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One of the severe problems encountered in high-power-solid-state laser systems is the thermal
damage to laser rods and optical elements. One such type of damage is thought to arise from metallic
or dielectric inclusions; i.e., impurities with physical and optical properties which differ substantially
from those of the host material. Such inclusions may absorb an appreciable amount of the incident
radiation and thereby may undergo thermal expansion. This produces major stresses within the host
material. Estimating such thermal properties requires the consideration of solutions to the heat dif-
fusion equation and to the thermal stress equations with appropriate boundary conditions. The optical
path length change for a probing light ray passing near the inclusion, the radial and tangential stress
components, and the changes of the refractive index for radially polarized and tangentially polarized
light due to the thermal stress field are computed. The dependence of the maximum value of the tensile
stress upon the size of the inclusion and upon the physical properties of the host is examined. The
feasibility of using optical techniques to detect metallic and dielectric inclusions in laser materials
before they cause damage also is studied. The computations suggest that the use of laser pulse widths
of the order of microseconds or longer may be more promising for the detection of small incipient
absorbing centers than the use of nanosecond pulse widths.
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and thermoelastic theory.

1. Introduction

One of the severe problems encountered in high-
power-solid-state laser systems is the internal damage
of the laser rod and its optical elements. One type of
such damage is the formation of interior cracks which
run more or less normal to the direction of the laser
beam [1].! This internal cracking is thought to arise
from solid metallic or dielectric inclusions; i.e., im-
purities with physical and optical properties which
differ substantially from those of the host material.
There are a few documentary cases for which the laser
glass around inclusions had melted and other cases
for which metal was found near the center of failure
cracks [2, 3]. The metal has been usually platinum or
antimony. The present theoretical study estimates the
thermal stresses which occur when a solid inclusion is
heated by the laser beam and examines the feasibility
of using optical techniques to detect such inclusions
before they cause damage. Detecting an inclusion
before it causes damage eases the burden of the
chemical analysis near the incipient damage area.

E. Bliss [1] has outlined the general mechanism
for internal cracking. A solid inclusion with a high
absorption coefficient is heated relative to the host
material. The resulting thermal expansion of the inclu-
sion may stress the surrounding host material suffi-

! Figures in brackets indicate the literature references at the end of this paper.

ciently for damage to occur. In fact, the theoretical
model presented in this paper predicts that the heat-
ing may produce stresses larger than the theoretical
breaking stress of the glass.

Most experimental data on inclusion damage has
been obtained from laser glasses which have hot
platinum near the molten glass, which are processed
in platinum or ceramic crucibles, and which contain
neodymium as the lasing ion. The metallic inclusions in
laser glasses can originate from many sources and can
include most metals. However, considering the ther-
mal properties of most metals that could occur as
metallic inclusions in laser glass, one finds that
they are similar in their capability for causing failure.
The noble metals, in particular platinum or platinum
alloys, are the metals that have been identified with
any reasonable frequency in damaged laser glasses
[4]. The nonmetallic inclusions may be divided into
crystalline types and noncrystalline types, occluded
or exsolved gas bubbles, and glassy regions. Non-
metallic inclusions can produce several weakening
effects in the laser host. The most apparent of these
are the lens effect, strains in flaws, electrostriction and
absorption. Few definitive statements can be made
about these effects and the importance of each is
evaluated on a probability basis [5]. However, most
researchers expect that those metallic and dielectric
inclusions with high optical absorption at the lasing
wavelength are most likely responsible for failure
of laser glasses. The numerical results of this paper

247



will treat the cases of platinum, antimony, and Al,O;
inclusions as representing the thermal, elastic, and
optical properties of several possible inclusions in
laser glass hosts. The theory will be valid, however,
for other hosts which exhibit isotropic elastic prop-
erties and for other absorbing centers.

The several properties of the center-host system
which determine the probability for internal cracking
to occur may be divided into four groups. The first
group consists of the bulk properties of both the in-
clusion and host and includes the respective thermal
conductivities, heat capacities, thermal expansion
coefficients, elastic properties, absorption coefficients
for the incident radiation, and equations of state for
the liquid and gas phases. The second group contains
geometric properties of the inclusion which also
influence its ability to cause fracture, such as the size,
shape, and orientation to the incident radiation. The
distribution and nature of initial microcracks and of
optical imperfections form the third group of prop-
erties which determine the resistance of the host to
internal cracking. Finally, the fourth group of prop-
erties describes the absorbing center-host interface;
namely, the absorptance, emissivity, and initial ther-
mal contact between the absorbing center and the
host. The elastic properties, the thermal properties,
and the optical properties of Pt, Sb, AlLO3, and two
representative neodymium doped laser glasses are

cited in tables 1,2, 3,4, and 5.

TABLE 1

Values of the elastic parameters. The quantities £, G, v, and x
are respectively Young’s modulus, shear modulus, Poisson ratio, and
isothermal compressibility.

E G v X
(N/m:) x 101 (N/m_’) X 1010 m”/N)X 10-10
Pt 14.7 5.28 0.39 0.0449
Sb 7.78 3.25 .20 234
AlLOj3(a) 41.4 16.2 275 .0326
Glass(B) 6.74 2579) 218 .249
Glass(U) 6.74 2.79 218 .249
TABLE 2

Values of the thermal properties. The quantities p. C, K, and «
are respectively the density, the specific heat at constant volume,
the thermal conductivity, and the linear thermal expansion coefficient.

P @ K @
(g/cm?) /g °C) (W/em °C) | (1/°C) % 10-¢
Pt(B) 21.73 0.17 0.67 8.6
Pt(U) 21.73 13 .67 9.0
Sb 6.62 21 .18 11.1
AlLOs(a) 4.0 .84 .29 11.0
Glass(B) 2.6 .63 .0084 9.0
Glass(U) 3.0 1.3 .013 9.0

TABLE 3

Values of parameters pertaining to neglecting the coupling and
inertia terms of eqs (1) and (2). The quantities v, a?, (8/Ty), and ¢,
are respectively the speed of elastic waves, diffusivity. coupling in
units of the ambient temperature Ty, and the relaxation time for the
deflnition of a local temperature to be meaningful.

v a? (8/To) t
(ecm/s) X 10° (cm?/s) (1/°C) X 10> | (s) X 10~
Pt 3.67 0.238 4.39 2.0
Sh 3.61 133 1.67 2.3
AL O3(a) 11.44 .0875 4.83 ~10.0
Glass(B) 5.43 .005 1.11 ~10.0
Glass(U) 5.06 .003 0.417 ~10.0
TABLE 4

Optical properties for ro >\ =1.06 . The quantities 4 (X, T.).
n, n', and y~! are respectively the absorptance, the real part of the
refractive index, the imaginary part of the refractive index. and the
inverse of the absorption coefficient.

AN, Ty) n n' y!
(cm) X 10-6
i 0.30 1.14 325 2.4
Sh 85 3.4 4.1 1.9
ALOy(a) .60 1.67 ~0.0 (see text)
Glass(B)  L.ooooiiiiinin 1.52 ~.0 ~4 X 108
Glass(U) |l 1852 ~.0 ~4 X 108

TABLE 5

Values for the photoelastic coefficients, py; and 2, the stress-optic
coefficients, B|| and B . and the change of index of refraction with
respect to temperature, (dn/dT).

i B B, | (dn/dT)
Pui P2 (m*/N) | (m?N) (1/°C)
X10-5 | x10-% | x 10-
Glass(B) 0.134 | 0.225 | 5.33 21.8 4.0
Glass(U) 134 | 225 | 533 21.8 4.0

The model formulated in this paper contains many
physical assumptions which are necessary to render
the problem solvable. The major assumptions are
summarized here and are discussed in greater detail
in the following sections.

(a) The inclusion is a sphere of radius ry and is
always in good thermal contact with the host. The
number of inclusions per unit volume is assumed to be
sufficiently small so that they do not interact with one
another. The effects of shape and orientation to the
incident radiation also are neglected in the model.

