te nd only over a 
limited range of the variables involved. Thi s state of 
affairs suggests intuitively that one will be unable to 
di scrimin ate adequately between two or more analyti· 
cal models which are suffic ie ntly close toge th er in th e ir 
predi ction s for th e ran ge co nsidered. Weare here con· 
cern ed with ways of ma kin g thi s intuition quantitative 
at leas t for the specific equations cons idered here. 
Since better di scrimination may so metim es appear 
poss ible than is actually th e case, just because of t.h e 
presence of more or less random errors whi ch happe n 
to fall in a parti cular way, it is important to cons ider 
exact data before data with random errors. 

Although all that is often required of an equation of 
state, or more generally, a mathematical model of 
experimental results, is that it se rve adequately as an 
interpolation and smoothing devi ce for the data, the 
problem of model di scrimination is usually s till presen t 
even in thi s case. Unless the firs t model fitted passes 
all tests of adequacy, more than one model mu st be 
examined and a choice of available models mad e. Th e 
prese nt paper discusses some ge neral methods of 
model di scrimination with specific illustration s ta ke n 
from the equation of state field. Here we are concern ed 
additionally with the task of es timatin g physically 
significant paramete rs of the material which led to the 
data in question , 

Two somewhat diffe rent si tuations freque ntly arise 
in the equation of state area. Often one starts with no, 
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or only crude, knowledge of the underlying parameters 
of the material under investigation. These parameters 
are then determined by fitting various equations of 
state to P-V data, usually by least squares techniques 
[1]. The most appropriate, or "best fit" equation will 
usually be that which leads to minimum estimated 
standard deviations of the fitted data points and of the 
parameters. The values of the parameters obtained 
from this fit are taken to be the best available estimates 
of the unknown material parameters. In general, how
ever, such values will not usually be good estimates 
unless the choice of model is appropriate for the data 
and leads to randomly distributed, essentially sto
chastically independent residuals, and the fitting 
procedure itself leads to negligibly biased parameter 
estimates. 

Sometimes one is able to obtain estimates of the 
parameters by other means than from fitting of direct 
P-V measurements. Now becoming popular for this 
purpose is the method of ultrasonic velocity measure
ments under pressure [2, 31, pioneered by Lazarus 
[41. Once having parameter estimates available for a 
certain material, one can, given the appropriate equa
tion of state, calculate volume values {or a range of 
pressure. Of course, with a limited number of param
eters available , as is always the case, calculated 
volumes can generally only be expected to remain 
reasonably accurate over a limited range of pressure. 
The nub of the problem here is usually in knowing 
what equation of state to use (and how far to trust it). 
Sometimes the determination of the best equation 
may be made by comparing ultrasonically derived 
parameters with those obtained from a least squares fit 
of direct P-V data for the same materiaL 

In either approach , one eventually obtains a set of 
parameters believed to be appropriate for the material 
under investigation. Although in actual practice these 
parameters will always be uncertain to some degree, 
it is nevertheless useful to ask , as a limiting case, how 
well one can distinguish between various equations of 
state when the parameters are actually exact (or are so 
considered) but when available P-V data are oflimited 
precision. Some answers to this question are discussed 
later for eight different equations of state of some 
current interest. 

One of the important purposes of the present work is 
to point out that uniqueness is a limit seldom achieved 
in practice. Frequently an experimenter chooses a 
model to represent data of given range with the impli
cation or statement that the chosen model is "best" or 
"most applicable" without realizing or investigating 
sufficiently to find that other different models are 
equally applicable for the given data. 

Although the present analysis is concerned with 
discrimination between eight specific equations of 
state and thus involves quantitative results only for 
these equations, we expect that the results will also 
apply at least qualitatively to other not-too-different 
equations_ More importantly, perhaps, the present 
discrimination methods and general approach can and 
should be applied to any experimental situation where 
it is important to establish one or more adequate 

mathematical representations of the data or, better, 
of the underlying process which led to the predictable 
part of the data. 

2. Equations of State Considered 

The material parameters with which we shall be 
concerned , all for isothermal conditions, are the 
specific volume, Vo, at a given reference pressure Po; 
the bulk modulus at P=Po, Ko ==- Vo(AP/aV) 1"="0 
and various pressure derivatives of the bulk modulus, 
K, also evaluated at P=Po-For simplicity, let p == P-Po; 
then V=Vo at p=O. Now K,;==YJ == (aK/AP)IJl=o, 
and Kg == (a 2K/APZ) 1 Jl=O. The symbol YJ has been 
introduced to simplify subsequent equations; it is 
dimensionless. It is also useful to introduce the further 
dimensionless quantity IjJ == KoK!!_ Finally, define the 
dimensionless pressure variable z == p/Ko and the 
dimensionless density variable x == p/po == VolVo 

Barsch and Chang [31 have recently given values for 
the parameters of CsI at 25°C , plus temperature 
derivatives of these parameters_ The quantity Vo may 
be calculated from x-ray measurements of the lattice 
constant. Other parameters such as Ko, K,;, and K~ 
were obtained from ultrasonic measurements. Using 
the Barsch and Chang results, we have calculated the 
values of Vo, Ko, YJ and IjJ which then apply to CsI 
at 150°C, an arbitrary choice of temperature. These 
values, as used in our computer studies, have 14 figure 
accuracy and may be considered the accurate values of 
some hypothetical material close to CsI at 150 °C. 
Of course as applied to CsI itself, only a few places 
in each parameter value are significant. To five 
figures, the parameter values are: Vo == 1.0184, 
K" == 1.0503 X 102 kbar, YJ == 6.0382, and IjJ == -6.9897. 
Here we have taken Po = 0 and Vo at 25°C as unity. 
Thus, all volumes used here are reduced specific 
volumes and are dimensionless. The original Barsch 
and Chang 25 °C values are Vo = 1, K" = 118.9 ± 0.6 
kbar, YJ = 5.86±0.11 and Kg=-0.052±0.002 kbar- I . 

These results lead to 'l' == -6.2 at 25°C. 

