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One of the severe problems encountered in high-power-solid-state laser systems is the thermal 
damage to lase r rods and opti cal e le ment s. One such type of damage is thought to ar ise trom metallic 
or dielectri c in c lus ions; i.e., impuriti es with physica l and opti cal properti es which differ subs tantiall y 
from those of the hos t material. Such inclusions may absorb an appreciable amount of the inc ident 
radi a tion and th e reby may undergo the rma l ex pansion. This produces major stresses within the hos t 
mate rial. Estimating s uc h the rmal pro perti es requires the consideration of so lutions to the heat dif­
fu s ion equation and to the th e rma l s tress equations with a ppropriate bounda ry condition s. Th e optical 
path length change for a probing light ray pass ing near the in c lus ion, the radial and tange nti al s tress 
co mponents, and the c hanges of the refrac tive index for radially pola ri zed and tangenti all y polari zed 
light due to the thermal stress fi eld are computed. The dependence of the max imum value of the ten~lle 
stress upon th e s ize of th e inc lu s ion and upon th e physica l propertIes of the host IS exa mllled. 1 he 
feasibilit y of using opti cal tec hniques to de tec t metal lic and die lec tri c inc lus ions in lase r mate rial s 
before they cause damage a lso is s tudied. The computation s sugges t th a t the use of laser pulse wIdth s 
of th e order of mi c roseconds or longe r may be more promising for the detection of s ma ll inc ipie nt 
absorb ing cente rs than the use of nanosecond pulse width s. 

Key words: Antimon y; hea t condu ction; laser materials; Nd-doped glass; platinum; s tress co mpon ents; 
and thermoelas ti c theory. 

1. Introduction 

One of the severe problems encountered in high­
power-solid-state laser systems is the internal damage 
of the laser rod and its optical elements. One type of 
such damage is the formation of interior cracks which 
run more or less normal to the direction of the laser 
beam [1].1 This internal cracking is thought to arise 
from solid metallic or dielectric inclusions; i.e., im­
purities with physical and optical properties which 
differ substantially from those of the host material. 

I" There are a few documentary cases for which the laser 
glass around inclusions had melted and other cases 
for which metal was found near the center of failure 
cracks [2, 3]. The metal has been usually platinum or 
antimony. The present theoretical study estimates the 
thermal stresses which occur when a solid inclusion is 
heated by the laser beam and examines the feasibility 
of using optical techniques to detect such inclusions 
before they cause damage. Detecting an inclusion 
before it causes damage eases the burden of the 
chemical analysis near the incipient damage area. 

£. Bliss [1] has outlined the general mechanism 
for internal cracking. A solid inclusion with a high 
absorption coefficient is heated relative to the host 
material. The resulting thermal expansion of the inclu­
sion may stress the surrounding host material suffi-

1 Figures in brackets indicate the lite rature references at the end of this paper. 

ciently for damage to occur. In fact , the theoretical 
model presented in this paper predicts that the heat­
ing may produce stresses larger than the theoretical 
breaking stress of the glass. 

Most experimental data on inclusion damage has 
bee n obtained from laser glasses which have hot 
platinum near the molten glass, which are processed 
in platinum or ceramic crucibles, and which contain 
neodymium as the lasing ion. The me talli c inclusions in 
laser glasses can originate from many so urces and can 
include most metals. However, considering the ther­
mal properties of most metals that could occur as 
metallic inclusions in laser glass , one finds that 
they are similar in their capability for causing failure. 
The noble metals , in particular platinum or platinum 
alloys, are the metals that have been identified with 
any reasonable frequency in damaged laser glasses 
[4]. The nonmetallic inclusions may be divided into 
crystalline types and noncrystalline types , occluded 
or exsolved gas bubbles, and glassy regions. Non­
metallic inclusions can produce several weakening 
effects in the laser host. The most apparent of these 
are the lens effect, strains in flaws, electrostriction and 
absorption. Few definitive statements can be made 
about these effects and the importance of each is 
evaluated on a probability basis [5]. However, most 
researchers expect that those metallic and dielectric 
inclusions with high optical absorption at the lasing 
wavelength are most likely responsible for failure 
of laser glasses. The numerical results of this paper 
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will treat the cases of platinum, antimony, and AltO;l 
inclusions as representing the thermal, elastic, and 
optical properties of several possible inclusions in 
laser glass hosts. The theory will be valid, however, 
for other hosts which exhibit isotropic elastic prop· 
erties and for other absorbing centers. 

The several properties of the center-host system 
which determine the probability for internal cracking 
to occur may be divided into four groups. The first 
group consists of the bulk properties of both the in­
clusion and host and includes the respective thermal 
conductivities, heat capacities, thermal expansion 
coefficients, elastic properties, absorption coefficients 
for the incident radiation, and equations of state for 
the liquid and gas phases. The second group contains 
geometric properties of the inclusion which also 
influence its ability to cause fracture, such as the size, 
shape, and orientation to the incident radiation. The 
distribution and nature of initial microcracks and of 
optical im perfections form the third grou p of prop­
erties which determine the resistance of the host to 
internal cracking. Finally, the fourth group of prop­
erties describes the absorbing center-host interface; 
namely, the absorptance, emissivity, and initial ther­
mal contact between the absorbing center and the 
host. The elastic properties , the thermal properties, 
and the optical properties of Pt, Sb, ALO;!, and two 
representative neodymium doped laser glasses are 
cited in tables 1,2,3,4, and 5. 

TABLE I 

Values of the elastic parameters. The quantities E, G, v, and X 
are respectively Younp:'s modulus, shear modulu s, Poisson ratio , and 
isothermal compressibility. 

E C v X 
(N/m') X 10'0 (N/m') X 10 '0 (m'/N) X 10- 111 

Pt 14.7 5.28 0.39 0.0449 
Sb 7.78 3.25 .20 .234 
AI,O,,(a) 41.4 16.2 .275 .0326 
Glass(B) 6.74 2.79 .218 .249 
Class(U) 6.74 2.79 .218 .249 

TABLE 2 

Values of the thermal properties. The quantities p, C, K , and C\' 

are respectively the den sity, the specific heat at constant volume, 
the thermal conductivity , and the linear thermal expansion coefficient. 

p C K C\' 

(p:/cm") (J/p: 0c) (W/cm ec) (lrC) X 10- 6 

Pt(B) 21.73 0.17 0.67 8.6 
Pt(U) 21.73 .13 .67 9.0 
Sb 6.62 .21 .18 ILl 
Al,O,,(a) 4.0 .84 .29 11.0 
Class(B) 2.6 .63 .0084 9.0 
C lass(U) 3.0 1.3 .013 9.0 

TABLE 3 

Values of I)arameters pertaining: to neglecting the coupling: and 
inertia terms of eqs (1) and (2). The quantities v, a2, (O{To), and tr 
are res pec tively the speed of elastic waves, diffusivity, couplin g: in 
units of the ambient temperature To, and the relaxation time for the 
deAnition of a local temperature to be meaninp:ful. 

v 0'2 ( 8/To) t,· 
(cm/s) X 10" (cm'/s) (lrC) X 10-', (s) X 10- 1:' 

Pt 3.67 0.238 4.39 2.0 
Sb 3.61 .133 1.67 2.3 
AIzO,,(a) 11.44 .0875 4.83 - 10.0 
Class(B) 5.43 .005 1.11 - 10.0 
Class(U) 5.06 .003 0.417 - 10.0 

TABLE 4 

Optical properti es for r" > A = 1.06 /1-. T he quantiti es A (A, Te), 
n, n', and y-I are respectively the absorptance, the real part of the 
refractive index, the imaginary part of the refractive index , and the 
inverse of the absorption coefficient. 

A (A, 7.,) n n y - I 

(cm) X 10- 6 

I't 0.30 1.14 3.25 2.4 
Sb .35 3.4 4.1 1.9 
AI,O,,(a) .60 1.67 - 0.0 (see text) 
Class(B) ... ........ ..... 1.52 - .0 - 4 X 10' 
Glass(U) ................ 1.52 - .0 - 4 X 10' 

TABLE 5 

Values for the photoelastic coefficients, fJII and I'''' the stress·optic 
coe ffi cients, B II and B ~ . and the chanp:e of index of refraction with 
respect to temperature , (dn/dT). 

B II B~ (dn/dT) 
PII PI'2 (m'/N) (m'/N) (l rC) 

X 10- 1:, X 10-'" X 10-" 

Class(B) 0.134 0.225 5.33 21.8 4.0 
Class(U) .134 .225 5.33 21.8 4.0 

The model formulated in this paper contains many 
physical assumptions which are necessary to render 
the problem solvable. The major assumptions are 
summarized here and are discussed in greater detail 
in the following sections. 

(a) The inclusion is a sphere of radius To and is 
always in good thermal contact with the host. The 
number of inclusions per unit volume is assumed to be 
sufficiently small so that they do not interact with one 
another. The effects of shape and orientation to the 
incident radiation also are neglected in the model. 

