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The solutions to the heat diffusion equation for spherical absorbing centers in laser materials are
presented. The ratio of the volume specific heats for the absorbing center and the laser host is found
to determine three regions of behavior. Series expansions for small times and for very large times also
are given in each of the three regions. Rapidly converging representations for the complementary error
function of complex arguments are developed in order to evaluate numerically the region for which
the volume specific heat ratio is greater than three fourths.
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1. Introduction

In a previous paper [1], a model to describe the
behavior of absorbing centers in laser materials has
been developed. Computing the thermal stresses pre-
dicted by this model requires solutions to the heat
diffusion equation for the temperature. The mathe-
matical details for solving the heat diffusion equation
are omitted in ref. 1 and are reported in the present
paper. In particular, solutions to the heat diffusion
equation for spherical absorbing centers in laser ma-
terials, series expansions of these solutions at the
center-host interface when times are sufficiently small
and large, and a proof that in the limit of small inclu-
sions the temperature of the center-host interface is
independent of the bulk thermal properties of the
inclusion are presented. These solutions may be
applied also to other diffusion problems such as oxygen
diffusion in TiO,, Al,O3, ZnO, and other oxides [2].

When certain physical conditions exist, some solu-
tions to diffusion equations contain error functions for
complex arguments. For example, when the volume
specific heat of a spherical absorbing center is greater
than three fourths times the volume specific heat of the
host, the analytic expressions for the temperature in
the host contain error functions for complex arguments.
This is the case for platinum inclusions in some neo-
dymium doped laser glasses. The oxygen diffusion
problem is a second example. When the volume diffu-
sion coefhicient is sufficiently greater than the surface
exchange coefficient, the analytic expressions for the
oxygen concentration profile also contain error func-
tions for complex arguments. This may be the case for
oxygen diffusion in zinc oxide [3]. Representations of
the error function for complex arguments which yield
efficient computer programs are not readily available
in the literature and therefore are derived in the
appendix.

2. Mathematical Description of the Model

The heat diffusion equation and the boundary
conditions are summarized in this section.

A spherical absorbing center of radius ro(cm) is
imbedded in a host of infinite extent. The absorbing
center and host are initially at a uniform temperature
To. An incoming spherical wave of ligcht (laser beam)
with an energy flux (wr3E./4mr?t)(W/cm?) falls at
time t=0 upon the absorbing sphere. The quantity
E, is the energy density (J/em?2). The quantity r=|r| is
the distance from the origin of the system, which is
the center of the sphere. A square-wave light pulse of
width 7(s) is assumed. The sphere absorbs an equiva-
lent energy flux H(z)(W/cm?) uniformly over its entire
surface. The energy flux for a square-wave laser pulse
is

0, when t<0 and t>r,
H(t) = (1)
AN, Ty)(E [47), when O0=t=m,

where A(\, T,) is the absorptance at absolute tempera-
ture T, for incident radiation having wavelength A.
The problem is to compute the temperature O(r, t) of
the absorbing center-host system as a function of
time ¢ and distance r=|r|.

The heat diffusion equation describes the time and
space dependence of the temperature for large times
t and large distances r; namely, when r < ry it is

(0O (r, t)/0t) =a2V20O(r, t), (2)
and when r > ry it is

(00 (r, t)/0t) =a}V2O(r, t). 3)
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The Laplacian operator is denoted by V? and the
thermal diffusivity is a*= (K/pC) (cm?2/s), where K is
the thermal conductivity (W/cm °C), p is the density
(g/cm3), and C is the heat capacity at constant volume
(J/g °C). The subscript ¢ refers to the absorbing
center and the subscript i refers to the host. The
diffusion equations (2) and (3) are valid only when
local thermodynamic equilibrium exists. They become
suspect for times comparable to the phonon-phonon
collision time (~ 10~'2s) and for distances comparable
to atomic dimensions (~ 10~8cm). The diffusion equa-
tions require a statement of the boundary conditions
before solutions are uniquely defined. The temperature
has the form,

To, t<0

O(r, t) =‘ 4)
Ty+T(r,t), t>0,

for all values of r. The function T'(r, t) is the tempera-
ture for t > 0 relative to the ambient temperature T.