We shall be interested here in comparisons of, or 
discrimination between, eight different equations fre· 
quently employed in equation of state studies [1, 3J. 
We have adopted the approach of Barsch and Chang 
of designating the ordinary Murnaghan equation as the 
first-order Murnaghan equation (ME I), and the equa
tion previously [11 termed the second-order equation 
(SOE) as the second-order Murnaghan equation (MEt). 
There are several forms of this latter equation, depend
ing upon the values of YJ2 and 'l'; here only one of these 
forms is pertinent. All eight of the equations are given 
in the form z= f(x) in table 1, which also lists acronyms 
for each equation. Some, but not all of them, may be 
expressed in inverse form, with x as an explicit function 
of z. Note that three of the equations are "first-order" 
in the sense of Barsch and Chang [3J. They involve 
n= 3 parameters: Va, Ko, and YJ. The other five "second
order" equations involve 'l' in addition. Finally, 
table I includes values of K~ == (aK/ ap) p~ x . 
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T ABLE 1. Equations o/ state o/interest written in the dimensionless / orm z = f (x) 

Form 
Equ ation Acronym /I K ~ 

Z== p/Kn= f(x) f ix) x == p/po == Vo/ V 

Us ual Ta it UT E (1) + I ) - I [ ex p { ( 1) + 1)( I - r I)} - I] 3 - 00 

Firs t-ord er ME, 1) I [xo - I ] :3 1) 
Murnagha n 

4 -00 Second -o rd er ME, 
Murnagha n (1) ' ;;' 2",) 2(xio" 'wi 11'_ 1) / [( 1) ' - 2~! ) 11' (xto ' - "wl ' '+ 1 ) 

- 1)(xiO"_,w)I I' - ] ) ] 

Kpa np. KE 
(- 1) '< 1! < 0) [1) :1 / (1) ' + "') "J[x io' .. bI!O- I ] - [1/1 /( 1) 2 + "')1 III x 4 (1) '+.p )/1) 

Firs t-orde r BE, (3 /2) [X 7:I- x'!:I][ l + (3/4) (1) - 4) (X "'_ 1)] 3 3 
Birc h 

Second-urde r BE, (3 /2)[x"'- x·-, :I ][ 1 + (3/4) (1) - 4) (X"_ l) 4 li n 
Birc h + (1 /24) {14H lJ1)(1) -7 ) + 9",) (;'''=-=-IT'] 

Third-degree 3SE ( I - x ') + ( 1/2)(1) + I ) (1-.1 ' )' 1-(1/6)( 1)" 4 - 3 
S late r + 31) + 2 + "') (1 - X ') :1 

T hird -degree 3 DCE (x - I) + ( 1/2)( 1) - 1 )(x - I) ' 4 :.l 
Dav is-Co rdo n + (1 /6) (-'1 2 - 31) + 2 + 1/1) (x - l ):1 

Th e Keane equati on o nl y a pplies wh e n - 'Y} ~ < \jI < 0 , 
conditi ons sati s fi e d for th e prese nt parame ter valu es. 
Although a ll of the e quations mu s t become poo r 
mod e ls for s uffic ientl y high z, fa ilure is parti c ul arl y 
e vid e nt fo r th e UTE a nd ME ~. Th e volum e p redic ted 
by th e UT E goes through zero at the finit e z va lu e of 
('Y} + l) - I[ exp ( 'Y} + l )- l]. F o r th e prese nt form of the 
ME~, K ' == (a K /a p) = 0 a t z=- 'Y} /\V a nd V= O at 
z=2/ [ ( 'Y} ~-2'-lf )1/~ - 'Y}J . Th e 3S E also s uffe r s from the 
di sadva ntage tha t it predi c ts zero volum e a t finit e 
pressure. All the othe r equati ons require infinite z to 
produce zero volum e. 

The equa ti ons of table 1 are di scussed in greate r 
de ta il else wh ere [1 , 3 1. Altho ugh mos t of the m have 
some macr osco pi c or phe nome nological th eo re tical 
ju stifi catio n , he re th ey ma y s impl y be regard e d as 
empiric al e qu ati ons likel y to be of some value in the 
P-Varea . 

3. Model Differences and .1V Discrimination 

In ord er to exa min e diffe re nces in th e pre di c ti ons of 
the various models, we ha ve, fo r a give n se t of p or Z 

values, c al cul a te d corres pondin g dim e nsionl ess V 
values , us ing in each equatio n th e same l4-figure 
parame te r values a lread y me ntioned . The V value s 
we re cal c ula ted us in g 14 fi gures, by it.e rati on wh e n 
necessary, wit.h a res ultin g 13-fig ure or be tte r acc uracy. 
Finall y, differe nces be tween V va lues of eac h poss ible 
pair of equat.i ons we re calcul a te d for each z valu e . The 
diffe re nces obtain ed for p = 11 kba r, or z == 0 .1047 , are 
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li s ted in tab le 2, a ll multipli ed by 10.1 for co n ve nie nce. 
The t, V's s ho wn are fo rm e d by ta kin g th e V of one of 
th e equa ti o ns li s ted in th e left column a nd s ubtractin g 
from it the V calcul a te d us in g o ne of t.h e equ at ions in 
th e to p row. S ince the ME l - 3SE t, V va lu e is la rges t 
of a ll , th e ME I yield s th e larges t a nd th e 3SE the 
s ma ll es t V va lu e fo r thi s valu e of z. S imil arly, we see 
th a t th e BE ~ a nd KE volum e p redi c ti ons are closest 
toge the r he re . 

In a dditi on , in fi gures 1 to 5 we ha ve plotte d t,V 
ve rs us z fo r a va ri e ty of e qu a ti on pa irs. Th e boxe d 
equati on na me is th e equ a ti o n fro m whose V values 
those of th e e qu ati ons na m ed on th e c urves a re s ub
trac ted. Th ese fi ve fi gures cont.a in t,V c urves for mos t, 
but not quite all , of the poss ibl e pa irs of e qu a ti ons. 
C urves ha ve not been dupli cate d. Thu s (VIl E,-VBt.:,) 

appears in fi gure 3 for BE~ but not its nega ti ve in fi gure 
5 for BEl. Negative va lu es a re indi ca ted by us ing 
das hed lin es . 

T ABLE 2. Scaled volume d ifferences, 104t,V,jo r equa
lion pairs at z == 0. /047 

Equ ations 3SE BE , ME, UT E 3 DGE BE, KE ME, 

3SE 0 
BE , 2_ 1 0 
ME, 2_9 0 _77 0 
UTE 3.7 1.6 0 .81 0 
3DGE 3.9 1. 8 1. 1 0 .27 0 
BE, 4 .2 2. 1 1.3 O. I.lJ 0.22 0 
KE 4.3 2.2 L. 4 0.62 (U.) 0 .14 0 
ME , 8 .9 6 .8 6.0 5.2 4_9 4. 7 4.6 0 



FIl;U RE I. Volume differences , Do V, versus normalized pressu re, z, 
for the MEl and other equations. 

z 
FI(; URE 3. Voillme differences , Do V, versus normalized preSSUIe, z, 

for the BE, and other equations. 
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F I(;U RE 2. Volume differences, Do V, versus normalized I'reSSlIre , z, 
for the KE and other equations. 
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FIl;URE 4. Volume differences. 6. Y, verSliS nornwlized IJressure , z, 
lor the .'iD(;E Illld other equations. 
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FIGURE 5. Volume differences , t. Y, verSLI S normalized pressure , z, 
for the BE I and other equations. 