(b) The host material is isotropic, continuous, and of
infinite extent. It also is initially at an ambient tempera-
ture Ty and free from all stresses and strains. Because
the energy content of the incident radiation is finite,
the latter statement requires the temperature to be
Ty at infinity and all stresses and strains to vanish
at infinity. The distribution and nature of microcracks
and optical imperfections are not treated in the model.
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(¢) The linear-thermal-elastic equations are assumed
to give a reasonable description of the processes which
ultimately may lead to catastrophic damage. These are
coupled equations relating the temperature and the
displacement vector from which the stresses and
strains are computed. They are valid only when a local
temperature exists and when distances are larger
than atomic dimensions (~ 10-% c¢m). A relaxation
time ¢, for the definition of a local temperature T is
approximately the reciprocal of a characteristic vi-
bration frequency of the material. These relaxation
times ¢, for Pt, Sb, ALO3, and the laser glasses are
about 10~ '3s to 10~ '2s. Hence, the equations are mean-
ingful only when times ¢ are much larger than 10~ '%s.

(d) It is assumed that the radiation of heat by the
center-host interface and by the heated glass close to
the absorbing center may be neglected in the thermal-
elastic equations. A black body at 600 °C produces an
energy flux of 0.735 (J/ecm?®s). The laser beams for the
examples studied in this paper contain energy fluxes
at least 10* times greater than 0.735 (J/cm®s). The
temperature gradients which occur from the time of
cessation of the laser pulse to time of maximum optical
path length change are always sufficiently large so that
the energy flux due to thermal conduction is greater
than the energy flux due to radiation. The present
calculations show that the energy flux due to thermal
conduction becomes small for times greater than a
second and that the radiation effect should be included
in the thermal-elastic equations whenever t>1 s.
Because the temperature is close to the ambient tem-
perature whenever the time is greater than a second,
the long time behavior is not in the region of practical
interest for detecting the incipient damage centers
before they cause damage. Hence, it is assumed that
all times are less than a second.

(e) The linear-thermal-elastic equations contain a
coupling term and an inertia term. The coupling term
and the inertia term may be neglected whenever the
three characteristic times which occur in the absorbing
center-host system satisfy a set of inequalities. These
times are the following. The pulse width 7 of the inci-
dent radiation determines in part the rapidity of heat
generation. The characteristic relaxation time for
temperature equilibration (thermal diffusion) is ¢y,
which is of order (r*/a?), where r is the radial distance
and a” is the thermal diffusivity. The characteristic
mechanical time required for the production of stress
waves is ty which is of order (r/v), where v is the speed
of propagation of elastic waves. The relationships
among the coupling term, the inertia term, the time
history of the displacement vector, and the time history
of the temperature are complex. The easiest way in
which to study these relationships is to solve exactly
the linear-thermal-elastic equations for a simple one
dimensional problem. Boley and Weiner have solved
such a problem [6]. They demonstrate that when
7> ty and tr > ty, then the coupling and inertia terms
are small compared to the other terms in the equations.
The data cited in table 3 for the inclusions and hosts
discussed here reduce the above inequalities to in-
equalities containing the pulse width 7 and radial

distance r. The data show a maximum value for
ty~2.8X107% (s/ecm) r and a minimum value for
tr ~ 4.2 (s/cm?) r2. Hence, these data lead to the in-
equalities containing 7 and r; namely 7> 2.8 X106
(s/em) rand r> 6.7 X 107 cm. It is assumed that these
inequalities are satisfied and thereby that the coupling
and inertia terms may be neglected. The results to be
discussed in this paper are based upon a linear theory
and upon a model whose elastic, thermal, and optical
properties are constants. The values for these prop-
erties, cited in tables 1 through 5, are valid for tempera-
tures near 300 K and for small strains. This treatment
is not expected to be correct near the onset of damage.
The problem is certainly a nonlinear one near the
region of catastrophic damage. Whenever any of the
assumptions become invalid, then the results should be
viewed as suggesting trends in the behavior of the
system. The inclusions which occur in laser glasses
are most likely not the spheres for which the model has
been formulated. They could be irregularly shaped
globules. Some Pt inclusions occur as hexagonal
platelets. Even though the model does not take into
account such geometrical aspects, one hopes that it
does give a reasonable description of the actual system.
One also hopes that the manner in which it suggests
one should proceed to increase the damage threshold,
though probably not quantitatively correct, is qualita-
tively correct.

In section 2, the linear-uncoupled-quasi-static thermal
elastic equations are applied to absorbing inclusions
in laser materials. The model for studying spherical
inclusions is then formulated in section 3 within the
context of the quasi-static thermal elastic theory. The
heat diffusion equation with time dependent boundary
conditions for the temperature as a function of time ¢
and of radial distance ris solved by Laplace transforms.
Expressions for the optical path length change for a
probing beam of radiation passing near the inclusion,
the radial and tangential components of the stress
tensor, and the stress induced changes of the refractive
index for radially and tangentially polarized light are
developed in section 4. The numerical results and con-
clusions are presented in section 5. Section 5 also con-
tains an estimate for the lens effect of the heated region
surrounding the absorbing center. Finally, those optical
properties which determine the absorptance and emis-
sivity of the inclusion are discussed in the appendix.

2. Thermal Elastic Theory

Consider an absorbing sphere of radius ro imbedded
in an initially isotropic continuous host of infinite ex-
tent. The thermal, elastic, and mechanical properties
which enter linear thermal elastic studies are: the
density p(g/cm?), the specific heat C at constant volume
(J/g °C), the thermal conductivity K(W/ecm °C), the
linear coefficient of thermal expansion «(1/ °C), and
the isothermal Lamé elastic constants, A and u. The
Young’s modulus £(N/m?), the shear modulus G(N/m?),
the compressibility x(m2/N), and the Poisson ratio v
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are related to the Lamé constants A and u as follows,

E= (A 2u)p/(N+w),  G=E/[{2(1+v)},

x=k"1=3/(3\+2u), and v=M{2(A\+v)},
where the bulk modulus is £(N/m?). The derived quan-
tities of thermal diffusivity a?>= (K/pC) (cm?/s), the
volume specific heat pC(J/cm? °C), and the speed of
propagation of dilatational waves in an elastic medium
v={(N+2u)/p}'? also enter the linear thermal elastic
theory. The subscript ¢ on any of these thermal prop-
erties will refer to the absorbing center and the sub-
script h will refer to the host.

The basic theory which describes the behavior of
an absorbing sphere imbedded in a continuous medium
and subjected to a laser beam combines the theories
of elasticity and of heat conduction under transient
conditions and is a boundary value problem of con-
siderable = mathematical  difficulty.  Fortunately,
simplifying assumptions without significant error
are possible.

The problem is that of one absorbing spherical in-
clusion imbedded in an infinite medium initially at a
uniform temperature Ty and subjected to a prescribed
rate of internal energy absorption per unit volume
Q. (r, t)(W/cm?). The quantity Q, is related to the
intensity of the local radiation I by an absorption
equation; that is,

Q:(r,t) =yl(r.1),

where the linear absorption coefficient is 7y in units of
inverse centimeters. This <y should include also the
effects of nonlinear absorption processes which be-
come important at high intensities. The local intensity
for radiation propagating in the plus z direction at z
is related to the local intensity at zo by the relation

I(z) =exp {—v(z— z0) H (),

where z > z.

The linear-thermal-elastic equations relate the
temperature T(r, t) and the displacement vector
u(r, t) as functions of position r and time ¢. These
coupled equations are [6]

0 Jd
KV2T — pC ‘;—f— (3 + 2u)alo 3 (V- w)

+Q.,=0, (1)
and
. 0*u
wV2u+ (A + p)V(V - u) —P
— BN+ 2wW)aVT=0, ()

where T is the reference temperature for which the
material is free of stress. The reference temperature is
chosen to be 293 K. The strain and stress components

are obtained from the displacement vector u. Equa-
tions (1) and (2) are meaningful only when a local
temperature exists.

A close relationship exists between neglecting the
coupling term (3N + 2u)aTy[d(V - u)/dt] and ne-
glecting the inertia term p(92u/dt?) in eqgs (1) and (2).
This relationship is based upon the physical idea that
the rate of thermal expansion may not be sufficient to
produce elastic waves. Let us consider the coupled
heat equation. We rewrite eq (1) in the form

A+ 2p){a(V- u)/at}]
(3N + 2u) {a(aTJa2)}

+Q.=0,

KV’—’T—pC%[l—FS

(1
where the dimensionless parameter,
d={(BN+2u)2a?T,/p>*Cv*},

determines the amount of coupling. Equation (1") shows
clearly that neglecting the coupling term requires that
d must satisfy the inequality 8 <1 and that the strain
rates, d(V - u)/dt, must be less than or of the same
order of magnitude as temperature rates a(d7/dt). The
latter condition implies that the time history of the
displacements must follow closely that of the tempera-
ture. In fact, the authors of ref. [6] have shown that if
the application of heat is not too rapid, not only may
the coupling term be omitted but the inertia term may
be omitted under the same circumstances.