The boundary conditions are time dependent. The
temperature must be finite everywhere.

T.(r=0, t) =finite and T)(r= o, t) = finite. )

The continuity of the temperature across the center-
host interface is

Te(r=ror, t)=Tn(r=ror, t), (6)

where 7 is the radial unit vector. The conservation of
heat flow at the interface gives

_KCVTC(I':I‘O;‘, [) f+H([)
:_—KI1\7TII(I':T'0;", t) T (7)

Equations (1) through (7) represent the mathematical
description of the model for absorbing centers in laser
materials. The physics from which these equations
arise is stated in ref. [1]. It is most convenient to use
the spherical coordinates r, 6, and ¢ because the heat
flux H(¢) is independent of 6 and ¢. The problem then
becomes a spherically symmetric one. Equations (2),
(3), and (7) now have their respective forms,

oTle(r, t) _ <32Tc(r, t) +_2_ aTc(r, t) )

ot e ar? 7 or
for r<ro, 8)
aTn(r. 1) _ (azTh(r, t)  29Tn(r. 1) )
at @ ar? r  or ’
for r>ro, 9)
and
_K. aTC(r;ro, t) +H(t)=—Ki aTh(ra=rr0, t) (10)

3. Laplace Transform Solutions

Equations (8) and (9) and the initial conditions and
boundary conditions (4), (5), (6), and (10) are solved by
taking their Laplace transforms. The Laplace trans-
form of the temperature T'(r, t) is denoted by

i) =Lx exp (—sO)T(r, t).

The Laplace operator % is introduced and is defined
by Z{T(r, )}=U(r, s).

The Bromwich integral,

1 c+id
T(r,t)=Lim—f exp (st)U(r,s)ds, (11)

d— 27T c—id

expresses the temperature in terms of the Laplace
transform. The real quantity c is chosen to be sufhi-
ciently large so that the integral,

f(,x exp (—st) |T(r,t)|dt, (12)

exists. The inverse Laplace operator .#-! is defined by
FLYU(r, s)}=T(r, t), and is a convenient way to
represent the integral in eq (11). The Laplace transform
of the energy flux H(t) is denoted by A(s). Taking the
Laplace transform of eq (1) yields that

h(s) = (Q/4rs){1 —exp (—s7)}, (13)
where

Q=A(N,Ta) (EL/4)

The Laplace transforms of eqs (5), (6), (8), (9), and
(10) are respectively.

U.(0) = finite and U, (0) = finite, (14)
Uc(zco) = Un(zno) (15)

d2U. dU, To(r,0)z2
22 e SI27e & —z2U, - ; =0 for r<r,,
(16)

d2U, dU To(r,0)z2
z} _"+ z;z—h—zEUh +—0(r )zh=0 for r>ro,

dz2 dz s

(17)

1/2 —
KCS_dUC(ZC ZcO)+h(s):_

31/2 dUh (Zh — Zh())
Kh =R Rt el Gl (O 0 8
e dzc an

dzh ’
(18)
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where
ze= (rs'?lac) , zn=(rs'%[an), zco= (ros'?/a.)

zno= (ros?lan), Uc(r, s) = Uc(z¢),
and

General solutions to the Laplace transformed diffu-
sion eqs (16) and (17) are

B, cosh (2) +E. 19)

z S

U(Z):Bl

sinh (z)
z

Let us for convenience choose the zero of the tem-
perature scale such that 7,=0. The condition,
U.(0) = finite, requires that B>, = 0 and gives

U.(zc) = Bic{sinh (z¢)/zc}. (20)

The condition, Uj (e°) = finite, requires that By, + B2, =0

and gives

Uh (Zh) = B:lh{exp (_ zh)/zh}' (21)
The continuity condition (15) relates the constants
Bi. and By,; namely,

Bic = Ban{zco exp (— zno)/zno sinh (zc0) }. (22)
Finally, the conservation of heat flow through the inter-
face, eq (18), and the condition (22) permit us to express
the constant B, in terms of ro, K¢, ac, Kn, and ap;
namely,

Baon = h(s) (zno/s'2) exp (zno) X [(Knlan) (1 + zjq')