Although few actual expe rim e nts res ultin g in P-V 
values of a ppreciable accu racy extend past z - 0.5, the 
present exact, synth e ti c data curves are ca lc ula ted up 
to p = 210 kbar , where z = 2.000. At thi s z valu e, 
VrVIl == X - I is of the ord er of 0.5 for these equation s, 
bein g - 0.64 for th e 3DGE, for example. For 
Zmax = 2.000, N= 58 p or Z values, di stributed roughly 
logarithmi cally, we re used. For prese nt purposes, 
larger Z values were unn ecessary. 

Clearly , L1V c urves for all pairs not involving the 
UTE, 3SE, or ME~ will eventually reach a maximum. 
with L1Vm ax < 1, as Z in creases, then decrease toward 
zero s ince both V's beco me arbitrarily small as z ~ 00. 

As th e fi gures show , the situation is different for the 
ME ~ eve n wit.hin the present range. Since th e para m
e ter valu es used he re lead to V < 0 for z > 1.85. L1V 
valu es which involve ME 2 volumes become- arbitrarily 
large in magnitud e as z in creases beyond thi s point. 
Clearly, t.h e ME~ cannot be a useful model all the way 
to t.h e point. wh ere it predi c ts zero or negative volumes. 
Neve rthel ess, it may be useful for a range ending 
s uffi c ien tly far below thi s point. 

Of what value are the results shown in figures 1 to 5? 
Th ey are of conside rabl e value because they show 
how well the various eq uation s of state considered 
he re may be discriminated und e r th e best possible 
co ndit.ion s. Suppose, for exam pIe, that we wish t.o 
discriminate between t.h e KE and other equation s and 
are able to measure volume on ly up to z= O.1. Further, 
s uppose that errors in p are negligible compared to 

those in V. Figure 2 the n shows that. to distinguish the 
3SE from th e KE in the ran )!e O:s z :s 0.1. exper i
mentally de termined V valu es mus t be known to about 
one part in 10\ o r to four decima l places, near z - 0.1. 
Even less uncertainty would be required for a smaller 
range. The BE ~ and KE cannot be reliably di stin
gui shed without a precision of abou t three parts in 106 

near z = O.1 and highe r precis ion for s mall er z. C learly, 
if the above precision has not bee n achieved, th ere 
would be no point in attempting to di c rimin ate be
tween the equation pairs di scussed for the data in 
question. Barsch and C hang [31 have discriminated 
between th e BE2 and KE for a situ ation wh ere 
L1VjVo = 3 X 10- :1 or more and have concluded that the 
BE ~ was m4c h better for th eir purposes th an the KE. 
The prese nt fi gure 2 res ults indi ca te that s uc h di s
crimination is ac tually not significant with such pre
cision in L1V, for th e prese nt set of parameter vaLues, 
over a press ure range from ze ro up to at least 200 kbar. 

Th ere are two reaso ns why we conside r that the 
prese nt c urves represen t the bes t poss ibl e di scrimina
tion. First, th ere a re a lways some random errors in the 
de te rmin a tion of pressure values. To first order , we 
may ta ke the expec ted or "controll ed" pressure values 
as exac t and consid er that the actua l pressure errors 
are in corporated as additional random e rrors in the 
volum e va lues. It is th e n thi s total volum e e rror whic h 
mu s t be used in determining wh e ther th e curves allow 
eq uation di sc rimination with in ..: certain range of z. 
Wh e n para mete r va lues are a vailab le, as from ultra
soni c meas ure me nts, th ey may be used in several 
equ ations of state to calculate exact volum es over a 
give n z range. These volum es may the n be directl y 
compa red with a se t obtain ed by direc t meas ure ment. 
Clea rl y, i[ the total e rrors in the la tte r se t a re not 
appreciably smalle r (o ver most or a ll of the z ra nge) than 
th e L1V's obta in ed wi th variou s equation pairs, no va lid 
di sc rimination is poss ibl e. Even so, one of the seve ral 
equations amon g whi ch di sc riminati on is imposs ible 
for the gi ven z ra nge may be far s u peri or to the oth ers 
for extrapola tion beyond thi s ran ge. Although all e ight 
equations of figures 1 to 5 are indi stingui shabl e for 
L1V data of no better than 10- :3 precision in the ran ge 
O:s z :s 0.1, clearly there are important diffe re nces be
twee n the predictions of the various equation s for thi s 
same precision level at say z= 1.5. 

When an independently measured se t of parameter 
values is unavailable, parameter value es timates mu st 
be obtained by fitting a model to the available data by 
some such procedure as leas t squares. Each different 
model fitted will then yield a diffe re nt set of estim ated 
parameter values. If ilV values are obta ined for a pair 
of models, using in each model the s pec ifi c parame ter 
values de termin ed [rom a leas t sq uares fit of the data 
for the given model and range (case A), then the adjust
ment of the parameter values a ssociated with the least 
squares procedure will gene rally lead t.o an appreciably 
different se t of ilV valu es th an would have been ob
tain ed had the same parameter value set been used in 
each eq uation (case B). If the fit s of th e two equations 
for case A are suffi c ie ntly good, the corresponding L1V 
values may nearly all be muc h smaller than those 
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obtained in case B with any single reasonable param
eter value set. But only one, at most, of the two sets of 
parameter values can be correct. Thus, one must 
proceed with extreme caution, and the small degree of 
discrimination possible from the case A fits and LlV's 
is usually misleading_ Further, any use of case A results 
outside of their fitting ranges is extremely dangerous. 

The most meaning:ful discrimination will be obtained 
from calculating LlV's by the case B procedure, using 
the same most reasonable choice of parameter values 
in both equations_ If the two equations under considera
tion seem to fit about equally well and no other param
eter value information is available, reasonable values 
to use in the case B discrimination are the averages of 
the two sets of values found from the least squares 
fittings. Because of the wide use of least squares 
procedures, these matters will be furth er discussed 
in the next section. 

The present case B results are closely related to 
some obtained by Barsch and Chang [3]. These authors 
compared, however, p-value predictions obtained from 
a certain lattice equation of state tailored for Csl 
with p values obtained from several other phenom
enological equations of state. They found , for example, 
that using the same parameter values the BE2 ap
proximated the lattice equation an order of magnitude 
better (in Llp) than did the KE. Although Barsch and 
Chang present VIVo versus p curves for several of the 
equations of state considered herein, they do not give 
LlV curves and are not primarily concerned with 
establishing what accuracy in V is needed, for a given 
p or z range to allow equation discrimination. 

