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Glasses

Joseph H. Simmons and Pedro B. Macedo*

Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234

(February 9, 1971)

Results from viscosity and shear structural relaxation measurements conducted above the liquid-
liquid phase transition of a series of immiscible inorganic oxide glasses are analyzed. A model is proposed
which relates the temperature dependence of the complex modulus and viscosity to the behavior of
microstructure in the glass resulting from supercritical fluctuations in composition. It is suggested
that the critical microstructure induces differences in local environment in the glass which in turn
cause the appearance of distributions of relaxation times. The model is formulated using elementary
fluctuation theory and the resulting equations are successfully compared to the data.
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1. Introduction

The investigation of viscous flow in glass-forming
liquids has been approached from a variety of direc-
tions. These can be classified into the empirical equa-
tion of Fulcher [1],' the thermodynamic approaches
of Gibbs [2], Turnbull and Cohen [3], and Goldstein [4],
and the kinetic approaches recently characterized by
consideration of the structural relaxation mechanisms
[5=7]. In the case of inorganic oxide glasses, the investi-
gations of structural relaxation have been undertaken
by means of ultrasonic spectroscopy. Recently, ultra-
sonic [8] and viscosity [9] measurements on vitreous
B>O; have yielded evidence conflicting with the pre-
dictions of the thermodynamic approaches, and thus
have indicated the need for systematic studies of
viscous flow by structural relaxation in such glass-
formers [9]. Before examining this evidence, let us
first introduce the concept of a distribution of relaxa-
tion times.

Viscous relaxation investigations by means of ultra-
sonic spectroscopy consist of studying the interaction
of high frequency sound waves with matter as a func-
tion of the time of interaction. As the observation time,
which is the inverse of the ultrasonic frequency,
approaches the structural relaxation time, interaction
between the flowing, or moving species and the sound
waves leads to a frequency-dependent complex
modulus. The frequency-dependent shear viscosity is
given by the imaginary part of the shear modulus,
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G*(w) as follows [10]:

n'(w)=w '"Im [*(w)] (1)
where o is the angular frequency. The frequency-
dependent modulus may in turn be expressed in terms
of a sum of relaxation functions. This implies that the
stresses are additive. In the case of liquids having
simple distributions of relaxation times, such as those
in this paper, the relaxation phenomena may be charac-
terized in terms of two independent parameters which
are the width and the most probable value of time of
any existing distribution of relaxation times. While
the choice of additive stresses appears arbitrary at
first, we will show later that it is consistent with the
physical interpretation of our model. The viscosity is
now written as follows:

u ;&(n7)d In7

() =G 14+ (w7)

(2)

where G, is the instantaneous shear modulus, 7 is a
relaxation time, and g(In 7) is known as the distri-
bution of relaxation times. The static” viscosity,
Mg, is the zero-frequency limit of n'(w),

ns=G. f g(In 7)d In 7. 3)

The instantaneous shear modulus and the distribution
of relaxation times can be investigated by shear ultra-
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sonic spectroscopy provided the material is fluid
enough to relax in a time scale comparable to the period
of the ultrasonic waves, and one is equipped with
instruments sensitive enough to detect the highly
damped shear waves.

The evidence conflicting with the thermodynamic
approaches first came from ultrasonic measurements
[8]. Log-Gaussian distributions of relaxation times were
found to represent the data well for vitreous B,Os.
At high temperatures, when the static viscosity
followed an Arrhenian behavior, it was seen that
attributing a single relaxation time to the flow units
was sufficient to account for the frequency dependence
of the modulus. As the temperature was reduced, how-
ever, the shear viscosity departed from the Arrhenius
curve, and a broadening distribution of relaxation times
was required to fit the data. It was seen that the
broadening occurred concurrently with the departure
of the viscosity from Arrhenian behavior. Use of the
Eyring Rate-Equation led to an analysis of the distribu-
tion of activation energies. The latter was found to be
Gaussian and to broaden with decreasing temperature
as did the distribution of relaxation times. The mean
activation energy, however, did not change with
temperature over the range of measurements. In
conclusion, contrary to the assumption implicit in most
phenomenological equations of the thermodynamic
approaches, the non-Arrhenian behavior of the
viscosity was not associated with an increase in the
average activation energy with decreasing temperature,
but rather with the appearance of a distribution of
energies; some indeed higher, but others lower than
the average. These lower activation energies could
not be explained within the framework of existing
viscosity theories.