— (Kelae) (ze — coth (zc0)] 1. (23)

Substituting eq (23) into eq (21) and evaluating the
Bromwich contour integral to obtain the temperature
of the host Ty (r, t) would be a most ambitious task.
Two different arguments exist by which eq (21) reduces
to a more tractable form. The first argument treats
eq (23) in the limit that z.o < 1. Then the coth (zc0) in
eq (23)is approximated by

coth (Z('()) -~ ZE()I + (200/3)+ 0(2%0) +.o.
and eq (21) thereby is approximated by the expression

Uiy (zn) = lim Uy (z1) = Bp(, s){exp (= z;.)/z;.},

2e—0

(24)

where

h(S)Zho exp (Zh())
M(s12+b,)(s12+b)°

= (il e Gl (e P
b= (KI1/2M(lh) 5 R= (4chc/3phC,,).

Bh(ma S) =

and

(25)

U,,(r, s) = Uh(zh).

The second argument involves simplifying boundary
condition (10). Observe that when K. > K), the tempera-
ture gradients in the absorbing center are much less
than those for the host. In the limit K. > K, boundary
condition (10) becomes

dTo(ra, t) —K aTI:(rJ’t)
— I\p

! dt ar

+H(t), (26)

where r()i:Lir(r]l(roie). The temperature of the sphere
a5

becomes spatially uniform; that is, T.(r, t)=T.=Tx(ro, t)
whenever its thermal conductivity is much larger
than that of the host. The heat flux into the sphere is
given by,

{ (4mrg/3) pcCe(dT/dt) [4mrE} = M(dT./dt).

Taking the Laplace transform of the conservation of
heat flux, eq (26), which is valid when K. > K, the
author obtains the same expression for the Laplace
transform U, as that given in eq (24). Hence, approxi-
mation (24) obtains either when |ros'2/a.| <1 or when
K. > K;. The latter inequality imposes no restriction
on ry and s or equivalently on ry and ¢ but the former
inequality does impose such restrictions.

The volume specific heat ratio R= (4p.C./3prCr)
determines three regions of behavior. Namely, when
R <1, the roots b. are real and are not equal; when
R =1, the roots are real and equal; and when R > 1,
the roots are complex and conjugate to one another.
The latter is the region for which the arguments of
the complementary error functions are complex.
In the next Section, analytic expressions for the
temperature T, (r, t) in each of these three regions are
presented.

4. Results and Conclusions

In this section, closed form expressions for T (r, t)
are given for the regions R<1, R=1, and R > 1.
Also, series expansions for large and small values of
bt'2 are derived.

In the limit that z.o <1 or in the limit that K. > K,
the Laplace transform of the temperature in the host
becomes

Un.(zn) =[1—exp (—s7)]Dxn(s) 27)
where eqs (13) and (25) require that
Di(s) = (Q/47s)zno exp (zno—2zn) 28)

znM(st2+b.) (sV2+b-)

The translation property of Laplace transforms, (eq
(29.2.15) of ref. [4]) then permits one to express the
temperature in the host in terms of a Bromwich inte-
gral, B;(r, t), and the unit step function, u(t); namely,

[5]
Tn(r,t)=B;(r, t) —u(t—7)B/(r, t— 7). (29)

where
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Bi(r. ) =Lim o f+dd exp (s)Di(s)ds,  (30)
and the unit step function u(t) is defined by
0,:<0
u(t)=1{%t=0 31)
1,:>0.

Subsections 4.1, 4.2, and 4.3 of this section contain
respectively the evaluation of the Bromwich integral
(30) for the casesof R<1,R=1,and R > 1.