Even though Barsch and Chang assert the superiority 
of the BE2 over the other phenomenological equations 
they considered , as already mentioned the BE2 curve 
of the present figure 2 suggests that exceptionally ac
curate data or a very wide range will usually be re
quired to allow meaningful discrimination to be made 
between the BE2 and the KE. Although Barsch and 
Chang's calculated I Llp I values for the BE2 and lattice 
equation were an order of magnitude smaller than those 
for the KE and lattice equation, the latter values them
selves were still considerably smaller for the range 
o ~ p ~ 200 kbar than either the errors in I Llp I calcu
lated from the BE2 with experimental uncertainties in 
the parameters or those expected experimentally 
[3J- Thus, the actual discrimination between the BE2 
and KE appears nugatory for this range. It seems 
doubtful that sufficiently accurate wide-range data yet 
exist to make adequate BE2-KE discrimination possible 
unless the situation is very different for appreciably 
different parameter values than those used here and 
those used by Barsch and Chang, an unlikely possibility. 

The curves of figures 1 to 5 are somewhat more 
general than they appear at first sight. First, since the 
normalized pressure variable z is used, the results are 
independent of the value of Ko. Second, since the Vo 
value used is quite close to unity, little specialization is 
introduced by the specific Vo value used. When Vo 
differs appreciably from unity, the present curves may 
still be used with the LlV values reinterpreted as 
LlV/V" values. For the UTE, MEl, and BEl , only the 

additional parameter TJ enters. This quantity is usually 
found to be within the range 3 < TJ < 8; thus, the 
present value, near 6, is fairly typiccif. Ftii-ther, changes 
in TJ may be expected to change LlV itself less than the 
V's entering LlV. On the other hand, the ':V value used , 
near - 7, is quite special since little is known thus far 
about the likely range of ':V for a variety of materials, 
and it probably can be positive as well as negative 
[1 , 5J- Nevertheless, we suggest that the present curves 
may be used, at a zero to first order level, for an initial 
estimate of discrimination possibilities between various 
equations for other materials besides Csl at 150°C. Of 
course, the next order of assessment would employ an 
estimated parameter set (VO , Ko, K,;, and K;; values) 
for the material in question. This set could then be 
used, as herein, to generate LlV curves for comparison 
with the estimated total errors of the experiment, all 
incorporated into the V values. 

As examples of such zero-order assessment, we may 
consider the data of Monfort and Swenson [6], Kell and 
Whalley [7], and Vedam and Holton [8J. Monfort and 
Swenson studied potassium metal up to z - 0.4. Their 
volume data were given to four places, and they found 
a scatter of about 5 u niis in the last place. Although 
they primarily considered the BEl, the MEl was also 
introduced. The MEl curve of figure 5 shows a maxi
mum I LlVI for these equations of about 7 X 1O~:!. When 
the Monfort-Swenson data is normalized to a Vo near 
unity, allowing comparison of V errors with present 
LlV's, one may estimate that the data are accurate to 
perhaps 3 X 10~3 in normalized volume. Comparison \ 
suggests that one might then just be able to distinguish 
between the BEl and MEl for this range and accuracy. 
One of the present authors [IJ has considered dis
crimination between the 3DGE and 3SE for the 0 °C 
water data of Kell and Whalley (zmax - 0.05) and be
tween the 3DGE and ME2 for the 50°C water data of 
Vedam and Holton (zmax - 0.44). Similar zero-order 
comparison of probable errors in V with the present 
LlV curves suggests that the 3DGE-3SE discrimination 
was near the borderline of possibility and was probably 
not very meaningful, while the 3DGE-ME2 discrimina
tion was somewhat more possible and certain. 

Finally, to the degree that the present LlV curves are 
reasonably general, it is worth mentioning that the 
sign changes for the VBE ,- Vt;TE, VBE I - V ME2' and 
V BE I - V3SE curves shown in figure 5 indicate that the 
BEl remains a closer approximation to the other three 
equations over a wider range than if such changes of 
sign were absent. This result is perhaps one reason why 
the BEl has been found to be of relatively general 
applicability in the past. 

4. Least-Squares Comparisons 

Least squares procedures are frequently applied to 
noisy data for which the true underlying model is un
known and possibly nonlinear in some of the param
eters. Here we shall investigate the results of least 
squares fitting of exact data , especially with incorrect 
models. Such analyses, when the correct model and 
parameter values which generated the data are known, 
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can yie ld valuabl e information about th e sys te matic 
erro rs a ri sing from the use of the wrong mode l. Further , 
th e use of exac t data a llows the us ually mixed e ffects 
of ra ndom and sys te matic e rrors of thi s type to be 
e ntire ly se parate d. Si nce fi gures Ito 3 and 5 s how that 
the 3DGE is , in some sense, close in its predi c tions to 
se ve ral of the othe r equations, it has been chose n here 
as th e "correct" mode l for illu s trative purposes. The 
exac t data e mployed was thu s ge ne rate d by us ing in 
th e 3DGE the 150 DC Csl parame te r val ues already 
di scussed. 

Tabl e 3 shows the res ults of a ppl yin g th e leas t 
squares me thod in a fe w diffe re nt s itu a ti o ns of inte res t. 
He re and he re afte r " lin e a r" a nd " nonlin e a r" gene rall y 
re fe r to linea rity , o r its abse nce, of th e pa ra me te rs 
ente rin g the mode l. Thus, by a " linear" e q ua ti o n we 
will mea n o ne lin ear in its pa rame te rs . The " lin ear" 
s itu at io n c ited is ac tu a ll y re nde red nonlin ear in th e 
parame te rs by th e we ighting used [IJ. Eve n though th e 
mode l is o ri ginall y line a r in th e param e te rs, we ig htin g 
of th e ind e pe nd e nt vari ab le will lead to nonlin ea r 
parame ter d e pe nd e n ce e xcept in the s pec ia l s impl e 
case (not cons ide red he re) of a lin ea r re lat ion be tween 
inde pe nd e nt and d e p end e nt variab les . In a s ucceedin g 
pape r , we hope to inves ti gate in so me de tail th e im 
po rtan ce of and degree of bias frequ e ntl y ari s in g in th e 
A case of tab le 3 when random e rror is present. He re 
we continue to res t ri c t attent ion to th e exac t d a ta 
s itu a ti o n. 