Further support for these conclusions came from
measurements of the viscosity of B:O; in the range
10'° to 10 P [9], in which the viscosity appeared to
revert to Arrhenian behavior at low temperatures.
The authors could find no reasonable fits of this
extended data by any of the viscosity theories, as the
parameter [0 Inmns/d(1/T)]=E,,, representing an
apparent activation energy, approached a temperature-
independent behavior near T,, while all existing
theories predicted a continued increase with de-
creasing temperature. In this case, a temperature-
independent apparent activation energy implies
Arrhenian viscosity behavior. They thus concluded
that the temperature dependence of the viscosity
was not controlled by structural effects, such as free
volume, and configurational entropy, but rather by
some activation energy effects, represented by
[0Inms/0(1/T)]. A successful theory would have to
lead to a constant parameter [d In /3 (1/T)], or activa-
tion energy spectrum near T,. It became apparent
that a microscopic model was needed which could
explain the appearance of a symmetric distribution of
activation energies, and give physical significance to
both the distribution of relaxation times and the
temperature dependence of the viscosity.

In analyzing the origin of a spectrum of relaxation
times, one cannot differentiate between the occurrence

of the same nonexponential relaxation for all flow units,
and the weighted sum of varying but exponential
relaxation effects caused by a varying environment
[11]. This problem was considered in the analysis of
annealing experiments on several inorganic glasses
[12, 13]. In the case of a borosilicate crown glass [12]
both volume relaxation and ionic conduction were
measured. Of the various models present in the
literature, only a modified version of Frohlich’s model
[14] attributing the existence of a distribution of
activation energies to a distribution of environments,
could fit both sets of data consistently. In these
measurements, it was found that if the distribution
were represented by two relaxation times, the fast
volume relaxation could be related to the fast electrical
conductivity relaxation. The results implied that there
are definite regions in these materials which are
associated with the different relaxations.

The connection between a distribution of activation
energies and a distribution of environments was postu-
lated long ago by Frohlich, but until recently, due to a
lack of sufficiently detailed electron micrographs and
high temperature x-ray instrumentation, no structure
was observed in molten oxide glasses with known
distributions of relaxation times. The model presented
in the annealing investigations ruled out the pos-
sibility of nonexponential decays, but only indicated
the possibility of applying some environmental model
to the analysis of structural relaxation in inorganic
oxide glasses. The problem in interpreting ultrasonic
and other relaxation experiments arises from the fact
that a distribution of relaxation times does not neces-
sarily indicate any particular molecular relaxation
process. As Goldstein [11]clearly suggested, calculation
of a distribution of relaxation times in the analysis of a
response function is only a mathematical transform
and cannot carry physical significance by itself. One
must first begin with a model for the molecular mech-
anisms for structural relaxation and then derive a
resulting set or distribution of relaxation times. For
this reason, we have chosen to investigate the viscous
relaxation process in a series of inorganic oxide glasses
with predictable distributions of environments and to
attempt to analyze the results in terms of the related
microstructure.

Microstructure in molten oxides can best be con-
trolled by selective doping, or by approaching the
critical point of an immiscible system. Since x-ray
data or electron micrographs describing the structure
of normal glasses are lacking, immiscible systems offer
the best solution due to the possibility of specifying
the temperature dependence of the structure from
analysis of the supercritical composition fluctuations.