The rapidity of heat generation at the absorbing
inclusion-host interface is characterized by the laser
pulse width 7 (s). In addition to the time 7, two other
characteristic times exist in the system. Namely, the
characteristic thermal time, t7= (r?*/a?), is the relaxa-
tion time for temperature equilibrium (thermal diffu-
sion) and the characteristic mechanical time, ty = (r/v),
is the time required for the production of stress waves,
where the quantity r= |r|. It has been demonstrated
[6] that when

TSty and tr>ty, 3)
then coupling and inertia terms are small. That is, when
inequalities (3) are satisfied, then the linear-uncoupled-
quasistatic thermal elastic theory obtains; namely,

KV2T— pC %*Q"ZO’ @)

and
uV2a+ (A +p)V(V-u) — (BN+2un)aVT=0, (5)

where V? is the Laplacian operator, and V is the
gradient operator.

Hence neglecting the coupling term one finds that
the thermal stress problem becomes two distinct prob-
lems which are solved consecutively. The first problem
is the solution to the boundary value problem whose
field equation is given by eq (4). When we have the
temperature distribution T'(r, t), the second problem
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is the determination of the resulting stress distribution
from eq (5), and the stress-strain relations,

«r,-jzS;j)\ek‘k-+2ue,;,-—8,-j(3)\+2;L)aT, (6)

where 6;;=0 when i # jand 8;;=1 when i =. Equation
(6) is subject to the equilibrium equations,

V()','_,‘ aF f: 0
where

Gij= (%) [(au;/()xj) aF ((')uj/('ix,-)],
are the strain displacement relations, o;; is the stress
tensor, and f is the applied force per unit volume. The

subscripts i, j, and £ represent the cartesian compo-
nents x, y, and z.

3. Spherical Inclusions

The heat diffusion eq (4) describes the time and

space dependence of the temperature 7'(r. t) for
large distances r and large times ¢
a*V2:T= (aT/ot). (7)

Equation (7) does not contain the volume heat genera-
tion term (,(r, t) because the host is assumed to
be very transparent to the laser energy and to absorb
only a negligible amount of energy from the laser beam.
In addition, because the absorption coefficient for the
absorbing center y.(Pt or Sb) is very large compared
to the absorption coefficient for the host ), y. ~10'y,,
the heat absorbed by the absorbing center from the
laser beam is assumed to occur entirely at the center-
host interface. This is not the case for Al,O; because
ve(ALLO3) ~ yp(glass). If the Al,Oj-glass interface
were highly absorbing due to some mechanism (Max-
well Demon), then the assumption that heating occurs
only at the interface would be valid. The nature and
existence of such a mechanism for Al,O3 is specula-
tive at present. Hence the author uses in this paper
the name Al;Os(a) to denote an inclusion whose
properties correspond to those for polycrystaline
Al O3 with the one exception that the absorption
coeflicient y.(Al;Oz(a)) is very much larger than
that for y.(Al:03) ~ i (glass).

The diffusion equation requires a statement of the
boundary conditions before a solution is uniquely de-
fined. The temperature O has the form

To, t<0
O(r,t)= 8)
T(.+T(r, t), t>0,

for all values of r. The function T'(r, t) is the tempera-
ture relative to the ambient temperature T,. The
boundary conditions are time dependent for any
realistic treatment of the problem. The temperature
must be finite everywhere; T(r=o, t)=finite and
T(r=0, t) =finite. The continuity of the temperature

across the center-host interface is
T,.(rn?,t)=T,,(r.,?,t), (9)

where 7 is the radial unit vector. Condition (9) implies
that the host is in perfect thermal contact with the
inclusion for all times ¢ = 0. The conservation of heat
flow at the interface gives

— K VT e(ror, t) - r+H(¢; 1 2)

:_[\'IVVT[,(T(;;', t) 'F, (10)

where z is the unit vector in the + z direction.

The energy flux H(t; 7+ z)(W/ecm?) is the energy
absorbed by the sphere from the laser beam. Boundary
condition (10) describes an uneven heating of a sphere
by a plane wave propagating in the positive z direction.
It contains angular properties which are unnecessary
refinements for our purposes, particularly when the
thermal conductivity of the center is much greater
than that of the host. Therefore, it is reasonable to
introduce one more assumption which reduces bound-
ary condition (10) to a spherically symmetric one. Let
E;. be the energy density (J/ecm?) of the laser beam and
let 7(s) be the pulse width of the laser beam. A square
wave pulse is assumed for our problem. The spherical
inclusion intercepts an area 7r3 from the laser beam
and absorbs the amount of energy per unit time
Q.= [A(N\, T)(E,/7)]mr? in watts, where A(N, T) is
the absorptance of the center. If the sphere were to
absorb energy at the rate Q; over its entire area, then
the equivalent energy flux H(W/ecm?) would be
H=(Q-/47r}). The equivalent energy flux for the
spherically symmetric case is given by the relation,

0 for
(Q-/47rry)

t<0

H(t ={
(£) for O0o<t=rt.

Hence, replacing the angular dependent energy flux
H(t; r-z) by the spherically symmetric energy flux
H(t) reduces the problem to a spherically symmetric
one. Boundary condition (10) now reads

—KVTe(ror,t) - v+ H(t)=—K\NVT)(ror,t) - F.
(11

Boundary condition (11) corresponds to replacing the
incident plane wave, which has an energy flux (E,/1),
with an incoming spherical wave, which has an energy
flux (7r3 E/47riT).

The author does not include the radiation of heat
by the interface and by the heated glass close to the
inclusion in this model. The temperature gradients
which occur from the time of cessation of the laser
pulse to time of maximum optical path length change
are always sufficiently large so that |K,VT)| is greater
than the energy flux due to radiation. Of course, the
energy flux |K,VT,| becomes small for times greater
than a second and the radiation effect should be in-
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cluded in both the diffusion equation and the boundary
conditions whenever ¢t > 1s. Because the temperature
is close to the ambient temperature whenever the
time is greater than a second, the long time behavior
is not in the region of practical interest for detecting
the incipient damage centers before they cause
damage.

The solutions for the temperature T(r, t) are ob-
tained by taking the Laplace transform of the diffusion
eq (7), the initial condition (8), the continuity eq (9),
and the time dependent boundary condition (11). The
transformed equations become linear equations for
the Laplace transform U(r, s) of the temperature
T(r, t), where s is the Laplace transform variable
for the time ¢. In a separate paper [7], it has been
shown that

Ui (r, s) = Bn exp (— zn)/zn, (12)

where z, = (rs'2/ @),

Bi = h(s) (zno/s'2) exp (zno) X [(Knlan) (1 + zid")
- (K('/a(') (Z(q)l — ctnh Z(-()) ] 719

h(s) = [A(N, To)Er/A7][1—exp (—s7)]s7!, .

Zno = (rosl/z/ah) and Ze0 = (r(>31/2/0<-)~

Evaluating the Bromwich contour integral to obtain
the temperature T(r, t) from a knowledge of the
Laplace transform U(r, s),eqs (12) and (13), would be a
most ambitious task.