The 3DGE is writte n in tab le 1 in a form in vo lvin g 
th e parame te rs nonline arly. Thi s form was re quire d b y 
th e cons traint of us in g KI) , 7] , and \If as th e bas ic para m
ete rs in eac h e quation li s te d in th e t ab le . On th e oth e r 
hand , the 3 DCE m ay a lso be writt e n in th e lin ea r form 

3 p="'2. A ;(x- l)i (1) 
;= 0 

wh ere AI) = 0 whe n the Vo e nte rin g x == Vo /V is ta ke n 
fix e d and has its co rrec t va lue (th e procedure we 
s ha ll use whe n Ao is a free param eter); A I == Ko: 
A2 == (7] -1) Ko/2: and A:; == 0 /6)( 7]2 - 37] + 2 + '-Jf )Ko. 
C learl y, direct lin ear least sq uares dete rminatio n of th e 
A; param e te r es tim a tes will a ll ow co rres pondin g Vo, 

TABLE 3. Possible errors in least squares es timates 

S ituation 

A. Correc t mode l. ra ndom 
errors in d ata 

Lin ea r : correct w eightin g 
L in ea r: wrong weighti ng 

" Lin ear" : we i ghtin ~ of in
de pe ndent va ri able 

Nonlin ear 
B. Correc t model. sys te matic 

e rrors in d ata 
C. I ncorrec t mode l 

Paramete r 
es tim ates 

Paramete r 
va ri ance 

es timat es 

Unbiased , e ffi cie nt Unb iased 
Unbi ased. not Biased 

e ffi c ie nt 
Biased Biased 

Biased Biased 
Biased Biased 

Sys te mati c Sys te matic 
e rror e rro r 

Ko , 7] , and 'i' estimat es to be ca lculated for compari son 
with th eir tr ue values. Furth e r , co mpari son of co r
res ponding non lin ear and linea r leas t square para me te r 
es tim ates will a ll ow bias a ri s in g fro m nonlin ea r least 
s quares to be inde ntifi e d a nd qua ntifi e d. 

The followin g d e finiti o ns a re useful in compa rin g 
le a s t-squares parame te r va lu es with e xac t va lues . Let 
() be a s pec ifi c param e te r of t he mod e l; th e ~ de not e the 
tru e value o( () (h e re kn own ) b y (}o a nd th e lea t-squares 
estim£l te as (). Th e re la tive e rror o f th e es tim ate is the n 
0 == ((} - (}o) / (}o. W he n no ra ndo m e rrors a re present , 
0; will meas ure th e s ys te mati c e rro r in the i th param
e te r value. J~ is a lso of int e res t to co mpa re th e pa ram
e te r e rror (()- (}o ) with the s tanda rd de via ti on (Sri)!! 
ob tain e d for a give n I ~as t s quares es tim a te of (). To do 
so , we d e fin e tl == I( (} - 8o)/(s(l) ol = l (}oo/ (srI) !! I. This 
meas ure will indi c a te poss ible sys te mati c e rror in 
(s,,) o. 

We ha ve bee n di scu ss in g leas t s qu a res res ult s in th e 
above as thou gh th ey we re exac t so lution s of th e leas t 
s qu a res e qu a ti ons . It is not wide ly apprec ia ted th a t 
a ll th e us ua l le a s t squares comput e r rou tines ma y yie ld 
ver y in acc ura t.e param e te r valu es because of round -o ff 
e rrors 19J. For e xamtJ le, if Causs ia n e limin a ti on wit h 
pivotin g is used to solve th e leas t s quares equation s, 
th e numbe r of acc ura te d ec im a l di git s in a 0, A , is 
A - (C- n + l ± 1) , whe re C is the numb e rof (equiva · 
le nt) dec ima l digits carried in the compute r c al c ula ti on 
and II is th e num be r of free param e te rs. C le ar ly, if 
n 2: C, res ult s of littl e va lu e are Lik e ly to be obtaine d. 
Express ion for A of thi s t ype we re or ig ina lJ y d e ri ved 
for linear le a s t squ a res fi t ting of po lyno mial s, but th ey 
see m to a ppl y a t leas t a pp rox im a te ly to no nlin ea r equa· 
ti on s as we ll . Rece ntl y, W a mple r lJOJ has made a more 
d e ta il ed s tud y of th e matt e r fo r po lynom ials a nd di s· 
c ussed more co mplex ro utin es whi c h ca n yie ld ve r y 
s ubs tanti a ll y hi ghe r so lutio n accuracy. 

The e ffec ts of roundoff a re illu s tra te d by th e res ult s 
of tabl e 4 . E Limin a ti on wi th p ivo tin g was used to carr y 
out le as t squares fittin g of t he 14-fi gure 3 DGE dat a us in g 
the 3DGE eq ua ti on in bo th it s lin ear and no nlinear 
forms. S in ce c= 14 and n = 4 , A - ll± l. In Tabl e 4, 
th e 0; are ca lc ulated us in g (}II = V II , (}1 = K o , f)~= 7] , 
and 8:; = 'i'. The quantit y Sri is t he s tandard de viatio n 
for th e fit itself. The result s s how values of A be twee n 
a bout 14 and s li ghtl y less tha n n , in rough agree me nt 

TABLE 4. Least squares results in th e absence 0/ 
systematic error: exact 3DCE data fitted by the 
3DCE model 

Linear equation Nonli neal' equation 
Oi 

p-Weightin g VWeightin g p -Weighting V-Weightin g 

0" (,.1,,= (,.1,, = - 7.0 x ]0- " -7 .0 x ]0- '" 
- 2.7 X 10- 1:') - 2.4 X 10- 1:') 

0, 3.3 X 10- 1:' 3.0 X ]0- 1:' 3.5 X 10- 1:' 2.9 X ]0- 13 

0, - 1.5 X 10- (2 - 1.3 X ]0- 12 - t. 4 x 10- 12 - 1.1 X 10- 12 

0" - 1.9 X 10- 11 - 1.7 X 10- 11 - 1.9 x 10- 11 - 1.5 X 10- 11 

Sd 2.3 X 10- 12 2. 0 X 10- ' " 2.3 X 10- '2 2.0 X 10- " 
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with the formula. There appears to be no significant 
tendency for the linear results to be better than the 
nonlinear ones, and one can scarcely conclude that 
mu ch of the bias of table 3 is showing up here. In fact, 
bias is only important when random errors are present; 
in the A cases of table 3, bias approaches zero as the 
random error goes to zero. Incidentally, since ou is 
zero in the linear case when Vo is taken fixed at its 
exact value, A" is given in its place; since the true 
value of At) is zero, this is an absolute, not relative error. 