(b) The host material is isotropic , continuous, and of 
infinite extent. It also is initially at an ambient tempera­
ture To and free from all stresses and strains. Because 
the energy content of the incident radiation is finite, 
the latter statement requires the temperature to be 
To at infinity and all stresses and strains to vanish 
at infinity. The distribution and nature of microcracks 
and optical imperfections are not treated in the model. 
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(c) The linear-thermal-e lastic equations are assumed 
to l!ive a reasonable description of the processes which 
ultimately may lead to catastrophic damage. Th ese are 
coupled equations relating the tempe rature and the 
displacement vector from whi ch the stresses and 
strains are compute d. Th ey are valid only when a local 
temperature ex is ts and when di stances are larger 
than atomic dim e nsion s ( - lO - H c m ). A relaxation 
time t,. for the definition of a local te mperature T is 
approximately the reciprocal of a charac teristic vi­
bration frequency of the material. These relaxation 
times t,. for Pt , Sb, AI~O:!, and th e Jase r glasses are 
about 10 - 1:3s to 10 - I~s. Hence, the equations are mean· 
ingful only when times t are much larl!er than lO - l ~s. 

(d) It is assumed that th e radiation of heat by th e 
center-host interface and by the heated glass close to 
the absorbin g center may be neglected in th e thermal­
elastic equations. A black body at 600 °C produces an 
energy flux of 0.735 (J/cm ~s). The laser beams for the 
examples studi ed in thi s paper contain e ne rgy fluxes 
at leas t 10 4 tim es greater than 0.735 (J/ cm~ s) . The 
temperat ure gradients which occur from the tim e of 
cessation of th e laser pulse to tim e of maximum optical 
path length change are always suffic ie ntly large so that 
the energy flux due to thermal conduc tion is greater 
than the energy flux due to radiation. The present 
calculations show that the e ne rgy flu x du e to thermal 
conduction beco mes s mall for tim es greater than a 
second and that the radiation e ffect should be in cluded 
in the th erm al-elas ti c equations whenever t > 1 s. 
Because the te rn perature is close to the ambient tem­
perature whenever the time is greate r than a second , 
th e long time behavior is not in th e region of practi cal 
interest for detecting the incipi ent damage centers 
before they cause damage. Hence, it is assumed th at 
all times are less than a second. 

(e) The linear-th ermal-elastic equations contain a 
coupling term a nd an in ertia term. The coupling te rm 
and the inertia term may be neglected whene ver the 
three characteristi c times which occur in the absorbing 
center-host system satisfy a se t of inequalities. These 
times are the following. The pulse width T of the inci­
dent radiation determines in part the rapidity of heat 
generation . The characteristic relaxation time for 
temperature equilibration (thermal diffusion) is tT, 
which is of order (1'2 /a2 ), where r is the radial distance 
and a2 is the thermal diffusivity. The characteristic 
mechanical time required for the production of s tress 
waves is t .\1 which is of order (r/v), where v is the speed 
of propagation of elastic waves. The relationships 
among the coupling term , th e inertia term , the time 
history of th e displace me nt vector , and the time history 
of the temperature are compl ex. Th e easiest way in 
whi ch to s tudy these relation ships is to solve exactly 
the lin ear-th erm al-elasti c equations for a sim pIe one 
dimensional problem. Boley and W eine r have solved 
s uc h a problem [61. They demonstrate that when 
T ~ t;ll and tT ~ t;ll , then the coupling and inertia terms 
are small compared to the other terms in the equations. 
The data ci ted in table 3 for the inclusions and hosts 
di scussed here red uce the above inequalities to in­
equalitie s containing the pulse width T and radial 

distance r. The data show a maximum value for 
t .\1 - 2.8 X 10- (1 (s/cm) I' and a minimum value for 
tT - 4.2 (s/cm 2) r~. Hence, these data lead to the in­
equalities con taining T and 1' ; namely T ~ 2.8 X 10- 6 

(s/cm) rand r ~ 6.7 X lO- i c m. It is ass um ed that th ese 
inequalities are satisfied and th ereby that the coupling 
and inertia terms may be neglected . The results to .be 
discussed in thi s paper are based upon a lin ea r theory 
and upon a model whose elasti c, thermal , a nd optical 
properti es are cons tants . The valu es for these prop­
erties, cited in tabl es 1 through 5, are valid for te mpera­
tures near 300 K and for small stra in s. This treatment 
is not ex pec ted to be correct near the onse t of damage. 
The problem is certainly a nonlinear one near the 
region of catastrophic damage. Whene ver a ny of the 
assumptions become invalid, then the res ults should be 
viewed as sugges ting tre nds in the behav ior of the 
syste m. The inclu sion s which occur in lase r glasses 
are most like ly not the s pheres for whic h the mode l has 
been form ulated. Th ey could be irregularly sha ped 
globul es. Some Pt inclu sion s occ ur as hexagonal 
platele ts. Even though the mod el does not take into 
account such geometri cal aspects , one hopes th at it 
does give a reasonable description of the act ual sys te m. 
On e also hopes that the ma nn er in which it suggests 
one should proceed to in c rease th e damage threshold , 
though probabl y not quantitative ly correc t, is qualita­
ti vel y correct. 

In section 2, the linear-uncou pled·q uasi-s ta ti c thermal 
elas ti c equ ations are appli ed to ab sorbing in clu sions 
in laser material s . Th e mode l for s tud ying spheri ca l 
inclusions is the n formul ated in secti on 3 within the 
contex t of the quasi-static thermal e lasti c th eory. The 
heat diffu sion equation with tim e dependent boundary 
condition s for the temperature as a fun ction of tim e t 
and of radial di s tan ce r is solved by Laplace transforms. 
Express ion s for the optical path le ngth c ha nge for a 
probing beam of radia tion passing near the inc lus ion, 
th e radial and ta nge ntial compone nts of the s tress 
te nsor, and the stress indu ced changes. of the refractive 
index for r adially and tangentially polarized light are 
developed in section 4. The numerical res ults and con­
clusions are presented in section 5. Section 5 also con­
tain s an es timate for the le ns effect of the heated region 
surrounding th e absorbing center. Finally , those optical 
properties which de termine the absorptance and emis­
sivity of the inclusion are di scussed in the appendix. 

2. Thermal Elastic Theory 

Consider an absorbing s phere of radius ro imbedded 
in an initially isotropic continuous host of infinite ex­
tent. The thermal, elastic, and mechanical properties 
which enter linear thermal elastic studies are : the 
density p(g/cm:1), the specific heat C at constant volume 
(J /g °C), the thermal conductivity K(W/c m 0q, the 
linear coefficient of thermal expan s ion 0'.(1/ °C), and 
the isothermal Lame elastic constants, A and /1-. The 
Young's modulus E(N/m2 ), the shear modulus C(N/m2), 
the compressi bility x(m2/N), and the Poisson ratio v 
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are related to the Lame constants A and !J- as follows, 

G=E/{2(l+v)} , 

and v = A/ {2 (A + v) }, 

where the bulk modulus is k(N/m~). The derived quan· 
tities of thermal diffusivity a 2 = (K/ pC) (cm 2/s) , the 
volume specific heat pC(J/cm3 Qq, and the speed of 
propagation of dilatational waves in an elastic medium 
v = { (A + 2!J-) / p } 1/2 also enter the linear thermal elastic 
theory. The subscript c on any of these thermal prop· 
erties will refer to the absorbing center and the sub· 
script h will refer to the host. 

The basic theory which describes the behavior of 
an absorbing sphere imbedded in a continuous medium 
and subjected to a laser beam combines the theories 
of elasticity and of heat conduction under transient 
conditions and is a boundary value problem of con· 
siderable mathematical difficulty. Fortunately, 
simplifying assumptions without significant error 
are possible. 

The problem is that of one absorbing spherical in­
clusion imbedded in an infinite medium initially at a 
uniform temperature To and subjected to a prescribed 
rate of internal energy absorption per unit volume 
Q,,(r, t)(W/cm 3 ). The quantity Q" is related to the 
intensity of the local radiation I by an absorption 
equation; that is, 

Q,.(r, t) = yl(r, t), 

where the linear absorption coefficient is y in units of 
inverse centimeters. This y should include also the 
effects of nonlinear absorption processes which be­
come important at high intensities. The local intensity 
for radiation propagating in the plus z direction at z 
is related to the local intensity at Zo by the relation 

I(z) =exp {-y(z-zo)}l(zo), 

where z > Zo. 

The linear-thermal-elastic equations relate the 
temperature T(r, t) and the displacement vector 
u (r, t) as functions of position r and time t. These 
coupled equations are [6] 

aT a 
K'\J2T - pC - - (3A + 2!J-)CI'To -a (7 · u) 

at t 

+ Qv = 0, (1) 
and 

!J-72U + (A + !J-)7('V· u) - p ~2t~ 

- (3A + 2!J-)CI'7T= 0, (2) 

where To is the reference temperature for which the 
material is free of stress. The reference temperature is 
chosen to be 293 K. The strain and stress components 

are obtained from the displacement vector u. Equa­
tions (1) and (2) are meaningful only when a local 
temperature exists. 