4.1. R<1

When the volume specific heat ratio R is less than
one, then the roots b, and b_ are real and are not equal.
The Bromwich integral (30) is evaluated more readily
by expressing Dj (s) in terms of partial fractions;

Dy(s)=P-(r){d:(s) —d-(s)}, (32)
where
P_(r)={Qro/87Mbr(1 —R)'2}. (33)
and
d.(s)=[exp {(ro—r)s"2[an}/s(s?2+b.)]  (34)

The transform (34) is valid only when r>ro. The
Bromwich integral (30) is evaluated by applying eq
(29.3.89) of ref. [4] to eqs (32) and (34). This evaluation
is correct only when y={(r—r¢)/an} = 0. It is found
found that according to ref. [4],

Ta(r.t; R <1)=P(r) [bz{F (v, b+, 1)
—u(t—7)F(y,be t—7)} —b={F (v, b_, 1)
—u(t—7)F(y.b_.t—1)}]
where y={(r—ro)/ax} =0. The dimensionless func-

tion F(y, b, t) contains the complementary error
function; namely,

(35)

F(y,b,t)=—exp (yb+ b%t) erfc(bt!2+ (y/2t'?))

+erfe(y/201?)  (36)
where
erfe(x) =1—— [“exp (—)dr. 37)
.
4.2. R=1

When the volume specific heat ratio R equals one,
the roots are real and equal; that is,

b.=b_=b=(Kn/2May)

and the Laplace transform factor D, (s), eq (28),
becomes

D}I(S)ZP()(r)du(S), (38)
where
PQ(T)Z(QT()/4'TMb2r), (39)
and
do(s) =b*exp (—ys'?)/[s(s2+b)2}.  (40)

Because the identity,
o[ d [ exp (—ys'?)
—p1] & (EXP TYS )
{db( s(s'24b) )}

_ o[ exp (—ys'?) d .
—7 {m— =—gp (e F(v. 0,0}, @D
exists, the temperature in the host has the form

Th(r’ t; Rzl):Po(r){G(% b? t)

_u(t_T)G(% ba t_T)}7 (4'2)
where
Gy, b, ) =—b> L {b-1F(y, b, £)}
s Uy db Y, 0,
= (yb+2b%t+1) exp (yb+b2t) erfc (bt!2
+ (y/2t12)) + erfc (y/2t!/2)
—2(bt'/2[7r1/2) exp (—y2/4t). (43)

4.3. R>1

When the volume specific heat ratio is greater
than one, the roots are complex and conjugate to
one another; that is, b.=v¥iu where v=154 and
uw=b(R—1)"2for R > 1. Because b_=b*, the Laplace
transform factor Dy, (s) [eq (28)] becomes

Dy(s)=P-(r)d-(s) (44)
where
P_(r) = (Qro/4vMbru), (45)
and
_exp (—ys'?) { 1 _ 1
() 2is s24+v—iu sl/2+v+i/¢}'

(46)

Evaluating the contour integral which results after
eq (44) is substituted into eq (30) by the calculus of
residues is a most difficult procedure. Because the
integrand in eq (37), exp (— t2), is analytic everywhere
in the finite complex plane, the function, b-F (y, b, t),
may be analytically continued to complex values of
b. The temperature then is computed by taking
the imaginary part of the analytic continuation of
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b='F (v, b, t) for complex values of b; namely,

Ty(r,t; R >1):P>("){H('}’~V~,Uu[)

—u(t—7)H(y, v, u, t—71)}, 47)

where

H(y,v,p.t)=bIm {(v—in) 'F(y,v—in,t)}

The analytic expression for the function H(7y, v, u, t)
is rather lengthy. It contains factors related to the
real and the imaginary parts of the complementary
error function for complex arguments. The error
function for complex arguments and procedures for
its numerical evaluation are given in Appendix A. Let
us introduce the following notation: 6= w(y-+2wt),
p=vt'2+ (y/2t12) and w=pwt!2. It is shown in
Appendix A that the real and the imaginary parts of the
complementary error function for complex arguments
contain the following integrals:

sdaw (p, w) :%exp (=@?) fmexp (€2) sin (2p&)d¢,

and

(0]

exp (£2) cos (2p&)dé.