The results of table 4 were calculated with N = 37 
points, covering the range 0 ",:; z "':; 0.476. Let the maxi· 
mum value of z be denoted z,.. In earlier work [1], 
weighting of both the dependent and independent 
variable data values was discussed. The related stand
ard deviations were denoted (TI for the V variable and 
U"p for the p variable. The p·weighting of table 4 takes 
U"p = 1 and U"\ = 0 (weighting of dependent variable 
only), while the Vweighting uses U"p = 0, U"\ = 1. In the 
linear equation case, the Vweighting chosen leads to 
somewhat different weighting of the actual independent 
variable x used [lJ. Table 4 indicates slightly improved 
results for the Vweighting over the p-weighting, and 
no bias arising from Vweighting in the nonlinear situa
tion is apparent. The differences between the s/s for 
p and V weighting arise because the p·weighting Sri is 
a measure of the least·square fit residuals when they 
are all in pressure and is here in kilobars, while for 
Vweighting the residuals are all forced to be in re
duced volume and Sri is then dimensionless. The ratio 
between the s/s is roughly Ko. 

Although we shall use the usual inaccurate Gaussian
elimination·with·pivoting solution of the least squares 
equations in the following, all inaccuracies introduced 
thereby are four or more orders of magnitude smaller 
than the systematic errors we consider. Such syste
matic errors in parameters and standard deviations are 
illustrated in table 5, where the 3DGE data are fitted 
with p-weighting using the incorrect BE2 model. Re
sults for 0; and Il; are first given for two different ranges 
of z, from zero to ~ 0.048 and ~ 0.48. Note the strong 
increases in these error measures both with range and 
with the index i. Also included in the table are fitting 
results obtained for the complement range, all points 
contained in the second range but not in the first. As 
might be expected, the parameter estimates are 
somewhat worse for thi s coverage than for the largest 
span shown , even though S<l itself is somewhat better. 

TABLE 5. Least squares results showing systematic 
errors: exact 3DGE data fitted by the BE2 model 

\: 
0 ,,;; z ";; 0.0476 0 ";;z,,;;0.476 0.0572 ,,;; z ";; 0.476 

N = 19 N = 37 N = lS 

O i Ll. i Oi Ll. i Oi Ll. i 

0 1.7 x 10- 8 2.4 1.1 x 10 - 5 3.S 1.2 x 10 - ' 9. 7 
I -1.1 x 10- 5 5.S - 1.7 X 10- :3 11.0 - 4.S x 10- :3 14.0 
2 4.5 x 10- 4 12.0 1.2 x 10- 2 21.0 1.9 x 10- 2 24.0 
3 4.9 x 10- 2 29.0 2.7 x lO - 1 43 .0 3.4 x 10- 1 45.0 

Sd 1.31 x 10- 6 1.02 x 10 3 4 .62 x 10- ' 

All nonlinear least squares fitting in the present 
paper has been carried out using the Deming itera
tive method of solution l1 , llJ. Although this is an 
approximate method [12], the resulting errors in the 
es timated parameter values are generally negligible. 
O'Neill et al. [12] have presented a more accurate 
iterative solution of the least squares problem with 
weighting of both dependent and independent variable, 
applicable only for polynomial equations. We have 
recently generalized and improved this solution so 
that it applies to equations of any form and converges 
much more rapidly [13J. This method, applied to the 
situations of table 5, yields essentially the same 0; 
values as those in the table but Ilis some 25 to 40 
percent larger than the tabular values. These increases 
thus mainly arise from smaller (S<l)o's produced by the 
new least squares solution. Although the new method 
leads to an essentially exact (in the sense of iterative 
convergence) least squares solution when round-off 
errors are negligible, the results cited above and those 
in the table show the presence of large systematic 
errors in 0; and ~; arising from wrong model choice. 
The rest of the present paper is primarily concerned 
with ois and p-weighting, where the differences 
betwee n the De ming and improved estimates are 
negligible. 

Although table 5 gives one some idea of syste· 
matic error effects , mu ch more is provided by the least
squares results of fi gures 6 to 12. The same exact 
3DGE data were fitted with the various other equations 
for four different ranges, all including z = O. The 
four values of z,. used were ~ 0.048, 0.143, 0.476, 
and 2.00, and the corresponding number of z values 
were, respectively, 19, 29,37, and 58. All points used 
in a given fittin g were included in the ones with larger 
z,.. 

FIG URE 6. Parameter relative errors , OJ, and standard deviation of 
fit , s,,, versus fitting range (0 ,,;; z ,,;; z, ) for least squares fitting of 
exact 3DCE data with the BE I. 
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FI GURE 7. Parameter relative errors, 8; and stan.dard deviation oj 
jit , Sd , versus jitting range (0 .;; z ';; z,) Jo r least squares jitting oj 
exact 30CE data with the MEl . 
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FI GU RE 8. Parameter relative errors, 8;, and standard deviation oj 
jit , Sd, versl.l.S jitting range (0 .;; z ';; z,) Jor least squares jittin/!. oj 
exact aOCE data with the UTE. 
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FIGURE 9. Parameter relative errors, 8;, on.d standard deviation of 
jit , Sd , versus jitting range (0 .;; z ';; z, ) Jor leas t squares jitting of 
exact 3DCE data with the BE". 
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FI GURE 10. Parameter relative erro rs , 8;, and standard deviation of 
jit , 5,1> versus jitting range (0 ,,;: z ';; z, ) fo r least squares jitting oj 
exact 3DCE data with the ME 2 • 
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FIGURE 11. Parameter relative errors , oj, and standard deviation of 
fit, 5,h versus fitting range (0"" z "" z,) for least squares fitting of 
exact 3DCE data with the KE. 

Figures 6 to 12 show how the systematic errors, 
represented by the o;'s and by s,/, change as the fitting 
range is extended. As usual, dashed lines indicate 
negative values. All 0; results shown were obtained 
with p-weighting: (TI = 0, (TIl = 1. Results obtained 
with V-weighting were closely similar. Un like the o;'s, 
which are rel ative , the sr/s are absolute and, with 
p-weighting, measure the overall goodness of fit in 
pressure units , as already mentioned. Thus, for 
example, figure 6 indicates that s,/ for the BE 1 fitting 
over the range 0 ~ Z ~ 2 is nearly 0.1 kbar. All s(/ 
c urves were obtained with p-weighting except the one 
marked (S(/)I on fi gure 9. Here we compare the sr/s 
obtained from p and V weighting. The (S(/)I values are 
somewhat more than Ko times smaller than (Sri)tl 

values here. Note that, as expected, (S(/) 1 and 0o , 
the relative error in Vo, are quite close together over 
much of the range. 