A close relationship exists between neglecting the 
coupling term (3A + 2!J-)CI'T()[a('V· u)/at] and ne­
glecting the inertia term p(a2ulat 2 ) in eqs (1) and (2). 
This relationship is based upon the physical idea that 
the rate of thermal expansion may not be sufficient to 
produce elastic waves. Let us consider the coupled 
heat equation. We rewri te eq (1) in the form 

K'V2T - C aT [1 + a (A + 2!J-) {a(7 . u)/at}] 
p at (3A + 2j.t){CI' (aT/at)} 

+Q,,=O, (I') 

where the dimensionless parameter, 

determines the amount of coupling. Equation (I') shows 
clearly that neglecting the coupling term requires that 
a must satisfy the inequality a ~ 1 and that the strain 
rates , a(7· u)/at, must be less than or of the same 
order of magnitude as temperature rates CI'(aT/at). The 
latter condition implies that the time history of the 
displacements must follow closely that of the tempera­
ture. In fact, the authors of ref. [6J have shown that if 
the application of heat is not too rapid, not only may 
the coupling term be omitted but the inertia term may 
be omitted under the same circumstances. 

The rapidity of heat generation at the absorbing 
inclusion-host interface is characterized by the laser 
pulse width T (s). In addition to the time T, two other 
characteristic times exist in the system. Namely, the 
characteristic thermal time , tT= (r2/a~), is the relaxa­
tion time for temperature equilibrium (thermal diffu­
sion) and the characteristic mechanical time, t.ll = (r/v), 
is the time required for the production of stress waves, 
where the quantity r= Irl. It has been demonstrated 
[6] that when 

T ~ t.ll and tT ~ t .lI , (3) 

then coupling and inertia terms are small. That is, when 
inequalities (3) are satisfied, then the linear-uncoupled­
quasistatic thermal elastic theory obtains; namely, 

. aT 
K'V2T-pC -+Q.=O 

at ' , (4) 

and 

(5) 

where 7 2 is the Laplacian operator, and 'V IS the 
gradient operator. 

Hence neglecting the coupling term one finds that 
the thermal stress problem becomes two distinct prob­
lems which are solved consecutively. The first problem 
is the solution to the boundary value problem whose 
field equation is given by eq (4). When we have the 
temperature distribution T(r, t), the second problem 
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is the determination of the resultin!! stress distribution 
from eq (5) , and th e stress-strain relations, 

where aij = 0 when i =1= j and 0;; = 1 when i = j. Equation 
(6) is subject to the equilibrium equations , 

where 

are the strain displacem e nt relations, a ij is the stress 
tensor, and f is the applied force per unit volume. The 
subscripts i , j , and k represent the cartesian compo­
nents x, y, and z_ 

J . Spherica l Inclus ions 

The heat diffusion eq (4) describes the time and 
space de pe nd e nce of the temperature T(r, t) for 
large distances r and large times t; 

(7) 

Equation (7) does not contain th e volume heat !!enera­
tion term Q,,( r, t) because th e host is assumed to 
be very transpare nt to the lase r e ner!!y and to absorb 
only a negli !!i ble amount of ene r!!y from the laser beam. 
In addition , because the absorption coefficient for the 
absorbing center Yc (Pt or Sb) is very large compared 
to the absorption coefficient for th e host Yh, Yc - 10 14 Yh, 
the heat absorbed by the absorbing center from the 
laser beam is assumed to occur entirely at th e cente r­
host interface. This is not the case for ALO:I because 
Yc(Ab03) - y,/ (glass). If the Al20 3-glass interface 
were highly absorbing du e to some mechanism (Max­
well Demon), then the assumption that heating occurs 
on ly at the interface would be valid. The nature and 
existence of such a mechanism for AltO:l is s pecula­
tive at present. Hence the author uses in thi s paper 
the nam e AltO:l(a) to denote an inclusion whose 
properties correspond to those for polycrystaline 
AltO:l with th e one exception that the absorption 
coefficient Yc(AltO:l(a)) is very much larger than 
that for Yc(AI 20 :l ) - y" (glass). 

The diffusion equation requires a statement of th e 
boundary conditions before a solution is uniquely de­
fined. The te mperature e has the form 

jTo, t ~ O 
e(r, t) = 

To+T(r , t), t > 0, 
(8) 

for all values of r. The fun ction T(r, t) is the tempera­
ture relative to the ambie nt te mperature To . The 
boundary conditions are time dependent for any 
realistic treatment of the problem. The temperature 
must be finit e everywhere; T(r=oo, t)=finite and 
T(r=O, t) = finite. The continuity of the temperature 

across the center-host interface is 

(9) 

where r is the radial unit vec tor. Condition (9) implies 
that the host is in perfec t th ermal co n tac t with the 
inclusion for all times t ~ O. The conservation of heat 
flow at the interface gives 

- Kc'vTc(ror, t) . r + H(t ; r· Z) 

(10) 

where z is the unit vector in th e + z direction . 
The ene r!!y flux H(t; r· z) (W/cmt) i s th e energy 

absorbed by th e sphere from th e laser beam. Boundary 
condition (10) describes an un eve n heatin !! of a sphere 
by a plane wave propa!!at ing in the pos itive z direction. 
It contains angular properties whi c h are unnecessary 
re fin e me nts for our purposes, particularly wh en th e 
thermal condu ctivity of the center is mu ch !!r eater 
than that of the host. Th e refore, it is r easonable to 
introduce one more ass umption whi ch redu ces bound­
ary condition (10) to a spherically symme tri c one. Let 
£,. be th e e nergy density (J/cmt) of the lase r beam and 
le t T(S) be the pulse width of th e laser beam. A square 
wave pulse is assumed for our problem. Th e spherical 
inclu sion inte rcep ts an area 7Trl~ from the laser beam 
and absorbs th e amount of e nergy per unit tim e 
QT= [A(A , T)(£,h) ]7Tr~ in watts, where A(A , T) is 
the absorptance of th e center. If the s phere were to 
absorb energy at th e rate QT over its entire area, then 
the equivale nt energy flux H(W/cmt) would be 
H = (Q T/47Tr,D. The equivalent ener!!y flux for the 
s pherically symm etri c case is give n by the relation, 

{o for 
H(t) = (QT/47T1-6) 

t < O 
for 

and t > T 

o ~ t ~ T. 

He nce, re placi ng the an!!ular depende nt e ne rgy flux 
H(t; ;:. i) , by the spherically sym metri c energy flux 
H (t) reduces the problem to a s ph erically sy mmetric 
one. Boundary condition (10) now reads 

(11) 

Boundary condition (11) corres ponds to replacing the 
incident plane wave , which has an e nergy flux (E,JT), 
with an incoming spheri cal wave, which has an e nergy 
flux (7Trij E,.J47Tr2T). 

The author does not include the radiation of heat 
by the interface and by the heated glass close to the 
inclusion in this model. The temperature gradients 
which occur from the time of cessation of the laser 
pulse to time of maximum optical path le ngth change 
are always sufficiently large so that IK"'lT,, I is greater 
than the energy flux due to radiation. Of course, the 
energy flux IKII'lT" I becomes small for times greater 
than a second and the radiation effect should be in-
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cluded in both the diffusion equation and the boundary 
conditions whenever t > Is. Because the temperature 
is close to the ambient temperature whenever the 
time is greater than a second, the long time behavior 
is not in the region of practical interest for detecting 
the incipient damage centers before they cause 
damage. 

The solutions for the temperature T(r, t) are ob· 
tained by taking the Laplace transform of the diffusion 
eq (7), the initial condition (8), the continuity eq (9), 
and the time dependent boundary condition (11). The 
transformed equations become linear equations for 
the Laplace transform VCr, s) of the temperature 
T(r, t), where s is the Laplace transform variable 
for the time t. In a separate paper [7], it has been 
shown that 

Vdr, s) = B" exp (- z")/z,,, (12) 

where z" = (rs l / 2 / a,,), 

B" = h(s) (z"O/S! /2) exp (z"o) X [(K,,/ah) (1 + zild) 

- (Ke/ac) (zeo! - ctnh Zeo)] - I, 

h(s) = [A('\', To)E,./4T][1- exp (-ST)]S - I, 
(13) 

and ZeO = (ros1/2/ac ). 

Evaluating the Bromwich contour integral to obtain 
the temperature T(r, t) from a knowledge of the 
Laplace transform VCr, s), eqs (12) and (13), would be a 
most ambitious task. 

Two different arguments exist by which eq (13) reo 
duces to a more tractable form. The first argument 
treats eq (13) in the limit that ZeO ~ 1, then the ctnh 
(zeo) in eq (13) is approximated by 

and eq (12) thereby is approximated by, 

VI, oo (r, s) =Lim VI,(r, s) =B,,(oo){exp (-z,,)/zd, 

(14) 
where 

B,,(oo)=M(SI /2+b+)(SI /2+b_) , 

M = (PcCcro/3) , b+ = b[l =+= (1- R) 1/ 2 ], (15) 

b= (Kd2Ma,,), and R= (4pcCc·/3p"C,,). 