2 2
cdaw (p, w) = iR eXP (—w?) J

The expression for H(y, v, u, t) becomes, in terms of
this notation:

H(y,v, ., t)={b/(v2+ u2) } [ erfc (y/2t1/2)
—exp (yv+v2it—p2t){(—vsin 6+ wcos 0)
X (erfc (p) —exp (w?—p?) sdaw (p, w))

+ (v cos 0+ wsin 0) exp (w2 —p?) cdaw (p, w)}]. (48)

At first one may question the oscillatory factors,
cosine of 6 and sine of 6, which appear in eqs (47)
and (48). One does not usually expect such behavior
for solutions to a diffusion equation which has no
oscillatory boundary conditions or source terms. How-
ever, the oscillatory factors in eq (48) are over damp-
ened so that the spatial gradient is always less than
zero for all r = ry [6]. Similar oscillatory factors arise
in other diffusion problems. Theoretical solutions for
fluid turbulence and for the characteristic lines pro-
duced by a moving disc in a uniformly rotating, non-
viscous, and incompressible liquid also may contain
oscillatory factors [7]. The oscillatory factors in eq (48)
exhibit a wavelength A, = Q2man/n), a frequency
(/7o) = (wv/m), and a velocity vy =— 2vayr.

he oscillatory speed, |vo.| =2vas is less than the
speed of sound in the host for all the situations dis-
cussed in ref. [1]. If this were not the case then the
quasi-static linear thermoelastic theory would be
suspect.

4.4. Expansions for bt V2<<1

In order to avoid overflow complications with the
computer it is necessary to use series expansions for
the functions when they are evaluated at the center-
host interface, y = 0. These expansions readily show
that as bt!/2 approaches 0 the surface temperature
Ty (ro, t) depends only on the properties of the ab-
sorbing center. This agrees with the intuitive state-
ment that for sufficiently short times very little heat
enters the host. The expansions for the F, G, and H
functions when bt'2 < 1 are listed now:

F(0, b, t) ~ (2/w'2)bt'? — (bt'2)2 + (4/371/2) (bt1/2)3

+ 0 (bt'?)4+ . ., (49)
G(0, b, t) ~ (bt'2)2 — (8/3m1/2) (bt12)3

+(/';‘(bt1/2)4+ e o e9 (50)
and
H(0, v, w, t) ~ but[1 — (8/3712)pe!/2

+ o2+ .. ] (51)

where v =b.

Finally, substituting eqs (49), (50), and (51) respec-
tively into eqs (35), (42), and (47) yields when bt'/2<1
andt < 7,

Tn(ro, t) ~ (Qt/ATM). (52)
The quantity M depends only on the properties of the
absorbing center.

4.5. Asymptotic Expansions for large bt'/?>1

In this subsection, the asymptotic expansions for
F and G when bt'/?2>1 are listed below. Such ex-
pansions for H are not as straightforward as those for
F and G. In fact, the derivation of a representation
for H which converges rapidly when vt'2>1 is most
essential in the development of a computer program
to evaluate T)(r, t) for the case in which R >1.
Representations for H are developed in appendix A.
These expansions show that as r, approaches 0 the
surface temperature T (ry, t) depends only on the
absorptance of the interface and the properties of
the host and it becomes independent of the other
properties of the absorbing center. The asymptotic
expansions for the functions F' and G when b2 > 1
are respectively,

F(0,b,t) ~1—(1/m'2bt'2) +. . ., (53)

and
G(0, b, t) ~1— (2/m'2ber2) +|. . .. (54)

Substituting eq (53) into eq (35) gives expressions for
the interface temperature when ry is very small;
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namely, if t > 7 and b7'/2> 1, then

Tu(ro, t) ~ (Qr§/8m'2anKnt?), (55)
and if t=7and b7Y2> 1, then
T (ro, 7) ~ (Qro/47Ky). (56)

Observe that eqs (55) and (56) do not contain any of
the bulk thermal properties of the absorbing center.

The expressions for T, (r, t) given above form the
mathematical framework upon which the computer
program used to generate the tables of ref. [1] is
developed. In addition, several first and second order
derivatives of the functions F, G, and H with respect
to time and space are needed in order to evaluate the
temperature for large times and in order to check
numerically that the temperature gradient is always

negative and that the rate of expansion of the spherc
never exceeds the speed of sound in the host. Because
closed form expressions for the derivatives are ob-
tained by conceptionally straightforward methods and
because these expressions are very lengthy in the case
of the H function, the author chooses not to list them
here. Once the temperature has been calculated then
the optical path length, the stress components, and the
stress birefringence near the absorbing center are
readily found. These problems have been discussed in
detail in ref. [1].