For V weil!hting, S(/ is an overall measure of the 
residuals in V. Its abso lut e value in figure 9 at z= 0.143 
of about 3 X 10- 7 (the maximum magnitude of a volume 
residual was ~ 6_5 X 10- 7) is about two orders of magni
tude smaller than the IlV ='" VHE2 - VD<:E of ~ 5 X 10-5 

shown in figure 3 for the sa me z. But thi s last figure is 
that applying when the correct param eter values are 
used in both equations. As expected, the least squares 
parameter adjustment in the BE~ fittin g of the exact 
3DGE data makes it difficult to conclude (without in
dependent knowledge of parameter values) that the 
BEz is the wrong model, as it is here. With some ran
dom errors in the 3DGE model data, least squares 
fitting using the BEz and KE, for example, would again 
generally lead to results which wouldn't allow one to 

identify either the BEz or KE as an incorrect model, 1 

even though they both would be. . 
The results of figures 6 to 12 show that when the 

range is extended, relative errors in all the parameters 
increase when wrong models are used. Further, the 
higher-order parameters are more inaccurate than the 
lower-order ones for all the ranges shown. Not much 
added accuracy in the higher-order parameters can 
be obtained by reducing the ranl!e and, in practical 
cases where random error is present, generally no 
added accuracy will be achieved by such reduction. 

Figure 10 stops with a Zr of 0.476 because the volume 
predicted by the MEz is negative for z ~ 1.85, preclud
ing a meaningful fit with Zr = 2.00. Note that 0:1 for the 
KE and 3SE is so large that its values must be divided 
by 10 and 100, respectively, to allow plotting on the 
present scale. For the 3SE, even Oz must be divided by 
10 as well. These results illustrate an important gen
eral point. The figures show that the BEz and KE are 
the best least-squares simulators of the 3DGE model 
as far as Sri is concerned. Yet evel1. for the relatively 
low Z value of 0_143 (p = 15A kbar), Iwl is about 10 per
cent high for the BEz and W is of even the wrong sign 
for the KE. The average residuals arising from syste
matic error would , when all in volume, be mostly less 
than 10- 6 in magnitude here. Even for the best data 
currently available such small residuals would be ob
scured by random error. Thus we see that it is possible 
that two different equations, both wrong (as here) or 
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FIGURE 12. Parameter relative errors, 0" and standard deviation of 
fit , 5d , versus fitting range (0 "" z "" z,)for least squares fitting of 
exact 3DCE data with the 35E. 
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? one wrong and one correct , may not be di stin gui s habl e 
by goodn ess of fit c riteria , yet one may predic t far 
be tte r parameter values than the other. In the absence 
of other information, such as firm knowl edge of the 
correct model or independe nt de te rminations of so me 
of the parameter values_ one will evide ntly always 
s tand an appreciable chance of pi c kin g a " bes t" mode l 
whic h yie lds some quite poor param ete r es tim ates. 
Th e better the accuracy of the d ata and th e wid er its 
ran ~e, the be tte r the higher-order param ete r es tim ates 
will be s ince th e final model c hose n will be forced to 
be closer to the correct mode l to achieve a n adequ ate 
fit. 

The monotoni c in crease of 8; and S,[ with fittin g range 
illustrated in figures 6 to 12 is, of co urse, indi cative of 
the use of an incorrec t and in adequate mode l and is 
by no means limit ed to th e e qu a tion of stat e area. In 
mos t if not all cases of prac ti ca l interes t , we may expec t 
to find thi s so rt of be havi or: th e wider th e ran ge used 
in leas t -s qu ares fittin g of a poss ibl e, " cl ose," but s till 
in co rrect mode l, the gr eate r will be Sri and the param-

~ e te r e rror magnitudes. It should , howe ve r, be re marked 
th a t thi s conc lus ion only applies in th e usual case 
wh ere the mode l is not asymptotically co rrec t as th e 
range is exte nded indefinitely. The wid er the range 
used, ge ner ally the more diffi c ult it will be for an 
in co rrect mode l to si mula te th e correc t one. 

Thi s in crease of e rrors with range may freque ntly be 
used in practical cases as a powerful mea ns of di s 
c riminating against incorrect models. Wh en random 
errors in the data are suffic iently small that the sys
te mati c e rrors arising from an incorrect model c hoice 
dominate s([, it will ge nerally inc rease with the fitting 
range, as illus trated h ere . Such an inc rease thu s c lea rly 
signals an incorrect model choice for the range of data 
fitt ed. S ince most m ode ls only apply adequately in any 
case over a limited range of a v'ariable s uc h as pressure 
or te mpe rature, exte nsion of the fittin g range beyond 
the region of applicability of the bes t available model 
will always eventually res ult in an inc rease in S([. Thus , 
in any leas t squares fitting where the range of applica· 
bility of the mode l used in unknown , extrapolation 
outside the fitt ed range of data should be approached 
with the utmost caution and avoided if possible. 

Th e present paper deals with exact data and actual 
relative e rrors of para meters , but true paramete r e rrors 
will not be available in a usual experime ntal situation. 
Nevertheless, whe n Sd inc reases because of the wrong 
model choice, the estim ated parameter s tandard de· 
viation s will generally increase for the sa me reason. 
Thus, these quantities, ordinary res ults of a least 
squares fittin g, may also be used along with 5([ to help 
di sc riminate against an inadequ ate model. 

Th ere are so me inte res ting general aspects to the 
present res ults obtained with leas t· squares fitting of 
the wrong model. The residuals (here give n by observed 
values minus calculated valu es) show the following 
be havior: The number of run s (number of sign changes 
plus one), u, for the MEl, BEl, and UTE, for which 
11 = 3, is 4, while u = 5 for the remaining equations for 
whi ch n = 4. The general res ult , u = (n + 1), is not very 
surpri s in g: but bears emphas izing. Further , the sign of 
the first res idual run (which, toge th er with knowledge 

of u determines the signs and order of all the runs) is 
specific to the e quation co ns ide red . F or the present 
fittin g of 3DGE data , thi s s ign is +, -, -, +, -, -, + for 
the MEl, BEl , UTE, ME2 , KE , BE2 , and 3SE , res pec· 
tive ly. The number of runs a nd th e ir sign di s tributions 
we re invariant in the prese nt s ituation to the following: 
(a) p or V weighting, (b) the ra nge of th e data a nd its 
placement (all low p , all hi gh p , all in the middle, e tc.), 
and (c) the sign of\)!. Eve n though not all ex tre mes were 
inves tigate d , thi s hi gh degree of pattern invar iance is 
likely to be quite gene ral and may itse lf be of co n· 
sid erable usefuln ess in he lpin g to di stin gui sh mode ls. 