Two different arguments exist by which eq (13) re-
duces to a more tractable form. The first argument
treats eq (13) in the limit that zeo <1, then the ctnh
(ze0) in eq (13) is approximated by

ctnh (ze0) ~ zed + (200/3) +0(2%) + . . .,
and eq (12) thereby is approximated by,
Ui (r, s)=Lim U, (r, s) =Bu(®){exp (—zn)/zn},

Zco—>0

(14)
where
. h(S)Zlm exp (Z/m)
Bi(®) = 3+ by) (s +5)
M:(P(-C(~rn/3), b+=b[11(l—‘R)”2], (15)

b= (K/,/ZMG/,), R= (4ch(-/3p1,C/,).

and

The second argument yields the same relations as eqs
(14) and (15) but involves simplifying the boundary
condition (10). Observe that because a?>18a? and
K. > 20K, the temperature gradients in an absorbing
center such as platinum, antimony, and Al,O3(a) would
be much less than those for the glass host. In the limit

that K. > K, the boundary condition (10) becomes

Lim [M(0Tc(ri, t)/ot) ] =Lim Ky (8T (r{, t)/dr)

e—0

+H(t), (16)
where ry=ro*=e. Hence, approximation (14) obtains
either when |ros'/?/a.| <1 or when K. > K. The latter
inequality imposes no restrictions on ry and s, but the
former inequality does impose such restrictions. The
volume specific heat ratio R= (4p.C./3p,C)) deter-
mines three regions of behavior. Namely; when R <1,
the roots b *are real and unequal; when R = 1, the roots
are real and equal; and when R >1 the roots are com-
plex and conjugate to one another. The evaluations of
the Bromwich integral,

c+id
T)(r, t)=Lim LJ exp (st)Uy(r, s)ds, 17

d>o 2T Je—id

for the above three regions appear in ref. [7], and give
the temperature 7'(r, t). The quantity ¢ is chosen to be
sufficiently large in order that the integral,

f e ot (e e (18)

exists. Including the mathematical details for the
evaluation of T} (r, t) in the present paper would only
detract from the presentation of the model, of the
physics which it contains, and of its numerical results.
However, the temperature gradient in the host is nega-
tive for all values of position and time and for all finite
values of the volume-specific-heat ratio R.

4. Theoretical Expressions

Having thus obtained the temperature T'(r, t), one
may compute all the other quantities mentioned in sec-
tion 1. The optical path length change AL becomes

A= f (dmdT)T(r O, (19

where the integration path is along a ray that has a
distance of closest approach r; to the absorbing sphere
and the variation of the refractive index of the host with
temperature is (dnn/dTy). The quantity (dnn/dTy) is
properly the rate of change of the host refractive
index with respect to temperature evaluated at zero
strain. When (dn.n/dT),) is independent of r and ¢,
eq (19) has the form,

D
A e et f L (a2, ) da, (20)
-D

where Ty ((r? + D*)'2, t) < Ty(ro, t) and the integra-
tion path is a straight line of length 2D with a distance
of closest approach to the sphere ri =r,. The stress
birefringence has been neglected in eq (20). The
quantities which enter the stress birefringence are
computed at the end of this section.
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The stress components satisfy second order differ-
ential equations which follow by inserting the tempera-
ture from eq (17) into eq (5) and by using the relation
(6). The displacement vector u= ur is

1 7 C,
S, —l,f Tp*dp + Cir+—,
= Ja r

11(1‘)27(l =)

(21)

where a is any fixed radius and where p is the radial
variable of integration. Equation (21) is correct only for
those cases in which [{a(1+v)/(1 —v)}(@T/dp)] +0
for @ < p < r. Because the total energy (Q;7) deposited
by the laser beam into the center-host system is finite,
conservation of energy gives

Q7= (47/3) pCerdTh(ro, t) + 4mpiCy f - Ty (r,t)r2dr.
)

Whenever [{a(1 + v)/(1 — wv)}(0T/op)]=0 for
a < p < rthen the displacement vector u= ur becomes
U(r)=

(;|I'+ (("2/,-2) (23)

then the

When [{a(] v)/(1 — v)}0T/or)] #+ 0,

radial stress ¢ nmp(ment has the form

p
Trr(r)=— IZ_“V j Tpdp+ 507
2EC, .
BT

and the tangential stress components ogy and ¢gg are
equal and are given by the equation,

ok e EC,
UH"(r)_(l—V)r”L Te ({p+(l—2V)
EC,  akT .
+(l+v)r3 (I—w)" 29
When [{a(l + »)/(1 — v)}(@T/or)]=0, then the
following results,
E , 2EC, )
O'rr(')*(l_z N (Cl aT) (1+V) 3 (26)
and gge(r) =owe(r),
_FE —— EC, )
mm(,)_—(l—2v) (Ch=wil)=F —‘(1+V),3 (27)

The Laplace transform given by eqs (14) and (15)
corresponds to the following temperature profile:

| TuCro, t)
(. o) _{Th(ra t)

for 0<r<n

for =Rt

This temperature profile leads to the following expres-
sions for uc, orr ¢, and ogg,c = oo, when r < ry:

Uc(r, t) = Cicer (28)
and
Orre(r, t) = 0o,c(r, t) = oep,c(r, t)
19
(1_—2 {(ll (X,-Th(rn, t)} 5 (29)

where the condition u.(%, t) =0 has been used to
determine C,. = 0. The corresponding expressions for
the region r = ry are:

Uy(r, t) = (Zli(i—:w')f Tu(p, t)pdp + C”,", (30)
arrn(r, t) = (12—(_)["51)—;1 Tw(p, t)p>dp
e
and
ooo,n(r, t) = aeen(r, t) = (li”—ﬁ,’)‘ r; Ty (p, t)p3dp
L fﬁcu,l) S ahﬁh 4 E/j) 2, e

t) =0 has been used to

(32)

where the condition uy (%,
determine Cy, = 0. Observe that eqs (31) and
predict that o (%, t) =0 and o, n (%, t) = 0.

I'he coefficients C,. and C,;, are evaluated by in-
troducing an adhesive boundary at r=ror. An ad-
hesive boundary maintains the thermal contact between
the absorbing center and the host and obtains when
the following conditions are valid:

(a) The hydrostatic pressure,
P(:-li (O'rr.('+0'99. ('+0"4’\0. 1‘) =—O0rr,c, in the
center at r=ryr equals the negative of the
radial stress component in the host at r=ryr;
that is &, ¢(ro, t) =0 s, 1(ro, t).

(b) The tangential stress components are discon-
tinuous across the interface.

(c) The radial displacement
tinuous across the interface;
:lth(r(), [).

vector ur is con-
that is, wc(ro, t)

Conditions a and ¢ then yield two simultaneous equa-
tions for C,. and C,,. The solutions to this set of
equations are:

Con _ acTn(ro, t)
1+ 2B 314w}

(33)

and

Cl(': (Czh/fﬁ ) .
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A physically intuitive thought experiment which
leads to the same expression for Cs exists. The sphere
of radius ry is removed from the host and is heated to
Ty (ro, t) at zero pressure, P;=0. After heating, it has
an initial volume,

Vi= (41/3)2[ 1+ 3. T (ro. 1)].
The heated and expanded sphere is forced back into
the host at a final pressure Py=—0y, n(ro, t). It then
has a final volume

Vi= (4m[3)r3(1+ 3¢),
€= (un(ro) [ro) = (Canlr}).

where

Combining the above relations gives
Orr,h (r(), t) =_{2Eh€/(1 o Vh)}-

Finally, the isothermal compressibility x. for the center
is introduced in order to compute e,

xe=—1/V)(aV/oP)1.

Assuming the isothermal compressibility to be a slowly
varying function of pressure for Py = P = P; yields the
relations,

Xe(Pr—Pi) =—In (V;/V)
=—1In [(1+3€)/(1+3a.Ti(ro, t))].

When 3e <1 and 3a.Th(ro, t) <1, the expansions of
the logarithm give the strain €; namely,

" a(-Tll(r07 t) .
1+{2Enx:/3(1+vn)}

€

Substituting the coefhicient C»;=rge and the tem-
perature T (r, t) into eqs (31) and (32) gives the radial
and tangential stress components. The radial rates of
expansion during heating and of contraction during
cooling for the center also are computed,

. _de__roa{dTi(ro, t)/dt}
Odl 1+{2E11Xc/3(1+Vh)}

The latter rates are used to check that the linear-quasi-
static-thermal elastic theory is predicting self consist-
ent results. If the rates of expansion or contraction of
the center were to approach or exceed the speed of
sound in the host, then the above problem becomes a
nonlinear one involving two coupled differential equa-
tions. One equation treats heat diffusion and the other
treats energy transfer in the form of sound waves.

One goal of this study is to examine under what
conditions the absorbing center may initiate damage
in the host. When the tensile stresses produced by the
heating exceed the strength of the host, then damage
should occur. The theoretical breaking stress is esti-
mated theoretically [8] to be about one tenth of the

Young’s modulus, o, ~ (E;/10). This value does not
take into account the presence of microflaws and there-
fore is a representative upper limit for the strength of
the host. The sign convention of the foregoing formal-
ism is that compressive stresses are negative and
tensile stresses are positive. The radial stresses are
according to eq (31) always compressive (negative) and
hence do not initiate damage. The tangential stresses
are according to eq (32) either compressive or tensile
and depend upon the time, the position, and the prop-
erties of both the center and host in a most complicated
manner. Whenever the tangential stresses are tensile
(positive) and are sufficiently large,

o90,n(r, t) 2 om ~ (En/10),
they may initiate damage.