The second argument yields the same relations as eqs 
(14) and (15) but involves simplifying the boundary 
condition (10). Observe that because a~ 2: 18a~ and 
Ke> 20K" the temperature gradients in an absorbing 
center such as platinum, antimony, and AI2 0:I (a) would 
be much less than those for the glass host. In the limit 

that K· ~ K" , the boundary condition (10) becomes 

Lim [M(aTc(ru, t)/at)] =Lim K,,(aT,,(rt, t)/ar) 
f- O £- 0 

+ H(t), (16) 

where rt = ro ± E. Hence , approximation (14) obtains 
either when Irosl /2/acl ~ lor when Kc ~ K" . The latter 
inequality imposes no restrictions on ro and s, but the 
former inequality does impose such restrictions. The 
volume specific heat ratio R = (4p cCc/3p"C,,) deter­
mines three regions of behavior. Namely; when R < 1, 
the roots b ± are real and unequal; when R = 1, the roots 
are real and equal; and when R > 1 the roots are com­
plex and conjugate to one another. The evaluations of 
the Bromwich integral, 

1 1c + ;(/ 
T,,(r, t)=Lim -2. exp (st)V,,(r , s)ds, 

d--+x 'TTl c - iri 
(17) 

for the above three regions appear in ref. [7J, and give 
the temperature T(r, t). T he quanti ty c is chosen to be 
sufficiently large in order that the integral, 

r oo exp (-ct)ITdr, t)ldt, 
Jo (18) 

exists. Including the mathematical details for the 
evaluation of T,,(r, t) in the present paper would only 
detract from the presentation of the model, of the 
physics which it contains, and of its numerical results. 
However, the temperature {!radient in the host is nega­
tive for all values of position and time and for all finite 
values of the volume-specific-heat ratio R. 

4. Theoretical Expressions 

Having thus obtained the temperature T(r, t) , one 
may compute all the other quantities mentioned in sec­
tion 1. The optical path length change M.. becomes 

ilL(rd = J L (dn,,/dT,,) T"(r, t)dx, (19) 

where the integration path is along a ray that has a 
distance of closest approach rl to the absorbing sphere , 
and the variation of the refractive index of the host with 
temperature is (dn,,/dT,,). The quantity (dn,,/dT,,) is 
properly the rate of change of the host refractive 
index with respect to temperature evaluated at zero 
strain. When (dn,,/dT,,) is independent of rand t, 
eq (19) has the form, 

ilL(rl; ro) = (dn,,/dT,,) L +DD Th(ri+x2)1 /2,t)dx, (20) 

where T,,«r~ +D2)1/2, t) ~ T,,(ro, t) and the integra­
tion path is a straight line of length 2D with a distance 
of closest approach to the sphere rl ~ ro. The stress 
birefringence has been neglected in eq (20). The 
quantities which enter the stress birefringence are 
computed at the end of this section. 
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The stress components satisfy s econd order differ­
en ti a l equati ons whi ch fo ll ow by inserting the te mpera­
ture from eq (17) into eq (5) and by usin g th e re lation 
(6)_ The displaceme nt vec tor u = uP is 

This temperature profile le ad s to the following expres­
sions for uc, /Jrr ,c, and /Joo,c = /J.p.p,c whe n r < ro: 

(28) 
and 

a (] + v) 1 f r c" 
u(r) = (1 ) . Tp 2 dp + C l r+-2- , 

- v r2 Ii r (21) /Jrr ,e(r, t) = /Jllo ,c(r, t) = /J.p.p ,c (r, t) 

where Ii is any fixe d radiu s a nd where p is the radial 
variable of integration_ Equation (21 ) is correc t only for 
those cases in whic h [{a(l + v) / 0 - v)} (aT/ap)] =1= 0 
[or Ii ';:; p ,;:; r_ Becau se the total e nergy (OTT) deposited 
by the lase r beam into th e center-hos t system is finite , 
conservation of e nergy gives 

OTT = (47T /3 )pcC,·r,1T" (ro , t) + 47TP"C" J x T" (r , t )r2 dr . 
"0 

Whenever [{a(l + v) / (l - v)}(aT/ap)] = o for 
Ii ,;:; p ,;:; r th en th e di s place me nt vec tor u = uP becomes 

(23) 

When [{a(l + v)/ (l - v)} (aT/ar)] =1= 0, th en th e 
radial s tress co mpon e nt has th e form 

2aE j r., EC , 
/J,.,(r) =- (l - V ) / ~1 ii Tp-dp + (1 -2v) 

2EC2 

( l + v)/-3 ' 
(24) 

and the tan ge ntial s tress co mponents /Joo a nd <P lIO are 
equal and are give n by the equation, 

( ) aE J I' T ., I ECt 
/Joo r = (1 - v) r~ Ii p-c p + (I - 2v) 

EC, + -
(I + v)r3 

aET 
(I - v)" 

(25) 

Whe n [{a(l + v) / (l 
following results, 

v)}(aT/ar)] = O, then th e 

E 2EC, 
/Jrr (r) = (l_2v ) (C I-aT)-O + v)r3 ' (26) 

E EC 2 

/Joo( r) = (1-2v) (CI - aT) + (l+v),-3 (27) 

The Laplace transform give n by eqs (14) a nd (15) 
corresponds to the foll owing te mperature profile: 

T(r , t) = {T,, (ro, t) 
T,,(r, t) 

for 
for 

o ,;:; r ,;:; ro 
r > ro-

(29) 

where the condition uc(oo, t) = 0 has bee n used to 
de termine C2C = O. The corres ponding express ions for 
th e region r ~ ro are : 

U ( ) - a" (l + v,,) f r T ( ) 2d C2" 
" r , t - (1 _ ) 3 " p , t P P + 2' 

~ r ~ r 
(30) 

( ) - - 2a"E" J I' T ( ) 2d /Jrr ,,, r, t - (1 _ ) :l " p, t P P 
v" r 1'0 

and 

2E"C2" 

(l + v,,)r3 ' 
(31) 

( - ) - () - a"E" IT T ( ) 2d /JII II, " I, t - /J.p.p. " r, t - (1 - . ) 3 " p , t P P 
v" r 1'0 

+ E"C2" a"E,IT" (r , t) (3 2) 
(l + v,, )r3 (l - v,,) 

where the co ndition u" (00, t) = 0 has been used to 
de termin e C", = O. Observe that eqs (31) and (32) 
predic t that /Jrr,,, (00 , t ) = 0 a nd /J oo. ,, (oo, t) = O. 

fh e coe ffi c ients C I C and C 2" are evaluated by in­
trodu cing an adhes ive bound ary at r = ror. An ad­
hesive boundary maintain s th e thermal contact between 
the absorbing center and th e host and obtain s when 
the followin g conditions are va lid : 

(a) Th e hydrostatic press ure, 
Pc= -! (/J rr,c+ /JOO.c+ /J .p.p,c ) =- /J rr,c, in the 
center at r = ror equal s the negative of the 
radial s tress component in th e host at r= ror; 
that is /Jrr .c (ro, t) = /J rr. /l(rO , t) . 

(b) Th e tan gential stress components are di scon­
tinuou s across the interface. 

(c) The radial displacement vec tor ur is con­
tinuou s across the interface; that is, II c(ro , t) 
=u,,(ro , t). 

Conditions a a nd c the n yi eld two simulta neou s equa­
tion s for Cle and CUI' The solutions to thi s se t of 
equ ations are: 

(33) 

and 
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A physically intuitive thought experiment which 
leads to the same expression for C2h exists. The sphere 
of radius ro is removed from the host and is heated to 
Th(ro, t) at zero pressure, Pi=O. After heating, it has 
an initial volume, 

The heated and expanded sphere is forced back into 
the host at a final pressure PJ = - (Trr , h (ro, t). It then 
has a final volume 

where 
Vf = (47T/3)r~(l +3e), 

e = (u,,(ro) fro) = (C2h /rg). 

Combining the above relations gives 

Finally, the isothermal compressibility Xc for the center 
is introduced in order to compute e, 

Assuming the isothermal compressibility to be a slowly 
varying function of pressure for Pf ~ P ~ Pi yields the 
relations, 

Xc(PJ - Pi) =-In (VfIV;) 

=-In [(l+3e)/(l+3acT,,(ro, t»]. 

When 3e < 1 and 3ac T,,(ro, t) < 1, the expansions of 
the logarithm give the strain e; namely, 

Substituting the coefficient C 2" = rile and the tem­
perature T,,(r, t) into eqs (31) and (32) gives the radial 
and tangential stress components. The radial rates of 
expansion during heating and of contraction during 
cooling for the center also are computed, 

ro ~~ roac{dTh(ro, t)/dt} . 
dt 1 + {2E"Xc/3(l +Vh)} 

The latter rates are used to check that the linear-quasi­
static-thermal elastic theory is predicting self consist­
ent results . If the rates of expansion or contraction of 
the center were to approach or exceed the speed of 
sound in the host, then the above problem becomes a 
nonlinear one involving two coupled differential equa­
tions. One equation treats heat diffusion and the other 
treats energy transfer in the form of sound waves. 

One goal of this study is to examine under what 
conditions the absorbing center may initiate damage 
in the host. When the tensile stresses produced by the 
heating exceed the strength of the host, then damage 
should occur. The theoretical breaking stress is esti­
mated theoretically [8] to be about one tenth of the 

Young's modulus, (Tth - (Eh/l0). This value does not 
take into account the presence of microflaws and there­
fore is a representative upper limit for the strength of 
the host. The sign convention of the foregoing formal­
ism is that compressive stresses are negative and 
tensile stresses are positive. The radial stresses are 
according to eq (31) always compressive (negative) and 
hence do not initiate damage. The tangential stresses 
are according to eq (32) either compressive or tensile 
and depend upon the time, the position, and the prop­
erties of both the center and host in a most complicated 
manner. Whenever the tangential stresses are tensile 
(positive) and are sufficiently large, 

they may initiate damage. 
The tangential stresses at the interface may be 

written in the form, 

(34) 

where the effective expansion coefficient is 

(35) 

It is interesting to observe that even when a c = a", 
(Tee." (ro, t) =!= O. The stress (Tee." is usually propor­
tional to (ac - a,,) for those problems in which the 
temperature is spatially uniform everywhere. But in 
the present problem, when r ~ ro, the temperature is 
not spatially uniform (that is, when r ~ ro, 9T" =1= 0) 
and the stress (Tee ," is not necessarily proportional to 
(ac - a,,). The model by which one reasons intuitively 
that the tangential stress is proportional to (ac - ah) 
is based upon eqs (23), (26), and (27) for both r < ro 
and r> roo This is not correct when (aT/ar) differs from 
zero for r ~ ro as it does in the present model. 