Although we have not done it, one could readily 
es tabli sh a matrix of fir s t s igns obtai ned usi ng data 
calculated from one of the present eight spec ific eq ua· 
ti ons and fitt ed with another one of the e ight. The n, 
in prac ti ca l s itu a tion s whe re it was be li eved that the 
co rrect model was one of the e ight , ma ny possibilities 
could be qui c kly e limin a ted by co mpari son with the 
s ign of the fir st res idual run obtained on fittin g the 
ac tual data. Thi s would o nly work, of co urse, provided 
random e rrors were co ns ide ra bl y small e r th an sys· 
te matic ones and he nce didn ' t appreciably perturb the 
res idual pattern. With ma ny da ta points, co ns iderable 
pe rturbation of thi s kind coul d be tole rated , howeve r, 
since dec is ions co uld b e made on th e bas is of a 
smooth ed res idual patte rn rath e r than the ac tual noisy 
patte rn . 

A partial compari son of th e above type has been 
made earli e r for the MEl a nd UTE [14]. The re, Vo 
was take n fixed , so n = 2. As expected, u was found to 
be three for both UTE fitting of exac t MEl da ta a nd for 
MEl fittin g of UTE data. The initi a l run s igns we re 
+, -, res pective ly, for the above two fittin gs . 

5. Summary 

This pape r has bee n primarily conce rn ed with di s· 
c uss in g method s of di sc riminatin g between s pec ific 
equ a tion s of state a nd has de mon s trated co ns iderable 
limitations on the possibility of adeq uate di sc rimin a· 
tion be twee n " close" equations . We have found the 
so me what s urpri sing r es ult tha t equ ations whi c h can· 
not be adequate ly disc ri minated on the bas is of leas t 
squares goodness of fit over e ve n a wid e pressure ra nge 
may yet lead to es tim ates of highe r·order para mete r 
relative errors diffe rin g in s ign a nd by a n order of 
magnitude in absolute value for even a narrow pressure 
range, muc h less a wide one. The prese nt me thods, 
results, and conclu sion s ca n be generalized to a con· 
siderable degree to apply to mode l di sc riminati on out· 
side th e equation of s tat e a rea and are pertinent for 
linear models and for those nonlinear in th e ir paramo 
ete rs, inde pende nt variable, or both. Thus, th e follow· 
in g general conc lus ions, based on the present s pec ific 
res ults, are lik e ly to apply widely to th e ge ne ral da ta 
analysis fi e ld. 

More than one mathe matica l model should usually 
be tes ted against th e data in order to selec t , if possible, 
that model whi c h fits bes t by objective c rite ria. As the 
range of data is progressively inc reased for whi c h leas t 
squares fittings are carri e d out, the initial or eve ntual 
appearance of increases in Sri and (Sd) /J, indic ates the 
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FI GURE 13. General block diagram for data analysis. 

presence of sys tematic fitting error arising from an 
inadequate model choice. Such error will also usually 
show up in highly correlated res iduals exhibiting, at 
leas t approximately, a number of s ign-changes equal 
to the number of fitted parameters. The ranf!e of a 
causal experimental variable such as pressure, voltage, 
te mperature, e tc. s hould be increased to the maximum 
degree possible in order to allow the testing of a model 
for adequacy over the widest practical data range. 

When two or more models have been found th at 
represent the data over a given ran ge with approxi
mate ly the same goodness of fit and without signs of 
syste matic e rrors from wrong model choice, it is still 
possible that one or more models may yield much 
better or muc h worse leas t-squares parameter esti
mates than the others . Additional independent infor
mation about likely para meter value ranges will usually 
the n be necessary to allow a selection of the most 
appropriate eq uation for parameter estimation. Extrap
olation of a given model-parameter value se t beyond 
the range of data on which it is based is always 
dangerous. 

When data smoothin g or interpolation is the object, 
the poss ibility of di scrimi nation between two models 
which yield equally good least squares fit s to the data 
should be examin e d by the case B procedure of section 
3. If the differe nces in dependent variables calculated 
with the same reasonable set of parameter values in 
each model are co mparable to or smaller than the 
es timated random errors in the data , di scrimination is 
impractical for that data set. 

Figure 13 shows, in very diagrammatic form, ap
propriate ste ps in data analysis aimed at establishin g 
a "best" model (including specific parameter value 
es timates). Some of the actually interrelated steps 
involved in this figure are presented differently in the 
flow chart of figure 14. This diagram is included for the 
benefit of those readers who may wish to apply the 
procedures di scussed in thi s paper to other di scri mi
nation and parame ter estimation problems. 

For fi gure 14 we have assumed that a data set over 
a range, R m ax , has bee n tak en, and that we wish to test 
potential models over the maximum range if possible. 

The flow chart orders the tes ts as (1) case B, (2) runs, 
and (3) case A. If no models appear appropriate after 
the first series of tests, provision is made for decreas
ing the range of the data used in the tests in order to 
determine the acceptable maximum range for param
eter estimation. 

In the flow chart, we have abbreviated the test for 
caseB by the notation IAYij I < Uy. Here we mean that 
all or nearly all of the deviations should be less than 
the expected errors in the data. Note that " nearly all" 
is appropriate because of the possible presence of 
random outliers. For the same reason , the test u > n+2 
should also be considered approximate and applied 
judiciously. Note also that U y may vary with x (het
eroscedastic case); the test should be so applied when 
appropriate. Other symbols introduced here are Es, 

defined to be the acceptable level for standard devia
tion of the least squares fitting , and Ed, defined as the 
level below which standard deviations of two separate 
fits are indistinguishable. 

Good data are usually expensive, yet too little 
adequate data analysis is the general rule. It is better 
to do too much such analysis than too little. 

START 

[~~~~;}t--_-!N.!!.O < R < Rmin 
? 

YES 

NO 
DISCRIMINATION NO 

>:'=~"""'--+t OR ACCEPTABLE 1+---"::":"< 

u> n +2 
? 

YES 

ANY 
MOD ELS 

WITH 

NO 

NO 

PARAMETER 
ESTIMATES 

MORE THAN ONE 
MODEL WITH 

1Sdj - Sd mini < Ed 

? 
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FOR LESS 

RANGE 
1 

AVERAGE 
PARAMETERS 

FIGU RE 14. Flow diagram for discrimination and parameter estima· 
tion tests. 
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