The tangential stresses at the interface may be
written in the form,

oo, n(ro, t) =EnTn(ro, t)dctess, (34)
where the effective expansion coeflicient is
Qe Ap
S0 e= - .
e |: 1+v,+ (2EhX(‘/3) (]-_VII) :| (35)

It is interesting to observe that even when a.=ay,
069, n(ro, t) +0. The stress ogp. s, is usually propor-
tional to (a.—ay) for those problems in which the
temperature is spatially uniform everywhere. But in
the present problem, when r = ry, the temperature is
not spatially uniform (that is, when r=r,, VT *0)
and the stress g, is not necessarily proportional to
(ce —ap). The model by which one reasons intuitively
that the tangential stress is proportional to (. —ay)
is based upon eqs (23), (26), and (27) for both r <r,
and r > ry. This is not correct when (97/dr) differs from
zero for r = ry as it does in the present model.

Whenever (d7/dr)=0 for 0 < r < =, a different set of
boundary conditions must be used to determine the
constants in eqs (23), (26), and (27). To obtain the
correct boundary conditions for the infinite host, one
proceeds as follows. Consider a sphere of radius ry
inside a spherical shell of inner radius r, and outer
radius r;. The system is heated adiabatically from
Ty to Ty+T so that (3T/dr) =0 for 0 < r < ry. The cor-
rect equations are eqs (23), (26), and (27) and the cor-
rect boundary conditions are uc(0)=0, uc(ro)= us(ro),
Orr, e(ro) =0, 1(ro), and oy, 1(r3) =0. These equa-
tions and boundary conditions then predict that in the
limit as r; approaches infinity, the tangential stress
approaches the value,

_ Ei(ac—an)Tri
{14 v+ (2Eix/3) }r¥

096, 1 (r; ry =)

(36)

Equation (36) is not correct whenever (d7/dr) differs
from zero. Observe that the boundary conditions lead-
ing to eq (36) replace uy(®°) =0 with oyr,n(®) =0
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and also yield un () = ® and ogp,n(°) = 0. Compare
this with the results from eqs (30), (31), and (32);
namely, u;(®) =0, o 1(®) =0, and o, () =0,
because Tj(r, t) approaches zero faster than (1/r?)
approaches zero as r approaches infinity.

The maximum tensile stress occurs, when (dos. (7,
t)/dar) evaluated at r=rp.y is zero and when (90, n(r,
t)/or?) evaluated at is negative. These
conditions do not necessarily obtain at r= ry., = ro
and at ¢t = 7. The qualitative behavior of the tangential
stress depends in part upon the sign of the effective
expansion coefficient 8. When Sa. is positive and
sufficiently large, 8a.; > 10-¢(1/°C), then the maxi-
mum tensile stress does occur at r=ry and t=1.
For fixed times ¢, the tensile stress decreases mono-
tonically to zero as r increases from ro. When 8oy is
negative, the maximum tensile stress does not occur
at r=ro and it also does not occur necessarily at t=r1.
Instead, the tangential stress is always compressive
at r = ry, when S,y < 0. Keeping time fixed one finds
that as r increases from ry the tangential stress in-
creases algebraically from negative (compressive)
values to positive (tensile) values, attains a maximum
tensile stress at r= rmax > ro, and then begins to
decrease algebraically. When 8.y is small, |Sotes|
< 10-%(1/°C), then the stress may change from tensile
to compressive or from compressive to tensile more
than once as r increases from ry. This behavior for
small Scy is very sensitive to the sign and value of
(d06e.n (1, t)/0r) evaluated at r = r,. Because evaluat-
ing T)(r, t) and its derivatives to study analytically
the maxima of o (r, t) would be a monumental
task, the numerical results from a computer have
been used to obtain the above qualitative features.
The effective expansion coefficient 8oy is about
—5.5%x10-6(1/°C) for Pt in Glass (B) and it is about
— 6.7 X 10-¢(1/°C) for Sb in Glass (B).

Finally, the expressions for the strain induced change
of the refractive index for radially polarized light An,
and for tangentially polarized light Ang=Ane (stress
birefringence) are developed. The theory of ref. [9]
which examines the stress birefringence of an isotropic-
continuous transparent medium is used. The strain
induced change of the refractive index for radially
polarized light is

I' = I'max

An.(r, t)= Bjjorr,in(r, t) +Bi(ogs n(r, t)
+aee, 1(r, t)+oanTn(r, t) (p11+2pi2),

and the strain induced change of the refractive index
for tangentially polarized light is

Ang(r, t) =An¢(r, t) —'Blio h(ra t)
+B) a9, n(r, t) +Broee, n(r, t)
+ahTh(r’ t)(p11+2p12)s

where the stress optic coefficients are

B = Ei*(p11—2vnpi2),

and
B, =Eji'[(1—vi)pi2—vipi1],

and where the photoelastic coefficients are p;; and
P12; i.e.,

An,=n,—n(e=0)=pii€,r+pi2(€pot €vv),
and
Ans=ne¢—n(e=0)=pis(€r+€ve) +pi1€go.

The stress birefringence at any point r with respect to
the local unit vectors for spherical coordinates is
(An, — Ang).

Computer programs to evaluate the quantities
AL, o, oe, An,, and Any as functions of r and ¢ for
platinum, antimony, and Al,O3(a) spherical inclusions
are developed. Two different host glasses with prop-
erties such that both R <1 and R >1 are considered.
The strain rate ro(de/dt) and the energy flux
Sp(Ti(r, t)—T¢) radiated by the spherical surface
and by the host near the inclusion also are computed.
The Stefan-Boltzman constant is denoted by Sg.
For the values of radial distance and time which are
important to the inclusion damage problem, the effects
of both quantities are negligible and hence the model
is numerically consistent with its assumptions.

5. Results and Conclusions

The numerical results predicted by the model devel-
oped in section 3 are reported in this section. Among
the many input parameters the absorptance A (\, T)
is perhaps most sensitive to the initial thermal contact
and surface conditions of the host and inclusion. To
avoid questions about the value of A(N, T) the
numerical results for the reference (normalized) case
when A(\, T)=1 are given. This presents no addi-
tional problem because the temperature 7)(r, t),
the optical path length change AL, the stress com-
ponents o, and gg= o¢e and the stress birefringence
An, and Ang, are all directly proportional to the
absorptance.

The model of section 3 has been used to study two
different questions. First, how the maximum tangential-
tensile stress varies as a function of the radius of the
spherical inclusion for a fixed energy density and pulse
width of the laser beam. Second, if the maximum
temperature of the inclusion is limited to a fixed value,
T (r=ro, t=17) =constant, how the parameters of the
incident laser beam should be varied to increase the
probability of detecting by optical techniques a small
incipient absorbing center, before it causes damage.
Optical techniques to detect small inclusions become
more promising the greater AL, An,, and Any are.

Table 6 for inclusions in Glass(B) and table 7 for
inclusions in Glass(U) contain the variation of the
maximum tensile stress ogymax-tensile) as a function
of ry for a laser beam having an energy density 20(J/cm?)
and a pulse width 30 ns. When 10-* ¢cm > ry > 5 X 103
cm the maximum tensile stress exceeds the theoretical
strength of the Glass(B). Also when 10~* cm >ry > 5
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X 10 cm the maximum tensile stress exceeds the
theoretical strength of the Glass(U). These results
demonstrate that submicron-sized inclusions have the
greatest probability to cause damage in laser glass
hosts. The results given for ry=10-7 ¢cm may have no
physical meaning because the uncoupled thermoelastic
theory becomes suspect for rp < 6.7 X 10~7 cm. When-
ever the temperature T (ry, 7) exceeds the strain point
of the glass, the results reported in tables 6 and 7 are
at best order of magnitude estimates for the tensile
stress. Laser glasses have strain points around 600 °C.
These two tables show that very large and very small
inclusions are not likely to produce damage. Only
inclusions having an intermediate size of the order of
tenths of microns have a high probability to produce
damage. They also show that the surface temperature
T (ro, 7) and the maximum tensile stress-become
independent of the thermal and elastic properties of
the inclusion when ry <10-% cm. This observation is
proven in ref. [7] by analytic methods.