The author thanks W. Gautshi for communicating
his results on the efficient computation of the complex
error function prior to their publication. He also ac-
knowledges many helpful discussions with A. D.
Franklin, A. Kahn, S. M. Wiederhorn, and H. Oser.

5. Appendix A. Complementary Error Function for Complex Arguments

A computer program which evaluates the integral,

f Tw(p, t)p3dp, for R>1,
To

hundreds of times must incorporate a rapidly converg-
ing representation of the complementary error func-
tion, if the total computation time is to be reasonable.
Several representations of the complementary error
function and those representations which are used in
the studies on inclusions in laser materials [1] are
presented in this Appendix. Computer programs for
all of the representations given here have been
written in Fortran [8].

Let us begin with the analytic continuation of the
complementary error function to complex arguments
z=x—1y, where x and y are real. The complementary
error function for real arcuments z=x is defined by

erfc (x) =1——2l—/qfr exp (—t2)dt.
T Jo

Because the integrand exp (—1t2?) is analytic every-
where, the value of the integral is independent of the
path along which the variable ¢ follows in going from
t=0 to t=z=x—1iy. The following path is chosen:

erfc (z)=1—

fI exp (—t2)dt
0

7T1/2

2 xr—iy

: exp (—t?)dt.
77_1/2 - p( )

(A1)

Letting t=x—1is in the second integral, the author
writes

erfc (z) =erfc (x)

; y
_’_77211/2 exp (—x?) f exp (s*+ 2ixs)ds. (A2)
0

It is convenient to define

I(x, y) =cdaw (x, y) +i sdaw (x, y)

= exp (—y?) foy exp (s?+2ixs)ds, (A3)

12

where

cdaw (x,y) =Re {I(x, y)}

=7721/_) exp (—y?) fy exp (s2) cos (2xs)ds, (A4)
“ 0
and
sdaw (x, y) =Im {I(x, y)}
~Zrew (=) [T ew () sin @us)ds. (A9)
- 0

Inserting these definitions into eq (A2) yields
erfc (z) =erfe (x)
—exp (y2—«?) {sdaw (x, y) —i cdaw (x, )},

(A6)
where z=x —iy. The definition,

erfs (z=x—1iy) =erfc (x) —exp (y*—x?) sdaw (x, y),
is introduced.

Many rational approximations for the error function
are listed in ref. [4], sections 7.1.25 to 7.1.28, and are
readily modified to evaluate exp (x2) erfc (x). One
possibility uses the rational approximation section
7.1.26 of ref. [4]. It is the representation used in ref.
[1] whenever z is real and z=x < 2.1; namely,

exp (x2) erfc (x) = i ant"+exp (x2)e(x), (A7)

n=1
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where

t=(14px)! le(x)] < 1.5 X 10-7.
The numerical constants p, a,, as, as, as, and as are
given in ref. [4] section 7.1.26. The last term estimates
the error and is large for large values of x.

Two series expansions for small values of x are

and

2 (__l)nx2n+l

erfc (x)—l—;rl—/, Z:O nl2n+1) (A8a)
and
2 2nx2n+1
erfc (x)=1——— exp (—«?) g
/2 "201 3...(2n+1)
(A8b)

An asymptotic expansion for large values of x exists;
namely,

w2x exp (x?) erfc (x) ~ 1

< (—1)"1-3 . . .
2 @)

(2n—1)

(A9)

Equations (A8) and (A9) may be continued analyti-
cally to complex values z=x—iy=r exp (—iB), where
r=(x*+y?*)'2 and B=tan"! (y/x). The series expan-
sions for small |z| =r becomes

—1)r2nt1{cos ((2n+1)B) —i sin ((2n+1)B)}

cos (2n7'rs/a)} = (a/m'?) [l + 2 i

n=1

exp (— n2a?) cosh (2nsa)], (A13)

where a is a real positive number, 0 < a < 1. The
constant a is chosen so that

n2mw2/a?) cos (2nmsla) < 1.

E=2i exp (—

n=1

When a = (1/2), the term E is of the order of 1017
and eq (A13) becomes an approximate expression for
exp (s?); namely,

exp (s?) ~ (a/m'?)