Whenever (aT/ar) = 0 for 0 :s; r:S; 00, a different set of 
boundary conditions must be used to determine the 
constants in eqs (23), (26), and (27). To obtain the 
correct boundary conditions for the infinite host, one 
proceeds as follows. Consider a sphere of radius ro 
inside a spherical shell of inner radius ro and outer 
radius r3. The system is heated adiabatically from 
To to To + T so that (a T/ ar) = 0 for 0 :s; r:S; r:1. The cor­
rect equations are eqs (23), (26), and (27) and the cor­
rect boundary conditions are uc(O) = 0, uc(ro) = u,,(ro), 
(Trr , c(ro) = (Trr, ,,(ro), and (Trr, ,,(r3) =0. These equa­
tions and boundary conditions then predict that in the 
limit as r3 approaches infinity, the tangential stress 
approaches the value , 

E" (ac -a,,)Tr~ 
(Tee," (r; r3 = (0) = {l + VII + (2E'IXc/3) }r3' (36) 

Equation (36) is not correct whenever (aT/ ar) differs 
from zero. Observe that the boundary conditions lead­
ing to eq (36) replace u,,(oo) = 0 with (Trr,h(oo) = 0 
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and also yield Uh(oo) = 00 and U09,h(00) = 0. Compare 
this with the results from eqs (30), (31), and (32); 
namely, u,,( oo ) = 0, Ur,. ,h( oo ) = 0, and U90,,.( oo ) = 0, 
because T,,(r , t) approaches zero faster than 0 /r2) 
approaches zero as r approaches infinity. 

The maximum te nsile stress occurs, when (aU09. r(r, 
t)/ar) evaluated at r= r max is zero a nd when (a2U99 , h(r, 
t)/ar2) evaluated at r = rmax is negative. These 
conditions do not necessarily obtain at r = r max = ro 
and at t = 7. The qualitative behavior of the tangential 

, stress de pends in part upon the sign of the effective 
expansion coefficie nt Dacrr. When Daerr is positive and 
sufficiently large, oaerr > 10- 6 O r C) , then the maxi­
mum tensile stress does occur at r = ro and t = 7 . 

) For fixed times t, the tensile stress decreases mono­
tonically to zero as r increases from roo When Daerf is 
negative, the maximum tensile stress does not occur 
at r= ro and it also does not occur necessarily at t = 7. 

Instead, the tange ntial' stress is always compressive 
at r = ro , when Daerf < 0. Keeping time fixed one finds 
that as r increases from ro the tangential stress in­
creases algebraically from negative (compressive) 
values to positive (tensile) values, attains a maximum 
tensile stress at r = r max > ro, and then begins to 

, decrease algebraically. Whe n Daerf is slJlall, loaeffl 
< 10- 6 o re), the n the s tress may change from tensile 
to compressive or from compressive to tensile more 
than once as r increases from ro- This behavior for 
small Dacrf is very sensitive to the sign and value of 
(aU99 ,,,(r, t) /a r) evaluated at r = roo Because evaluat­
ing Th(r , t) and its derivatives to study analyti cally 
the maxima of U OO, " ( r, t) would be a monumental 
task, the numerical results from a computer have 
been used to obtain the above qualita tive features. 
The effective expansion coeffi cient oa err is about 
- 5.5 X 1O - 6 0 r C) for Pt in Glass (B) and it is about 
- 6 .7 X 10- 6 (I r C) for Sb in Glass (B). 

Finally, the expressions for the strain induced change 
of the refrac tive index for radially polarized light ilnr 
and for tangentially polarized light iln9 = iln<p (stres~ 
birefringence) are developed. The theory of ref. [9] 
whic h examines the s tress birefringence of an isotropic­
continuous transpare nt medium is used. The strain 
induced change of the refractive index for radially 
polarized light is 

ilnr(r, t) = BIIUrr,/, (I' , t) + B +(uoo , her, t) 

+U<P<P, h'( r, t ))+ ahTh(r, t)(PII + 2pI 2), 

and the strain induced cha nge of the refractive index 
for tangentially polarized light is 

ilno(r , t) = iln <p(r , t) = B .lUrr, her, t ) 

+ BII Uoo, her, t) + B .lU<P"', ,,(r, t) 

+a"T,,(r, t)(PII + 2pI 2) , 

where the st ress optic coefficie nts are 

and 

and where the photoelastic coeffi cients are P II and 
P12; i.e ., 

and 

The stress birefrin gence at any point r with respect to 
the local unit vectors for spheri cal coordinates is 
(iln,. - ilno). 

Computer programs to evaluate the quantities 
ilL , UrI' , (Too, ilnr, and ilno as functions of rand t for 
platinum , antimony, and Ab03(a) spherical inclusions 
are developed. Two different host glasses with prop­
erties such that both R < 1 and R > 1 are considered. 
The strain rate ro (dE! dt ) and the energy flux 
SH (THr , t) - T6) radiated by the spherical surface 
and by the hos t near the inclusion also are computed_ 
The S tefan-Boltzman constant is denoted by 58. 
For the values of radial dista nce and time which are 
im portant to the inclusion damage problem , the effects 
of both quantities are negligible and hence the model 
is numerically consistent with its assumptions. 

5. Results and Conclusions 

The numerical results predicted by the model devel­
oped in section 3 are reported in this section. Among 
the many input parameters the absorptan ce A (A. , T) 
is perhaps most sensitive to the initial thermal contact 
and surface conditions of the host and. inclusion. To 
avoid questions about the value of A (A. , T) the 
numerical res ults for the reference (normalized) case 
when A (A. , T) = 1 are give n. This presents no addi­
tional problem because the temperature Th (r, t), 
the optical path length change ilL , the s tress com­
ponents UrI' and u oo= u """ and the stress birefrin gence 
ilnr and ilno, are all directly proportional to the 
absorptance. 

The model of section 3 has been used to study two 
different questions. First , how the maximum tangential­
tensile stress varies as a function of the radius of the 
spherical inclusion for a fixed energy density and pulse 
width of the laser beam. Second, if the maximum 
temperature of the inclusion is limited to a fixed value, 
T" (1'= ro , t= 7) = constant, how the parameters of the 
incident laser beam should be varied to increase the 
probability of detecting by optical techniques a small 
in cipie nt absorbing center , before it causes damage. 
Optical techniques to detect small inclusions become 
more promising the greater ilL , iln,., and D.no are. 

Table 6 for inclusions in Glass(B) and table 7 for 
inclusions in Glass(U) contain the variation of the 
maximum tensile stress u oe(max-tensile) as a function 
of ro for a laser beam having an energy density 20(J/cm2) 

and a pulse width 30 ns. When 10- 4 cm > 1'0 > 5 X 10- 5 

cm the maximum tensile stress exceeds the theoretical 
strength of the Glass(B). Also when 10- 4 cm > ro > 5 
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X 10- 5 cm the maximum tensile stress exceeds the 
theoretical strength of the Glass(U). These r~sults 
demonstrate that submicron·sized inclu sions have the 
greatest probability to cause damage in laser glass 
hosts. The results given for ro = 10- 7 cm may have no 
physical meaning because the uncoupled thermoelastic 
theory becomes suspect for '-0 ~ 6.7 X 10- 7 cm. When· 
ever the temperature Til (ro , T) exceeds the strain point 
of the glass, the results reported in tables 6 and 7 are 
at best order of magnitude estimates for the tensile 
stress. Laser glasses have strain points around 600 0c. 
These two tables show that very large and very small 
inclusions are not likely to produce damage. Only 
inclusions having an intermediate size of the order of 
tenths of microns have a high probability to produce 
damage. They also show that the surface temperature 
Til (ro , T) and the maximum tensile stress· become 
independent of the thermal and elastic properties of 
the inclusion when ro < 10- 6 cm. Thi s observation is 
proven in ref. [7] by analytic methods. 