The high temperatures which are predicted by this
model for 0.1u < ry < 1y are certainly not to be taken
seriously. The model does not treat the heats of fusion
Hp, the heats of vaporization Hy, the changes in volume
upon melting, and the equation of state for the liquid-
gas transition at extremely high temperatures. These
equations of state for platinum, antimony, and AlO;
are not known. Also some researchers argue that these
effects which the present model neglects tend to cancel
one another in the case of platinum for temperatures
up to its boiling point and that thereby, even though
the model predicts temperatures which are too large,
it does give representative values for the stresses.
Neglecting the possible chemical and physical changes
which may occur at the center-host interface, they
argue as follows. The heat of fusion Hp(c) gives an
effective temperature of fusion Tr(c) = Hp(c)/C. by
which the temperature T (ry, 7), given by the model,
is too large whenever Ty(c) < Tp(ro, 7) < Tg(c),
where Ty (c) and Ty(c) are respectively the melting
and boiling points of the center. The values for platinum
are Tp(Pt) ~ 800 °C, Ty (Pt) ~ 1770 °C and Ty (Pt)
~ 3830 °C. The excess temperature T (Pt) predicted
by the present model produces an excess volume
change (AV/V)ex ~ 3acTr(Pt) ~+0.02. But the
volume change for the platinum upon melting is also
about + 0.02 [9]. Hence, the model should give correct
order of magnitude estimates for platinum up to its
boiling point. Such arguments fail for antimony
because its (AV/V) upon melting is about — 0.014.

The following mesh in the r and ¢ space is used to
obtain the values given in tables 6 to 9. The expressions
are evaluated for five values of the time (3 ns, 30 ns,
0.3us, 3us, and 30us) and for twenty values of r. The
limits on r depend upon ro. When ry = 0.1u, the limits
are ro <r < 5r; when ro=0.0lp they are ro<r
< 60ry; and when ro = 0.001u, they arery < r < 600r,.
The twenty values of r are equally spaced in a loga-
rithmic manner between the lower and upper limits.

The quantities AL(r, ro, t), o (r, t), oee(r, t),
An,(r, t) and Ang(r, t) have been evaluated for
ro=0.1u, 1, and 10w, and Ty (ry, 7) =600 °C; for

seven values of 7, 3 ns < 7 < 3 ms; for ten values of
r, ro=r< 0.2 cm; and for ten values of time 3 ns
<t < 3s, where 7, r, and t are all equally spaced in a
logarithmic manner. The presentation in this paper
of all these numerical results would be overwhelming.
Table 10 contains a summary of these results for the
case of platinum in Glass(B). The results for antimony
and Al,O;(a) in Glass(B) and Glass(U) and for platinum

in Glass(U), are similar to within a factor of ten.

TABLE 6

The maximum tensile stress as a function of ry for fixed energy
density E;, =20(J/cm?) and pulse width 7=30 ns. The theoretical
breaking stress of glass is about 6 X 10°(N/m?). The properties of
Glass(B) are used in this table. The radius of the inclusion is ry; the
maximum tensile stress is oy (max-tensile) and occurs at position r
and at time ¢; the temperature at r and t is Ty (r, t); the volume
specific heat ratio is R; and the effective expansion coefficient is
Sty

Inclusion: Pt(B), R=2.97, Sa s ;=—5.5X10-6(1/°C)

logio(ro) | logio(2/3) (r/ro) Tw(r, t) | o4 (max-tensile)
(ro in em)| (t in s) (°C) (N/m2) X 10?

—2.0 —8.0 1.1 0.0 0.13

=310 —8.0 I | .0 1.3

—4.0 —8.0 1.3 910. 7.6

—4.3 ={3{0) 1.4 5200. 9.0

=50 —8.0 3.3 370. 2.6

—6.0 =00 11. 98. 0.098

— 7.9 —9.0 110. 0.80 00097

Inclusion: Sb, R=1.13, da;=—6.7 X 10-¢(1/°C)

logio(ro) | logio(2/3) (r/ro) Ty(r,t) | oss (max-tensile)
(ro in cm)| (¢ in s) (°C) (N/m2) X 10°

—2.0 —8.0 1.1 0.0 0.27

=80 =§0 1.1 .0 2.7

—4.0 —8.0 1.3 2100. 13.

—4.3 ={3{0) 1.3 4300. 13,

—5.0 —9.0 1.8 1600. 3.4

—6.0 =00 11. 100. 0.097

—7.0 =9%0) 110. 0.80 .00097

Inclusion: Al,O3(a), R =2.74, daes;=—23.4X 10-¢(1/°C)

logio(ro) |logio(t/3) (r/ro) Ty(r, t) o9y (max-tensile)
(ro in cm) | (tin s) (°C) (N/m2) X 10¢

=2{0) —8.0 1 0.0 0.19

=80 —8.0 1.1 .0 1.9

—4.0 ~8.0 1.7 4600. 11.

i —8.0 1.4 5600. 13.

=540 —9.0 1.5 3500. 3.6

=0 =9X() 11. 98. 0.10

=740 =0)(1) 110. 0.80 .00096
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TABLE 7

The maximum tensile stress as a function of ry for fixed energy
density E,=20(J/cm?) and pulse width 7= 30 ns. The theoretical
breaking stress of glass is about 6 X 109(N/m2). The properties for
Glass(U) are used in this table. The radius of the inclusion is rg;
the maximum tensile stress is oy (max-tensile) and occurs at
position r and at time ¢; the temperature at r and ¢ is T (r. t): the
volume specific heat ratio is R; and the effective expansion coefficient
is 0o

Inclusion: Pt(U), R = 0.97, 8 = — 5.1 X 10-¢(1/°C)

logyo(ro) | logi(t/3) (r/ro) Tu(r.t) aeg(max-tensile)
(ro in ecm) | (¢ in s) (°C) (N/m2) X 10°
—2.0 —B.0 1.1 0.0 0.18
—3.0 = 1.1 .0 1.8
—4.0 —38.0 1.2 2800. 10.
—4.3 —8.0 1.4 2900. 11.
—15.0 =01{0) 1.5 1900. 2.8
— 6.0 —9.0 8.6 87. 0.081
—17.0 —9.0 80. 1.3 .00081

Inclusion: Sh, R = 0.49, 8ae = — 6.7 X 10-6(1/°C)

logio(ro) |logi(/3) (r/ro) Th(r.t) oge(max-tensile)
(ro in cm) (t in s) (°C (N/m2) X 10

—2.0 —8.0 1.1 0.0 0.27

— sl —{3{0) 1.1 .0 2.6

—4.0 —8.0 1.2 4600. 11.

—4.3 —8.0 1.2 4300. 11.

— 5l — 1) ) P 1200. 20

—6.0 =98 8.6 89. 0.079

— 70 =0L(0) 80. 1.3 .00081

Inclusion: ALOy(a), R = 1.19, ey = — 3.4 % 10-%1/°C)

log.o(ru) ]0{.’10(!/3) (r/rn) T/,(I‘. [) U'm/'milx-l('llsil(‘)
(roin em) | (¢ in s) (°C) (N/m2) X 10°
=20 —8.0 1.1 0.0 0.19
=10 =810 1.1 .0 1.9
—4.0 =L 1.2 2400. 1l
—4.3 =00 1.3 6900. 12.
=5 =00 I¥5 1700. 33
=@ =00 8.6 86.2 0.083
—7.0 =01 80. 198 .00081

Table 10 contains the optical path length change
AL and the stress birefringence parameters (An,
and Any) which occur when Pt is in Glass(B) for several
values of pulse width 7 and inclusion size r,. The
results for Pt in Glass(U) are similar within a factor
of about two to those predicted for Glass(B) and are
not included here. Because the model assumes that the
strain is proportional to stress, the energy densities
E, of the laser pulses are limited in table 10 to values
such that the temperature of the glass never exceeds
the strain point of the glass. That is, the energy
densities are such that 7} (ro, 7) = 600 °C. In addition,
the maximum tensile stress is always at least an order
of mangitude less than the theoretical breaking point
of the host 6 X 109N/m?. Hence, excluding the
complications which microcracks might produce, one
does not expect damage to occur when T (ry, 7)

< 600 °C. The quantities (AL), (An,), and (Ang)