The immiscibility phase transition is quite wide-
spread in oxide glasses. Liquid-liquid phase separa-
tions occur in such systems by changes in composition
associated with phases of widely different viscosities.
Phase separation at the concentration which has the
highest transition temperature, 7. (top of the im-
miscibility dome), occurs by means of a pseudo second-
order phase transition which is characterized by the
continuity of the free energy and its first derivatives
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across the transition boundary. As a consequence,
the thermodynamically unstable fluctuations which
lead to demixing below 7., do not end abruptly when
one raises the temperature to the critical point. These
fluctuations in fact extend far into the supercritical
(T'>T.) region, where they are thermodynamically
metastable, with associated well defined wavelengths
and lifetimes. The resulting transient domains have
some structural relationship to the subcritical im-
miscible phases, and thus are characterized by large
viscosity differences.

These  supercritical  composition fluctuations
drastically change the environment of the flow species
as the temperature is varied. Consequently, the pres-
ence of these fluctuations in composition is expected
to have large effects on the viscous flow processes of
the materials. Recently, light scattering and x-ray
diffraction experiments have observed such fluctua-
tions above the critical point [15, 16]. The effect is
usually referred to as critical opalescence.

Theoretical analyses first derived to describe gas-
liquid critical point phenomena, were applied to
liquid-liquid phase transitions by replacing density
fluctuations with fluctuations in composition [15].

Equations are thus available to describe the wave-
lengths, A, and lifetimes, 7y, of the existent fluctuations
as a function of temperature for T'>T.. The wave-
length, or range of fluctuations varies from very small
values far from the critical point, to macroscopic
extent near T.. The range of fluctuations, A (7T/T.),
is expressed as:

A=I[(TIT,— 1), (4)
The classical exponent of Y2 is shown here, but
there has been strong evidence that a larger value
such as 0.6 may be more appropriate for some lig-
uids. Such a small difference has little effect on
our model, so we will follow the classical equation.
The parameter [ is a constant of the material, and has
been shown to vary little among liquid-liquid nonpoly-
meric systems (see table 4 of ref. [17]). Taking the
average value of 11 A, which also coincides with results
from low angle x-ray scattering measurements on
PbO-B,O5-Al,O;, we may plot the most probable
fluctuation wavelength as a function of reduced
temperature in figure 1, and thus predict the size of
the microstructure present in such critical systems
above the solution temperature. It is now possible to
investigate the effect of environmental microstructure
on viscous flow by conducting structural relaxation
measurements above the critical point of some im-
miscible oxide mixtures, and analyzing the resulting
parameters in terms of reduced temperatures.

We have recently reported results from an experi-
mental investigation of the behavior of the viscosity
[18] and the frequency-dependent modulus [19]
above the critical temperature of a series of immiscible
oxide glasses. We will review, here, the salient features
of these results and then proceed to analyze the
observed supercritical effects in terms of a proposed
mechanism for the interaction between the viscous

flow process and the supercritical fluctuations in
composition.
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FIGURE 1. Fluctuation wavelength, A, plotted as a function of

reduced temperature for [= 11 A.

2. Results from Viscous Relaxation Measure-
ments on Critical Oxides

The samples chosen for this study are four sodium-
borosilicate oxides with similar high-temperature
structures but widely varying critical temperatures.
These characteristics were chosen to allow separation
of effects due to the presence of supercritical composi-
tion fluctuations from the noncritical material behavior.
Sample 1, with a composition of 70.5 percent SiO,,
22.7 percent B,0O;, and 6.8 percent Na,O by mole is
the critical composition (top of the dome) of its system
[20], and has a critical temperature of 752 °C. Samples
2, 3, and 4 were made by adding 2.1 mol percent CaO;
1.8 mol percent Al,O3; and 1.05 mol percent CaO +
0.9 mol percent AlLO; respectively to the concentra-
tions of sample 1. Samples 2, 3, and 4 have resulting
transition temperatures of 830, 643, and 741 °C respec-
tively. These samples clearly provide many advantages.
First, the viscosities of the separated phases differ
by several orders of magnitude, so that the composi-
tion fluctuations can be expected to induce effects of
large magnitude on the shear viscous relaxation
parameters. Then, the critical temperatures of the
samples occur at such high viscosities as to allow
investigation of the distribution of shear relaxation
times by ultrasonic relaxation spectroscopy.