The high te mperatures whic h are predicted by thi s 
model for O.IIL ~ ro ~ IlL are certainly not to be taken 
seriously. The model does not treat the heats of fu sion 
HF , the heats of vaporization Hv, the changes in volume 
upon melting, and the equation of state for the liquid­
gas tran sition at extremely high temperatures. These 
equations of s tate for platinum, antimony, and Ab03 
are not known. Also so me researchers argue that these 
effects which the present model neglects tend to cancel 
one another in the case of platinum for temperatures 
up to its boiling point and that thereby, even though 
the model predicts te mperatures which are too large, 
it does give representative values for the stresses. 
Neglec ting the possible chemical and physical changes 
which may occur at the center· hos t interface, they 
argue as follows . The heat of fu sion HF(e) gives an 
e ffective temperature of fusion TF(e) = HF(e)/CC by 
which the temperature Th(ro, T) , given by the model , 
is too large whenever T.1I( e) < Th(ro, T) < TH( e), 
where Ti\I( e) and TH(e) are respectively the melting 
and boiling points of the center. The values for platinum 
are TF(Pt) - 800 °C, T.1I(Pt) - 1770 °C and T/3(Pt) 
- 3830 °C. The excess temperature TF( Pt) predicted 
by the present model produces an excess volume 
change (I1VIV)ex - 3acTF (Pt) - + 0.02. But the 
volume change for the platinum upon melting is also 
about + 0.02 [9]. He nce, the model should give correc t 
order of magnitude es timates for platinum up to its 
boiling point. Such arguments fail for antimony 
because its (I1VIV) upon melting is about - 0.014. 

The following mesh in the rand t space is used to 
obtain the values given in tables 6 to 9. The expressions 
are evaluated for five values of the time (3 ns, 30 ns, 
0.3ILs, 3ILs, and 30ILS) and for twe nty values of r. The 
limits on r depend upon ro. When ro ~ O.IIL, the limits 
are ro ~ r ~ 5ro; when ro = O.OIIL they are ro ~ r 
~ 60ro ; and when ro = 0.00lp" they are ro ~ r ~ 600ro. 
The twenty values of r are equally spaced in a loga­
rithmic manner between the lower and upper limits. 

The quantities /1L(r, ro, t) , a 'T( r, t) , a oo( r, t), 
I1nr(r, t) and I1no(r, t) have been evaluated for 
ro=O.Ip" Ip" and lOp" and T,,(ro , T) =600 °C; for 

seven values of T, 3 ns ~ T ~ 3 ms; for ten values of 
r, ro ~ r ~ 0.2 cm; and for ten values of time 3 ns 
~ t ~ 3s, where T , r, and t are all equally spaced in a 
logarithmic manner. The presentation in this paper 
of all these numerical results would be overwhelming. 
Table 10 contains a summary of these results for the 
case of platinum in Glass(B). The results for antimony 
and Ab03 (a) in Glass(B) and Glass(U) and for platinum 
in Glass(U), are similar to within a factor of ten. 

T ABLE 6 

The maximum tensile st ress as a function of ro for fixed energy 
densi ty £1. = 20{1/cm 2) and pulse width T = 30 ns. The theore tical • 
breaking stress of glass is about 6 X 109 (N/ m2 ). The properties of 
Glass(B) are used in this table. The radius of the inclusion is ro; the 
maximum tensile stress is O" ee (max-tensi le) and occurs at position r 
and at time t; the temperature at r and t is T,,( r, t) ; the volume 
specific heat ratio is R; and the e ffective expansion coefficient is 
/)Oieff · 

Inclusion: Pt(B), R = 2.97, /)Oi erf=- 5_5 X lO - G(l/oC) 

log ,o( ro) log ,o( t/3) (r/ro) T,,(r , t) 0"00 (max-tensile) 
(ro in e m) (t in s) (OC) (N/m 2) X 109 

-2.0 -S.O Ll 0.0 0.13 
-3.0 - S.O Ll .0 1.3 
-4.0 -S.O 1.3 910. 7.6 
-4.3 -S.O L4 5200. 9.0 
-5.0 -S.O 3.3 370. 2.6 
-6.0 -9.0 lL 9S. 0.09S 
-7.0 -9.0 1l0. O.SO .00097 

Inclusion: Sb, R = L13, /)Oi,ff=-6.7 X 1O - 6(ltC) 

log ,o( ro) log ,o(t/3) (r/ro) T,,(r , -t ) 0" 00 (max- tensile) 
(ro in em) (t in s) (OC) (N/m 2 )X 109 

-2.0 -S.O Ll 0.0 0 .27 
-3.0 - S.O 1.1 .0 2.7 
-4.0 -S.O L3 2100. 13. 
-4.3 - S.O L3 4300. 13. 
-5.0 -9.0 L S 1600. 3.4 
-6.0 -9.0 lL 100. 0.097 
-7.0 -9.0 1l0. O.SO .00097 

Inclusion: Al,03(a), R = 2.74, 80iefr =- 3.4 X 1O - 6(l/"C) 

log,o(ro) log,o(t /3) (r/ ro) TI,(r, t ) 0"00 (max-tens il e) 
(ro in em) (t in s) (OC) (N/m2) X 109 

-2.0 -S.O 1.1 0.0 0.19 
- 3.0 -S.O 1.1 .0 L9 
-4.0 -S.O L2 4600. lL 
-4.3 -S.O L 4 5600 . 13. 
-5.0 - 9.0 L5 3500 . 3.6 
-6.0 -9.0 lL 9S. 0.10 
-7.0 -9.0 llO. O.SO .00096 
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TABLE 7 

Th e maximum tensil e s tress as a fun c ti on of ro for fi xed e ne rgy 
density EL = 20 (j /cm2 ) and pulse width T = 30 ns. The theoretical 
brea king s tress of glass is about 6 X 10"(N/m 2 ). Th e properti es for 
Glass(U) are used in thi s tab le. Th e radiu s of the in c lu sion is ro; 
the max imum te nsile stress is Ullli (max· te nsile) and occ urs a t 
pos ition r and at tim e t ; the te mperatu re a t r and t is T,,(r, t ); the 
volume s pecific heat ratio is R; a nd the effec tive ex pans ion coeffi c ient 
is oacrr. 

Inc lus ion: Pt(U), R = 0.97, oaerf = - 5. 1 X \0- 6 (I rC) 

log,o( ro) logJl,(t/3 ) ( rl ro) T,,(r, f ) u oo( max·te nsile) 
(ro in c m) (t in s) (OC) (N/m 2) X 109 

-2. 0 - 8. 0 1.1 0.0 0.18 
-3.0 - 8. 0 1.1 .0 1.8 
- 4.0 - 8.0 1. 2 2800. 10. 
- 4.3 - 8.0 1.4 2900. 11. 
-5.0 - 9.0 1.5 1900. 2.8 
-6.0 - 9.0 8.6 87. 0.081 
-7.0 - 9.0 80. 1. 3 . 0008 1 

Inc lu sion: S b, R = 0.49, oacrf = - 6.7 X 10- 6 (11°C) 

log lo(rn) log]])(t/3 ) (rl ro) T ,,( r , f) uOII( max· te nsile) 
(ro in cm) (t in s) (OC) (N/m2) X 10" 

-2.0 - 8.0 I.l 0.0 0.27 
-3.0 - 8 .0 1.1 .0 2.6 
- 4.0 - 8.0 1. 2 4600. 11. 
- 4. 3 - 8.0 1.2 4300. 11. 
-5.0 - 9.0 1.7 1200. 2.7 
- 6.0 - 9.0 8.6 89. 0.079 
- 7.0 - 9.0 80. 1.3 .0008] 

Inclusion : AI, O,,(a), R = 1.1 9, Ilacrr = - 3.4 X lO - 6(l tC) 

log,o( ro ) logJl)(t /3 ) ( rlro) 1'" (r, f) uIIII( max· te ns il e) 
(ro in cm) (t in s) (OC) (N/ m 2 ) X 10' 

-2.0 - 8 .0 1.1 0. 0 0. 19 
-3.0 -8.0 1.1 .0 1. 9 
-4.0 - 8.0 1. 2 2400. 11. 
- 4. 3 - 8 .0 1.3 6900. 12. 
-5.0 - 9.0 1.5 1700. 3.3 
- 6.0 - 9.0 8.6 86.2 0.083 
-7.0 - 9.0 80. 1.3 .00081 

Table 10 contains the optical path length change 
t:..L and the stress birefringence parameters (t:..n,. 
and t:..no) whic h occur when Pt is in Glass(B) for several 
values of pulse width T and inclusion size roo The 
results for Pt in Glass(U) are similar within a factor 
of a bout two to those predicted for Glass(B) and are 
not include d here. Because the model ass umes th at the 
s train is proportional to s tress, the energy densities 
Ef• of the laser pul ses are limited in table 10 to values 
such th at the te mperature of the glass never exceeds 
the s train point of the glass . That is, the energy 
de nsities a re s uc h that Til ( ru, T) = 600 °C. In addition , 
the maximum te ns il e s tress is always at least an order 
of mangi tude less th an th e theoretical breaking point 
of the host 6 X 109(N/m 2) . Hence, excluding the 
co mplications whi c h mi crocracks might produce, one 
does not expec t damage to occur when Til (ro , T) 
,,;; 600 0 e. The quantities ( !:l.L ) , (t:..nr ) , and (t:..no) 

TABLE 8 

Maximum tens il e s tress of Pt s ph eres in a fic t iti ous host as a fun c· 
ti on of the therm al expansion coeffic ie nt of the hos t. All the prop· 
erties of the host are the same as those for Glass(B) exce pt that the 
thermal expan sion coe ffi c ient of t he hos t a" va ri es from 6 X I 0- 6 
(l rC) to 16 X 10- 6 (l/ °C). Th e effec ti ve expa nsion coe ffi c ient is 
Oae f,; the maximum tensile s tress a t a di s tance r and a t time t is 
U IIII (max-te ns ile); and the te mpera ture of the hos t is T,,(r, f ) . The. 
lase r pulse width is T= 30 ns and it s e ne rgy densit y is £,. = 20(.l /c m2 ). 