TABLE 8

Maximum tensile stress of Pt spheres in a fictitious host as a func-
tion of the thermal expansion coefficient of the host. All the prop-
erties of the host are the same as those for Glass(B) except that the
thermal expansion coefficient of the host «y varies from 6 X 10-6
(1/°C) to 16 X10-6 (1/°C). The effective expansion coefficient is
Sdaerr; the maximum tensile stress at a distance r and at time ¢ is
gy (max-tensile); and the temperature of the host is 75 (r. t). The
laser pulse width is 7= 30 ns and its energy density is £, = 20(J/cm?).
The radius of the sphere is ro=>5X% 10" ¢m. The maximum stress
occurs for times close to the pulse width, ¢t ~ 7.

ay O agp rlro | oe (max-tensile) | Tp(r.t)
(1/°C) X 10-6 |(1/°C) X 10-¢ (N/m2) X 109 (X103 °C)
6.0 =16 1.4 9.0 5.2
8.0 —4.2 1.4 8.9 5.2
10. —6.7 1.4 8.8 B8
12. =013 1.5 9.1 2.1
14. = 12, s 9.3 2.1
16. —14. 1.5 9.7 2.1
TABLE 9

Maximum tensile stress of Pt spheres in a fictitious host as a func-
tion of the thermal expansion coefficient of the host. All the prop-
erties of the host are the same as those for Glass(U) except that the
thermal expansion coefficient of the host «; varies from 4 X 10-6
(1/°C) to 12X 10-% (1/°C). The effective expansion coefficient is
dater: the maximum tensile stress at a distance r and at time ¢ is
oo (max-tensile); and the temperature of the host is 7 (r. t). The
laser pulse width is 7= 30 ns and its energy density is £, = 20(J/cm?).
The radius of the sphere is ro=5>10-5 ¢m. The maximum tensile
stress occurs for times close to the pulse width, ¢ ~ 7.

@, Sty rlro o (max-tensile) Tu(r, t)
(1/°C) X 10-6 [(1/°C) X 10-6 (N/m2) x 109 (X103 °C)

4. 2 iL.3) 123 7.9

6. =1l 1.3 Il (29,

8. 540 1.4 10. 2.9

10. —6.4 1.4 11. 2.9

12. —9.0 1.4 11. 250

denote representative values of the quantities AL (ry,
ro, t), An,(r, t), and Ang(r, t) for those regions of
ro<r<omnr and t; <t < t, in which they obtain their
largest values. The meaning of these symbols is
illustrated below for one case from table 10. For ex-
ample, the largest optical path length changes due to
a platinum sphere of radius ry = 1 heated by a laser
beam having a pulse width 3 X 10-8 s and an energy
density 0.33 (J/em?2) are about 1.3 X 108 ¢m and occur
for times between 3us and 30us after the beginning
of the laser pulse and for optical paths which approach
within 1u of the surface of the inclusion. Similarly,
the largest values for the radial and tangentail changes
of the index of refraction due to thermal birefringence
are respectively 6.3X10~* and 6.0X10-* and occur
for the same radial distance and time as those for the
optical path length changes.
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TABLE 10A

Optical path length change and stress birefringence for Pt inclusions in Glass(B). The radius of the inclusion is
ro(cm), the pulse width is
distance of closest approach r=ryis AL (ry, ry, 7)(cm). The quantities (AL)(cm), (An,), and (Any) denote respectively
representative values for the largest optical path length change, the largest index change for radially polarized light,
and the largest index change for tangentially polarized light which occur for a range of distances of closest approach
ro to r»(cm) and for an interval of time ¢; to tx(s) after the beginning of the laser pulse. The tangential stress at r=ro
and t=7 is —2.16 X 103(N/m?) and the surface temperature T (ro, 7) at t=r7 is 600 °C in all cases. The radius is

ro=10-% cm.

7(s), the energy density is £,(J/cm?), and the optical path length change at time t =7 and for a

log1o(7/3) E,. logio(t:/3) | logio(t2/3) logio(r2) | AL(ro, ro, 7) (AL) (An,) (Any)
(rins) (J/em?) (tiins) (t2in's) (ryinem) | (em)X 107% | (em)X 10-6 | X 10~* X 104
-3 6035. —4 —3 —4 0.24 0.20 2.1 1.7
—4 605. =5 —4 —4 o .14 2.0 1.6
=5 61.1 —6 =0 —4.7 .19 .14 1.9 15
—0 6.32 = =0 —4.7 .14 .088 5.8 4.5
—7 0.706 =7 =0 —~4.7 .094 .033 4.7 3.2
=6 113 = =0 —4.7 .047 .0049 0.022 0.021
=) .0446 =7 — i, —4.7 .025 .0019 .0080 .0076
TABLE 10B

Optical path length change and stress birefringence for Pt inclusions in Glass(B). The notation of this table is
the same as that for table 10a. The radius is ro=10-* cm.

10%510(T/3) E/A 10g111(51/3) lO;."m(lz/s) logm(rz) AL(M,I‘(),T) <AL> (An,-) (Am;)
(rins) (J/em?) (tyins) (t2ins) (rrincm) | (em)X 107 |(cm) X 10-¢ | X 10-* X 10~
-3 611. —4 =13 —3.3 1.9 1,5 8.1 6.3
—4 63.2 =5 —4 =863 1.4 1.0 7.8 6.0
—5) 7.06 —6 = =383 0.95 0.48 6.8 4.9
= 1.13 -6 — 5 =g 47 049 0.023 0.22
-1 0.446 =16 =5 —3.7 .025 .019 .085 .082
—8 331 =6 -5 =81 .0 .013 .063 .060
-9 .303 —6 =5 =87 .0 .013 058 .055
TABLE 10c

Optical path length change and stress birefringence for Pt inclusions in Glass(B). The notation of this table is
the same as that for table 10a. The radius is ro=10-3 cm.

logio(7/3) E; logio(t:1/3) logio(t2/3) logio(r2) AL(ro, 1o, 7) (AL) (An,) (Am;}

(rins) (J/ecm?) (tyins) (t2in's) (rinem) | (em)X 1076 [(em) X 106 | X104 e (U
-3 70.6 —4 =8 =25 9.5 6.3 9.5 7.1
—4 11.3 —4 =13 =2 4.7 0.78 6.9 3.9
-5 4.46 —4 =3 =12%5) 0.25 .68 1.8 1.5
—6 3.31 —4 =& 2857 .0 .52 1.3 1.1
-7 3.03 —4 -3 —2.52 .0 .48 1.2 9.7
=8 2.95 —4 =8 =852 .0 47 12 9.4
-9 2.93 —4 —4 =535 .0 .46 1.2 9.4

The data from tables 6, 7, and 10 also may be used
to estimate the lens effect due to heated regions of
the host. Whenever the refractive index increases with
temperature (dnu/dTy) > 0, the heated region of the
host surrounding the inclusion might focus the same
laser pulse or a succeeding laser pulse. Computing
the effective focal length for a spherical shell with a
spatially varying refractive index is too complicated
for an estimate of the effect. Instead the following
crude approximation is considered. The focal length f

of a spherical lens having a radius r and an uniform
refractive index n; is

f= (m/no)r/[2{(ni/no) — 1}*],

where no is the refractive index of the medium in
which the spherical lens is imbedded. A measure
of the expected importance of the spherical lens effect
is the spatial extent of the deviation of the refractive
index from its value before the laser pulse occurs, n.
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That is, the importance of the lens effect is measured
in some manner by the quantity,

N
(dn) =lim — | {nu(r,t) — na}dr.
Pz P Jr,
A representative distance for the spatial extent is

(r) = lim i jpr {na(r, t) — na}dr,
== p

To

where the above integrals are finite. The quantity
[n-(r, t) —nu] is proportional to the temperature
Tyn(r, t); namely, [ny(r. t) — ny] ~ (dna/dTy)Ta(r, t).
When (&n)=<n;, then an estimate for the focal

length is
[~ 2 (r)2(8n)?
where

(r)y = (dnu/dTy) lim 1 prTn(r, t)dr,
P plrg
and

P
(6n) = (dnp/dTy) lim %f T (r, t)dr.
p7® .

o

Some typical numerical examples for platinum are as
follows: when ro= 1w, E;, = 20(J/cm?), and 7= 30 ns,
then the maximum values for (r) and (dn) occur at
times ¢~ 3us and are respectively (r) ~2u and
(dn) ~ 4 X 10-3. These values give an effective
focal length of about f~ 14 cm. But from tables 6
and 7 the tensile stress at t =7 =30 ns exceeds the
theoretical strength of the host before the lens effect
becomes most important. Consider now another
example for platinum in which oy (max-tensile) is
less than the theoretical breaking stress of the glass
host. When ro= 1w, E, = 0.33 (J/cm?), 7 = 30 ns, and
Ty(re, 7) = 600 °C, then the maximum values of (r)
and (8n) occur at times about 3us and are respectively
(ry ~ 2w and (8n) ~ 1.2 X 10-% These values give
an effective focal length of about f~ 1.6 X 10 cm.
These focal lengths are very long.