[l + 2 i exp (— n2a?) cosh (2nsa)]

n=1

+ 0(2 exp (— w2/a?)). (A14)

The integrations over s in the eqs (A4) and (A5) can be
performed in a closed form when approximation (A14)
replaces exp (s2) in the integrand.

£ = —
erfe (z) =1 1/2 "2:“ nl@n+1) , (A10)
and
. _1_2rexp (— 2+y) 22 {cos ((2n+1)B+2xy) —isin ((2n+1)B+2xy) }
erfc (z)=1 =y )E) 13 .. @ntl) (A11)
The asymptotic expansion for large |z] and for
|B] < (3m/4) is
2 2
erfc (z) ~ e (77172:_3/ ) {cos (B+2xy) +isin (B+2xy)}
z (—=1)"1-3 ... (2n—1) ..
+> gnren {cos ((2n—1)B+2xy) —i sin ((2n—1)B+2xy)} (A12)
n=1
Representations for the functions cdaw (x, ¥) and The results are
sdaw (x, ¥) follow from eqs (A6), (A10), and (A11), and 2 "
(A12). cdaw (x,y) ~ —5 exp (—y*)
A corollary of Poisson’s formula is the basis for
another approximation for the complementary error a sin (2xy) exp (—n*a?)
function. It is more convenient in this case to first =T 9y 1/2 2 n?a® + x2)
approximate cdaw (x, y) and sdaw (x, ¥). One may
derive by means of Poisson’s formula (7) the identity, [9] (na sinh (2nay) cos(2xy)
+ x cosh (2nay) sin (2xy))}, (A15)

exp (s?) [1 + 2 i exp (— n2w?/a?)

n=1

and
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2
sdaw (%, y) ~ —5 exp (— %)

. exp (— n2a?)

{_a(l—cos (2xy)
= (wPa=r )

), a
/2 2x * T

(x 4+ na sinh (2nay) sin (2xy)
— x cosh (2nay) cos (2xy))}' (A16)

Among the above approximations which are valid
for large |z| approximations (A15) and (A16) converge
most rapidly. However, they are still not as efficient
as the algorithm for the real and imaginary parts of
the function,

W(z) =exp (—«2) erfc (—ix), (A17)
which is given in ref. [10]. The algorithm is based upon
the continued fraction representation,

1 1 (1/2) 1 (3/2) 2

w2 z4+ z+4+ z4+ z+

exp (z2) erfc (z) =
(A18)

and efficiently separates the real and imaginary parts
of eq (A18).

The complex function I(x, y). eq (A3), can be ex-
pressed in terms of the function W (z);

I(x,y)=iexp (x2—y2){ exp (—22) W (ix)

—exp (—(x—iy))W(ix+y)}. (A19)

Introducing the notation W (ix)=W,+iW, and
W(ix+y)=Ws;+iW,, where Wi, W,. W5, and W,
are real, produces the result

cdaw (x,y) =—Wsexp (—y2) + {Wicos (2xy)

+ W sin (2xy)}. (A20)
and
sdaw (x,y) =W, exp (—y?) +{Wisin (2xy)

—Wscos (2xy) }. (A21)

A Fortran program based upon the algorithm of ref.
[8] to evaluate the real and the imaginary parts of the

function W [i.e., Re {W(z)} and Im {W(z)}] has
been written.

Computer programs have been written to evaluate
all of the above representations for the complementary
error function. The prescriptions given below are more
efficient than the many others examined during the
computations involved in ref. [1]. First consider the
case for Im {z}=0; that is, z=x and y=0. The ra-
tional approximation (A7) is used when 0 <|x|=<2.1
and the continued fraction representation eq (Al8)
is used when 2.1 <|x|< . This combination is effi-
cient for study of inclusions in laser materials when
the volume specific ratio satisfies the inequality R < 1.
Next consider the case when z=x—1iy. The series ap-
proximation (A10) is used whenever both 0<|x|=<0.001
and 0<|y|=<0.001 and the algorithm of ref. [8], is
used for all other values in the complex plane. This
combination is efficient for the study of inclusions in
laser materials when the volume specific heat ratio
satisfies the inequality R > 1.
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