The shear viscosity was measured by a rotation
viscometer [21]|. The results [18] were found to vary
somewhat, between the samples, at high temperatures,
reflecting the effect of doping (log viscosities of 2.41,
2.32, 2.71, and 2.46 at 1300 °C for samples 1, 2, 3, and
4 respectively). The viscosity curves were therefore
normalized by the values at 1300 °C, in order to study
only the critical point effects. This normalized
viscosity:

n*(T) = s(T) /(1300 °C) (5)
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was calculated for each sample, and is plotted against
temperature in figure 2. It is evident from the figure
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FIGURE 2. Viscosity normalized by value at 1300 °C for the 4
samples.
The critical point of each sample is denoted by a circle on the appropriate viscosity

curve.

that each curve departs from the curve of sample 3
as the respective critical points are approached from
above. This indicates that the growing microstructure
in the samples has a definite interaction with the vis-
cous flow process. Further analysis of this excess
viscosity was made possible by assuming that the non-
critical viscosity behavior could be represented by
the values of sample 3 since this sample had a critical
temperature lower than the others (samples 1, 2, and 4)
by 106, 187, and 98 °C respectively. A normalized
excess viscosity was then defined as follows:

AD(T) = An*(T) /i (T) = [n*(T) — né(T)]/mé(T)
(6)

where the noncritical viscosity, n¥(T), is represented
by the viscosity of sample 3. The normalized excess
viscosity is shown in figure (3) plotted against reduced
temperature: (7T/T.—1)"2. It is seen that when the
excess viscosity An*(T)iis normalized by the noncritical
viscosity, n¢(T), the result, A®(T), has the same
reduced-temperature behavior for all samples. The
supercritical excess viscosity reached a value of
twice the noncritical viscosity (An* = 2n¢®) near the
transition temperature, but it should be noticed that
there are no indications of a divergence down to
T/T. = 1.0009.

Ultrasonic relaxation measurements were also con-
ducted on the same series of glasses to investigate
the distributions of relaxation times, and the param-
eters which control the viscous flow [19]. The measure-
ments showed that the isothermal frequency de-
pendence of the moduli could be best represented
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FIGURE 3. Normalized excess viscosity plotted as a function of

reduced temperatucre.
The solid horizontal line represents sample 3.

by log-Gaussian distributions of relaxation times
down to temperatures close to T.(T/T. = 1.0045).

Substitution of the structural relaxation distributions
so determined into the equation calculating static
viscosity, eq (3), yields values within 10 percent of
the measured static viscosity. Since this is within the
experimental accuracy of the ultrasonic results, we
concluded that no additional relaxation process
occurring at frequencies lower than the structural
relaxation was present in the frequency-dependent
description of the shear modulus and viscosity. Such a
low frequency process (mode-mode coupling) has been
proposed [22]| to account for the supercritical excess
viscosity and is seen to be inapplicable to the systems
studied herein. Therefore, the entire critical-point
effect on the shear flow mechanism is contained in the
structural relaxation processes rather than in some
separate interaction process such as proposed [22]
by the mode-mode coupling models. We have shown
however, in a separate publication [23], that a low
frequency process similar to the mode-mode coupling
occurs in the volume relaxation mechanism of
sample 1.

In order to further investigate the effect of the static
microstructure on the relaxation and viscous processes
we must consider the relationship between the vis-
cosity and the parameters obtained in the ultrasonic
spectroscopy. Since the structural distribution of
relaxation times [g(In7) in eq 2] was found to be
log-Gaussian, the static viscosity may be written as:

T dint

m:(0)= “ﬂi‘{‘;x f G (wr)? @nO)= P

[ in* <r/r')/(2e>])} @
=G 7=G.,7" exp (0/2)
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where 7 is the average and 7' the most probable
relaxation times, and © is the width or variance
[0 =< (Aln7)2> ] of the distribution.