Hence the model predicts that the lens effect arising
from heated inclusions probably does not cause
damage. Those cases for which the maximum tensile
strength is less than the theoretical tensile stress of the
glass have minimum effective focal lengths which are
much greater than any dimension of neodymium doped
glass elements used in present glass laser systems. In
those cases for which the tensile stress exceeds the
theoretical strength, the tensile stress probably causes
damage before the lens effect could cause damage by
heating another inclusion or by initiating an intrinsic
damage mechanism such as self-focussing.

Equations (34) and (35) and the results in tables 6
and 7 show that Sb and the fictitious Al.O3(a) are more
likely to cause damage than Pt. However, this differ-
ence is marginal. Additional computations for Pt
spheres in fuzed silica, daey; ~+6.0X10-¢ (1/°C);
indicate that the maximum tensile stresses occur at

r=ry and t=7 and that they are comparable to those
stresses reported in tables 6 and 7. However, the range
of ro for which o g4 (max-tensile) exceeds the theoretical
strength is much greater; namely, when

104 cm=r,= 106 cm,

7=30 ns, and E;,=20(J/cm?), then oy (max-tensile;
Pt in silica) > 6 X 109(N/m2). Fused silica has a tensile
strength comparable to glass.

The maximum tensile stress as a function of the
thermal conductivity K, and the thermal expansion
coefficient «;, is studied also. These investigations are
limited to Pt in Glass (B) and in Glass (U) for which the
effective expansion coefficients are negative. It is found
that increasing K in table 2 for Glass (B) from 0.008
to 0.04 (W/em °C) decreases the maximum tensile
stress from 9.0 X 102 (N/m2) to 4.0 X 109 (N/m?2). Simi-
larly, increasing K, in table 2 for Glass (U) from 0.013
to 0.04 (W/em °C) decreases the maximum tepsile
stress from 10.6X10° (N/m2) to 5.8X10° (N/m?2).
Again, all the other properties of Glass (B) and of Glass
(U) are kept the same except for the thermal expansion
coefficient and the resulting maximum tensile stress
as a function of a for fixed r=5X10"% cm, 7= 30 ns,
and £, =20 J/em? is reported in tables 8 and 9. Observe
that the maximum tensile stress has a minimum at
ap=ap(min); namely, a,(min, Glass (B)) ~ 10X 10-¢
(1/°C) and ap(min, Glass (U)) ~8 X 10-¢ (1/°C). Also,
these tables indicate that the maximum tensile stress
is a slowly varying function of the thermal expansion
coefficient, ay. Thus, for these cases, «; influences
greatly the behavior near the interface because it
appears in the effective expansion coefficient and the
thermal conductivity influences greatly the behavior
near the region of maximum tensile stress.

Intuitive arguments exist to explain why the tempera-
ture Ty (ro, t) in tables 6 and 7 has a maximum value
at some ro=r(max T}) for fixed E; and 7 and decreases
for values of ry greater than r(max 7)) and less than
r(max Ty). As (ro/r(max T} )) becomes larger than one,
the volume increases much faster than the surface
area of the sphere. The inclusion receives less energy
per unit volume. Therefore, the maximum surface
temperature at the end of the pulse decreases. As
(ro/r(max T,)) becomes smaller than one, the equili-
bration time (r3/a}) approaches zero. Then the surface
temperature at the end of the pulse cannot deviate
much from the equilibrium temperature due to the
extremely short equilibration time.

The above computations in table 10 suggest that
examining incipient absorbing centers in laser glasses
either by methods which employ the interference of
two light rays (which experience different optical path
length changes due to the local variation of the refrac-
tive index near the inclusion) or by methods which
employ thermal stress birefringence are promising.
However, because the propagation of light in the pres-
ence of a stress birefrigence which has spherical sym-
metry is complex, the interpretation of birefringence
data will be more tedious than data from an interfer-
ence method. The feasibility of combining the inter-

259



ference method and holographic techniques has been
demonstrated for 50 micron particles [2]. In addition
the results of table 10 suggest that the use of laser
pulses with pulse widths greater than a few micro-
seconds may be more promising for the detection of
small incipient absorbing centers than the use of nano-
second laser pulses. The longer pulses produce spatial
changes in the refractive index which extend over
greater distances in the host and thereby increase the
probability of detecting small inclusions. Another
approach is to employ pulse widths and observation
times which are less than the relaxation times of the
host. Relaxation times for laser glasses between 800
°C and 1100 °C are approximately between nano-
seconds and microseconds. These are estimates of the
time during which stress is proportional to strain in
glasses which are not elastic for infinite time. Such
short time observations will permit one to raise the
inclusion surface temperature substantially above the
present 600 °C reported here and still satisfy the
assumptions of the present model.

The author thanks especially Alan D. Franklin for
many helpful discussions and for his encouragement.
While undertaking this study the author also had
several discussions with many other researchers con-
cerned with laser damage problems, some of whom
are cited in the references. He thanks them and the
others from whom he has learned about damage in
laser materials. He also thanks M. J. Cooper and A.
Kahn for their reading of the manuscript.

6. Appendix. Center-Host Interface

A laser beam with an energy flux per unit area [
(J/ecm? s), with a pulse width 7(s) and with a wavelength
Ai(cm) impinges upon the inclusion. The inclusion
exhibits an absorptance 4 (\, T'), areflectance R(\, T),
and a partial emissivity £ (X, T), where A is the wave-
length and 7 is the absolute temperature of the inclu-
sion. The following relations among A4, R, and E exist:

(a) A+ R=1; no energy is transmitted.

(b) E(N, T)JA(N, T)=e(N, T); Kirchoff’s law.

The function e(\, T') is a universal function only of A
and T and is independent of material and surface
properties.

(c) fx e(N, T)d\=SyT*; Stefan-Boltzmann law.
0

The constant Sg is Sp=>5.673 X 10-> (erg/cm? s K*).

(d) Apax?=0.2897 cm K; Wien’s displacement law.
The wavelength for which e(A, T) has a maximum
value for a fixed temperature 7 is \p.y.

The values for the absorptance A(\, T) in table 4
are valid for ro = N ~ 1.06 w. The results of Mie scatter-
ing theory [11] show that A(A, 7)) does not change
appreciably for values of ro <\ and ry =y~! where vy
is the absorption coefficient.

The spherical inclusion has a complex index of
refraction m¢=n.—in. and the Poynting vector for
the incident radiation in the absorbing center is pro-
portional to the factor exp (—<y.(ro—r)). The absorp-
tion coefficient 7y, is given by (4mn./\.). Because a
sphere with index m. is imbedded in the host with a
real index m;=n;, = 1.52, the values for m. to use in
the equations of ref. [11] are m.(med)=(m¢/n;). Simi-
larly the wavelength in the host is A/, (med) = (A./m))
where A, =1.06 w. The sphere intercepts in accordance
with Mie scattering theory Qeymril watts from the
incident laser beam, independently of the polarization
of the beam. There will be Q,,s7r2l watts absorbed by
the sphere and Qgamr3l watts scattered in all direc-
tions by the sphere. The conservation of energy gives
Oext—OQaps T Qsca: The absorptance Qup;—4A(A, T;
ro=small) replaces the absorptance A(\, T; ro=large)
quoted in table 4, whenever ry becomes less than the
wavelength \,(med). The variable X = (27ry/\ .(med))
is introduced and when X < 0.6 Mie scattering theory
relates X and (.y; namely,

Qext = Qaps =2.68 X and Qgcn < Qaps-
for platinum spheres in glass (n,=1.52) and
Qext = Qaps = 0.992 X
for antimony spheres in glass (n,=1.52). When

A=1.06u, X=9.01 X 10* em~! ry
then
Qaps(Pt) =24.1 X 10* cm~1 ry
and
Q.bs(Sh) =8.93X 104 cm~!

for values of 79 < 6.7X10-6 cm. Hence, A(\;., T) does
not change by more than a factor of three for values of
ro= ‘)’r-_l .
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