The radius of the s phere is ro= 5 X 10- 5 em. T he max imum stress 
occ urs for times c lose to the pul se width , f ~ T. 

a" oaCff rlro aOIl (max- ten sile) T,,(r, f) 
(WC) X 10- 6 (WC) x 10- 6 (N/m 2 ) X I 0" (x 10" °C) 

6. 0 - 1. 6 1.4 9.0 5.2 
8.0 - 4.2 1.4 8.9 5.2 

10. - 6.7 1.4 8.8 5.2 
12. - 9.3 1. ,5 9. 1 2.1 
14. - 12 . 1. 5 9 .3 2. I 
16. - 14. 1. 5 9.7 2.1 

TA BLE 9 

Maxi mum te ns il e s tress of Pt s ph ercs in a fi c titi ous hos t as a fun c· 
t ion of th e th erm a l eX IJa nsion coe ffic ie nt of t he hos t. A II th e prop· 
erti es of the hos t a re the same as those fo r Glass(U) except that the 
thermal expansion coeffi c ient of the host a" va ries from 4 X 10- 6 

(l/oC) to 12 X 10- '; (l r C). The effec ti ve expansion coe ffi c ient is 
oacff; th e max imum te nsile s tress a t a di sta nce r and a t tim e f is 
UOII (max· te nsile); a nd th e te mpe ra tu re of the hos t is T,,(r, f ). T he 
lase r pu lse width is T= 30 ns and its e ne rgy d ens it y is E,. = 20(Jfc m2). 
The radiu s of the sphere is '-0 = 5 X 10 - 5 cm. T he max imu m tensil e 
s tress occ urs for ti mes c lose to th e p ul se width , l ~ T . 

a" oacff rlro a (max- te ns il e) T,,(r, f) 
(WC) X 10- " (WC) X I0- 6 (N/ m 2 ) X l 0" (x IO" °C) 

4. 1.2 1.3 12. 7.9 
6. - 1.3 1.3 II . 7.9 
8. - 3 .9 1.4 ] 0. 2.9 

] 0. - 6 .4 1. 4 11. 2.9 
12. - 9.0 1.4 Il. 2.9 

denote re presentative values of th e quantIti es t:..L ( r1 ' 
ro, t), !:l.nr(r, t) , and t:..no(r, t) for those regions of 
ro ,,;; r ,,;; r2 and tl ~ t ,,;; t 2 in whic h they obtain their 
largest values. The meaning of these symbols is 
illustrated be low for one case from tabl e 10. F or ex· 
a mpl e, the larges t optical path length changes due to 
a pl a tinum s phere of radius ro = 1/1- heated by a laser 
beam having a pulse width 3 X 10- 8 s and an e nergy 
density 0.33 (JI c m 2) are about 1.3 X 10- 8 cm a nd occ ur 
for times between 3/1-s and 30/1-s aft er the beginnin g 
of the laser pulse and for opti ca l paths whi ch approac h 
within 1/1- of the s urface of the inc lusion. S imilarly, 
the larges t va lues fo r th e radi al and ta nge nta il changes 
of th e index of refraction due to th erma l birefrin gence 
are r espectively 6.3 X 10- 4 a nd 6. 0 X 10- 4 a nd occur 
for the same radial di s tance and time as those for th e 
optical path length changes . 
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TABLE lOA 

Optical path length change and st ress birefrin gence for Pt inclusion s in Glass(B). The radius of the inclusion is 
ro(em) , the pulse width if. r(s) , the energy density is E/D/cm2), and the optical path length change at time t = r and for a 
distance of closest approach r = ro is t1L(ro . ro, r)(cm). The quantities (t1L}(cm), (t1nr) , and (t1no) denote res pectively 
representative values for the larges t optical path length change , the largest index change for radially polarized light , 
and the largest index change for tangentially polarized light which occur for a range of di stances of closest approach 
ro to r,(cm) and for an interval of time t, to tAs) after the beginning of the laser pulse. The tangential stress at r = ro 
and t = r is -2.16X 108(N/m2 ) and the surface temperature T/,( ro , r) at t = r is 600 °C in all cases. The radius is 
r,, = 10- 5 cm. 

log,o(r/3) E/. log,o(t, /3 ) loglO (t2/3 ) log 111 (r2) t1L(ro , ro , r) ( t1L) ( t1nr) (t1n,, ) 
(r in s ) (J/cm2 ) (t, in s) (t2 in s) (r2 in cm) (cm) X 10- 6 (cm) X 10-6 X 10- 4 X 10- 4 

-3 6035. -4 -3 -4 0.24 0.20 2.1 1.7 
- 4 605. -5 -4 -4 .23 .14 2.0 1.6 
-5 61.1 - 6 - 5 - 4.7 .19 .14 1.9 1.5 
-6 6.32 -7 - 6 -4.7 .14 .088 5.8 4.5 
-7 0.706 -7 - 6 -4.7 .094 .033 4.7 3.2 
- 8 .113 -7 -6 - 4.7 .047 .0049 0.022 0.021 
- 9 .0446 -7 - 6 -4.7 .025 .0019 .0080 .0076 

TABLE lOB 

Optical path length change and stress birefringence for Pt inclusions in Glass(B). The notation of this table is 
the same as that for table lOa. The rad ius is ro = 10- 4 cm. 

log,,,(r/3) E/. log,o (t, /3) 1 0~,o(t2/3) loglO(r2) t1L(ro , ro , r) (t1L) (t1n,. ) (t1no) 
(r in s) (J/cm') (t, in s) (t2 in s) (r, in cm) (cm) X 10- 6 (cm) X 10- 6 X 10- ' X 10- 4 

-3 611. -4 -3 -3.3 1.9 1.5 8. 1 6.3 
- 4 63.2 - 5 -4 -3.3 1.4 1.0 7.8 6.0 
-5 7. 06 - 6 -5 -3.3 0.95 0.48 6.8 4.9 
- 6 1.13 - 6 -5 -3.7 .47 .049 0.023 0.22 
- 7 0.446 -6 -5 -3.7 .025 .019 .085 .082 
- 8 .331 -6 -5 -3.7 .0 .013 .063 .060 
- 9 .303 -6 - 5 - 3.7 .0 .013 .058 .055 

TABLE lOe 

Optical path length change and stress birefringence for Pt inclusions in Glass(B). The notation of this table is 
the same as that for table lOa. The radius is ro = 10- 3 cm. 

log", (r/3) E/. log,o(t, /3 ) log,o(t2 /3) log ll,( r2) t1L(ro , ro , r) ( t1L ) (t1n,) ( t1ne) 
(rin s) (J/cm2) (t,in s) (t2 in s) (r, in cm) (em) X 10- 6 (cm) X 10- 6 X 10- 4 X 10- 4 

-3 70.6 -4 -3 -2.52 9.5 6.3 9.5 7.1 
- 4 11.3 - 4 -3 -2.52 4.7 0.78 6.9 3.9 
-5 4.46 -4 -3 -2.52 0.25 .68 1.8 1.5 
- 6 3.31 -4 -3 -2.52 .0 .52 1.3 1.1 
- 7 3.03 -4 -3 -2.52 .0 .48 1.2 9.7 
- 8 2.95 - 4 -3 -2.52 .0 .47 1.2 9.4 
-9 2.93 -4 -4 - 3.52 .0 .46 1.2 9.4 

The data from tables 6, 7, and 10 also may be used 
to estimate the lens effect due to heated regions of 
the host. Whenever the refractive index increases with 
temperature (dnll/dTII) > 0, the heated region of the 
host surrounding the inclusion might focus the same 
laser pulse or a succeeding laser pulse. Computing 
the effective focal length for a spherical shell with a 
spatially varying refractive index is too complicated 
for an estimate of the effect. Instead the following 
crude approximation is considered. The focal length f 

of a spherical lens having a radius r and an uniform 
refractive index nt is 

f= (n t/no)r/ [2{(nt/ no) -lP], 

where no is the refractive index of the medium in 
which the spherical lens is imbedded. A measure 
of the expected importance of the spherical lens effect 
is the spatial extent of the deviation of the refractive 
index from its value before the laser pulse occurs, nil. 
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That is, the importance of the lens effect is measured 
in some manner by the quantity, 

(on) = lim - {nil (I', t) - nll}dr. 1 IP 
p--> oo P ro 

A re presentative distance for the spatial extent is 

1 IP ( r) = lim - r {nl,( r, t) - nll}dr, 
p -->oo P TO 

where the above integrals are finite. The quantity 
[nr(r , t) - nil] is proportional to the temperature 
Tdr , t) ; namely, [nli(r , t) - nli] - (dnll!dTIi)TIi(r , t) . 
When (on) =~ nll , then an es timate for the focal 
length is 

where 

and 

Some typical numerical examples for platinum are as 
follows : when ro = IlL, £1. = 20(J/cm 2), and T = 30 ns, 
then the maximum values for (r) and (on) occur at 
times t - 3/Ls and are respectively (r) - 2/L and 
(on) - 4 X 10- 3. These values give an effective 
focal length of about f - 14 cm. But from tables 6 
and 7 the tensile stress at t = 7 = 30 ns exceeds the 
theoretical strength of the host before the lens effect 
becomes most important. Consider now another 
example for platinum in which (THO (max-tensile) is 
less than the theoretical breaking stress of the glass 
host. When 1'0 = IlL, EL = 0.33 (J/cm 2), T = 30 ns, and 
TII ( ro , T) = 600 °C, then the maximum values of (I') 
and (an) occur at times about 3ILs and are respectively 
(r) - 2/L and (on) - 1.2 X 10- 4• These values give 
an effective focal length of abo ut f - 1.6 X 104 cm. 
These focal lengths are very long. 