Further analysis of the ultrasonic data yielded the
behavior of the three parameters which control the
shear viscosity. These are the instantaneous shear
modulus, G, the most probable relaxation time, 7',
and the width of the distribution of relaxation times,
O, as per eq (7). The first two parameters, G.. and 7',
did not appear to be subject to critical point effects
and thus seem to be independent of the change in size
of the microstructure as T’ is approached. It was found,
however, that the width of the distribution of relaxa-
tion times was greatly affected by the approach of the
transition temperature, and thus by the changing
microstructure. As shown in figure 4, the samples have
narrow distributions at high temperatures where the
fluctuations are small. The distributions then broaden
drastically as the temperature is lowered to the phase
transition. Finally, the broadening saturates as the
width appears to approach a finite value close to 7',
where the fluctuations have grown to macroscopic
sizes. The large increase in the width is related to the
viscosity anomaly and represents some interaction
between the composition fluctuations and the shear
viscous relaxation process. The saturation of this
broadening very close to 7. indicates that the inter-
action is weakening when T'. is approached and the
fluctuation wavelengths are large.
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FIGURE 4. Width of the distribution of relaxation times for sample 1
(solid circles), sample 2 (open circles), sample 3 (squares), and
sample 4 (triangles) as a function of reduced temperature.

The curves were drawn to emphasize the general behavior of the materials.

3. Analysis of the Environmental Relaxation
Model

3.1. Deveiopment of the Model

In this discussion of the model we will be concerned
with presenting physical arguments followed by a
mathematical formulation of the behavior of the

distributions of relaxation times and activation energies
in terms of the appearance and growth of local micro-
structure in the melt. These distributions, therefore,
will be related to a distribution of the molecular en-
vironments. The latter is then to be estimated in terms
of the supercritical probability for the occurrence of
composition fluctuations in a local region defined in the
model by the range of forces controlling structural
relaxation of the flow units.

The results from the supercritical, shear relaxation
experiments indicate that while the distribution of
relaxation times is narrow at high temperatures, a large
broadening occurs as the critical point is approached
from above. Figure 4 shows that all four curves follow
the same general behavior within the range of measure-
ments, despite the vastly different critical tempera-
tures of the oxide mixtures, when the width is analyzed
in terms of the reduced temperature.

Recent analysis of measurements of the volume
structural relaxation properties [23] of sample 1 re-
sulted in the determination of the average concentra-
tion fluctuation lifetime, 7;, whose magnitude is
compared in figure 5 with the most probable volume,
7., and shear, 7/, relaxation times. While 7,. approaches
the concentration fluctuation lifetimes at high tempera-
tures, the shear distribution centered at 7! is always
shorter than 7;. The shear structural relaxation process,
therefore, occurs in an apparently static environment,
and the composition fluctuations only interact with the
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shear flow process through the resulting temperature-
dependent distribution of local environments.

A molecule rearranges its position to respond to a
stress in a manner which is strongly dependent upon
its environment. The large increase in the width of the
distribution of relaxation times therefore could be
related to the change in the local configuration of the
material resulting from the supercritical fluctuations
in composition. Furthermore, the broadening in the
distribution of relaxation times then would result from
the change in the distribution of local environments.
Since it has been demonstrated that there is no direct
mode-mode coupling between the shear relaxation
mechanisms and the fluctuations in concentration, the
flow process does not exchange energy with the fluctua-
tions and only samples the presence of the resulting
microstructure. The problem therefore reduces to the
analysis of structural relaxation occurring in a tempera-
ture-dependent but quasi-static environment, because
the concentration fluctuation times are longer than
the shear structural relaxation times at all temperatures.

Assuming a direct relationship between distribu-
tions of environments and relaxation times, we may
analyze the effect of the critical microstructure. A
system will exhibit a single relaxation time if all its
molecules or flowing species have equivalent neighbor-
hoods. As a number of different configurations become
available to the molecules, the relaxation process will
vary spatially, and a distribution of times will appear
which broadens as either the number of configurations
or the variation of relaxation times among the neighbor-
hoods increases. It is clear from our results that these
two types of behavior are evident in our distribution of
relaxation times as 7. is approached. However, as the
fluctuations grow to macroscopic sizes, we see that the
number of configurations increases, becoming very
large as the material phase-separates. The resulting
divergence is however inconsistent with our results.