Hence the model predicts that the lens effect arising 
from heated inclusions probably does not cause 
damage. Those cases for which the maximum tensile 
strength is less than the theoretical tensile stress of the 
glass have minimum effective focal lengths which are 
much greater than any dimension of neodymium doped 
glass ele ments used in present glass laser systems. In 
those cases for which the tensile stress exceeds the 
theoretical s trength, the tensile stress probably causes 
damage before the lens effec t could cause damage by 
heating another inclusion or by initiating an intrinsic 
damage mechanism such as self-focussing. 

Equations (34) and (35) and the results in tables 6 
and 7 show that Sb and the fictitious AI 20 3(a) are more 
likely to cause damage than Pt. However, this differ­
ence IS marginal. Additional computations for Pt 
spheres in fuzed silica, i)(~eff - + 6.0 X 10- 6 (Ite); 
indicate that the maximum tensile stresses occur at 

I' = 1'0 and t = 7 and that they are comparable to those 
stresses reported in tables 6 and 7. However, the range 
of 1'0 for which (To o (max-tensile) exceeds the theoretical 
strength is much greater; namely, when 

10- 4 cm ~ 1'0 ~ 10 - 6 em, 

7=30 ns, and E L =20(J/cm2) , then (Too (max-tensile; 
Pt in silica) > 6 X 109(N/m2). Fused silica has a tensile 
strength comparable to glass. 

The maximum tensile stress as a function of the 
thermal conductivity Kii and the therm al expansion 
coefficient (XII is studied also. These inves tigations are 
limited to Pt in Glass (B) and in Glass (U) for which the 
effective expansion coefficients are negative. It is fou nd 
that increasing KII in table 2 for Glass (B) from 0.008 
to 0.04 (W /cm °C) decreases the maximum tensile 
stress from 9.0 X 109 (N/m 2 ) to 4.0 X 109 (N/m 2). Simi­
larly, increasing Kii in table 2 for Glass (U) from 0.013 
to 0.04 (W/cm °C) decreases the maximum te r;lsile 
s tress from 10.6 X 109 (N/m 2 ) to 5.8 X 109 (N/m 2 ). 

Again , all the other properties of Glass (B) and of Glass 
(U) are kept the same except for the thermal expansion 
coefficient and the res ulting maximum tensile stress 
as a function of (Xli for fixed r = 5 X 10- 5 c m, 7 = 30 ns, 
and £" = 20 }/cm 2 is reported in tables 8 and 9. Observe 
that the maximum tensile s tress has a minimum at 
(X II = (Xli (min); namely, (X II (min , Glass (B)) - 10 X 10- 6 

(I tC) and (Xli (min , Glass (U)) - 8 X 10- 6 (I t C). Also, 
these tables indicate that the maximum te nsile stress 
is a slowly varying fun ction of the thermal expansion 
coefficien t, (XII. Thus, for these cases, (x" influences 
greatly the behavior near the interface because it 
ap pears in the effective expansion coefficient and the 
thermal conductivity influe nces greatly the be havior 
near the region of maximum te nsile stress. 

Intuitive arguments exis t to explain why the te mpera­
ture Til (1'0, t) in tables 6 and 7 has a maximum value 
at some ro = r(max Til) for fixed £1, a nd 7 a nd decreases 
for values of ro greater than 1'( max TI,) a nd less than 
r(max TIi). As Cro/rCmax TIi ») becomes larger tha n one, 
the volume increases much faster than the surface 
area of the sphere. The inclusion receives less e nergy 
per unit volume. Therefore, the maximum surface 
temperature at the end of the pulse decreases. As 
Cro/rCmax TIi )) becomes smaller than one, the equili­
bration time Cr'/i/aO approaches zero. The n the surface 
temperature at the end of the pulse cannot deviate 
much from the equilibrium te mperature due to the 
extremely short equilibration time. 

The above computations in table 10 s ugges t that 
examining incipient absorbing centers in laser glasses 
either by methods which employ the interference of 
two light rays (which experience different optical path 
length changes due to the local variation of the refrac­
tive index near the inclusion) or by me thods which 
employ thermal stress birefringence are promising. 
However, because the propagation of light in the pres­
ence of a stress birefrigence which has spherical sym­
metry is complex, the interpretation of birefringence 
data will be more tedious than data from an interfer­
ence method. The feasibility of combining the inter-
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ference method and holographic techniques has been 
demonstrated for 50 micron particles [2]. In addition 
the results of table 10 suggest that the use of laser 
pulses with pulse widths greater than a few micro­
seconds may be more promising for the detection of 
small incipient absorbing centers than the use of nano­
second laser pulses. The longer pulses produce spatial 
changes in the refractive index which extend over 
greater distances in the host and thereby increase the 
probability of detecting small inclusions. Another 
approach is to employ pulse widths and observation 
times which are less than the relaxation times of the 
host. Relaxation times for laser glasses between 800 
°C and llOO °C are approximately between nano­
seconds and microseconds. These are estimates of the 
time during which stress is proportional to strain in 
glasses which are not elastic for infinite time. Such 
short time observations will permit one to raise the 
inclusion surface temperature substantially above the 
present 600°C reported here and still satisfy the 
assumptions of the present model. 

The spherical inclusion has a complex index of 
refraction me = n c - in~ and the Poynting vector for 
the incident radiation in the absorbing center is pro­
portional to the factor exp (-Yc(l'o-I'». The absorp­
tion coefficient Ye is given by (41Tn~!>\.d. Because a 
sphere with index me is imbedded in the host with a 
real index mil = nil = 1.52, the values for me to use in 
the equations of ref. [ll] are me(med) = (mel nil). Simi­
larly the wavelength in the host is Admed) = (A/.lmll) 
where AI, = 1.06 J.L. The sphere intercepts in accordance 
with Mie scattering theory Qext1TI'~1 watts from the 
incident laser beam, independently of the polarization 
of the beam. There will be Qabs1TT~1 watts absorbed by 
the sphere and Qsca1TT~1 watts scattered in all direc­
tions by the sphere. The conservation of energy gives 
Qext=Qabs+Qsca. The absorptance Qabs=A(A, T; 
I'n= small) replaces the absorptance A (A, T; 1'0= large) 
quoted in table 4, whenever 1'0 becomes less than the 
wavelength AI (med). The variable X = (2mo/At.{med» 
is introduced and when X:::; 0.6 Mie scattering theory 
relates X and Qext; namely, 

Qext = Qabs = 2.68 X and Qsca <:l; Qabs' 

The author thanks especially Alan D. Franklin for for platinum spheres in glass (nil = 1.52) and 
many helpful discussions and for his encouragement. 
While undertaking this study the author also had Qext = Qabs = 0.992 X 
several discussions with many other researchers con-
cerned with laser damage problems, some of whom for antimony spheres in glass (nil = 1.52). When 
are ci ted in the references. He thanks them and the 
others from whom he has learned about damage in A= 1.06J.L, X=9.01 X 104 cm - t 1'0 
laser materials. He also thanks M. J. Cooper and A. then 
Kahn for their reading of the manuscript. Oabs(pt) = 24.1 X 104 cm - t 1'0 

6_ Appendix. Center-Host Interface 

A laser beam with an energy flux per unit area I 
(Jjcm2 s), with a pulse width 7(S) and with a wavelength 
A/,(cm) impinges upon the inclusion. The inclusion 
exhibits an absorptance A (A, T), a reflectance R (A, T), 
and a partial emissivity E (A , T), where A is the wave­
length and T is the absolute temperature of the inclu­
sion. The following relations among A, R, and E exist: 

(a) A + R = 1; no energy is transmitted. 
(b) E(A, T)IA(A , T) =e(A, T); Kirchoff's law. 

The function e (A , T) is a universal function only of A 
and T and is independent of material and surface 
properties. 

(c) r oo e(A , T)dA =5 11 T4; Stefan-Boltzmann law. 
Jo 

The constant 5 11 is 5 11 = 5.673 X 10- 5 (ergjcm 2 s K4). 
(d) AmaxT=0.2897 cm K; Wien's displacement law. 

The wavelength for which e(A, T) has a maximum 
value for a fixed temperature T is Amax. 

The values for the absorptance A (A, T) in table 4 
are valid for I'o?': A ~ 1.06 J.L. The results ofMie scatter­
ing theory [ll] show that A (A, To) does not change 
appreciably for values of 1'0 :::; A and 1'0 ?': y - 1 where y 
is the absorption coefficient. 

and 
Oabs(Sb) = 8.93 X 104 cm - 1 1'0 

for values of To:::; 6.7 X 10- 6 cm. Hence, A(A/,' T) does 
not change by more than a factor of three for values of 
1'0 ?': Yet. 
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