We note that a relaxing species cannot be subject
to the nature of its environment without limit. As inter-
molecular forces have ranges, so must the relaxation
mechanism. Thus, we postulate that the relaxation
mechanism of a molecule is further characterized by a
range (which we will call r¢) within which the number
of configurations affect the relaxation time of the
molecule. Changes in the number of configurations
outside this range will be considered irrelevant in
determining the relaxation time of the molecule. This
concept results in a saturation of the broadening of
the distribution very close to T., as the flowing species
are insensitive to further changes in the environment.
The magnitude of ry is characteristic of the relaxation
process in a particular material, and is independent of
critical phenomena. While it is quite possible that r,
varies with temperature, in order to maintain the un-
determined parameters to a manageable number, we
will assume that its magnitude remains constant over
the range of our measurements. This assumption is
well justified since the changes in ry are expected to
be small in the temperature range of interest to us,
and the introduction of a finite range for the effective
environment in structural relaxations carries a far

greater effect than changes in the range itself. In order
to formulate the relationship between the composition
fluctuations and the distribution of relaxation times,
let us turn to elementary fluctuation theory.

3.2. Formulation of the Model

The supercritical state of liquid mixtures is charac-
terized by fluctuations in the local composition of the
material. Since we are interested in the analysis of
the width of a distribution of relaxation times in
terms of composition fluctuations, we will consider
the width, ©= ((A In 7)2), as a dependent function
of the mean-square composition change, ( (Ac)2) [24].
Thus, we let the width of the relaxation time spectrum
be dependent upon the fluctuations in local composition
as follows:

In7=1In 7+ c(d In 7/dc). (8)
This expression implies that (9 In7/dc) has been
chosen to be independent of 7 and ¢ with the result:

©)

This formulates the connection between the critical-
point related changes in the distribution of relaxation
times and the environmental changes brought about by
the supercritical microstructure.

Assuming that the probability density for composi-
tion fluctuations is a normal or Gaussian function,
then it follows from eqs (8) and (9) that the corres-
ponding distribution of relaxation times is a log-
Gaussian function of time of the form:

O= ((AIn7)2) = (0 In7/0c)2{(Ac)?).

Jc

_(Aln7)*
X 0l 2 .
|| 0

Since the ultrasonic measurements have shown that
g(In 7) is indeed a Gaussian in (In 7) in the critical
oxide mixtures, then the choice of ( (A In 7)2) rather
than another time expression such as ((A7)2) for the
dependent function of eq (8) is justified. The assump-
tion that (9 In 7/dc) is independent of 7 and c, at any
temperature, therefore leads to a distribution con-
sistent with the measured function g(In 7).

The change in the number of available configurations
for relaxation resulting from supercritical fluctuations
is written as the change in the mean-square composi-
tion fluctuation. The latter represents the average
deviation of local composition in the supercritical
mixture from the composition in a similar but homo-
geneous system. This is obtained by integrating the
supercritical correlation function, G(r), over the local
volume, Vy. G(r) is the increased probability above
average of finding two particles of the same component
at a distance r apart and thus gives a measure of the
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probability of having deviations from the homogeneous
composition [24].

G(r) = ([e(r) — () le(r) — e(r)) — 8(n = ro)
0 an

co is the average density of the component of interest,
the subscripts 1 and 2 represent two locations in
space at r; and ry, separated by a distance r, and the
averaging is a space average. 8(r;—r) is a “‘delta”
function expressing the certainty of finding a particle
at r» when r,=r;. The supercritical pair correlation
function, G(r), varies from zero, far from the critical
point, where no composition fluctuations are present,
to one at the critical point.

The supercritical deviation in local composition may
now be calculated by integrating the clustering or
ordering probability represented by G(r) over a local
volume, defined by a cutoff function f(r).

([Ac]®) = JG(r) f(r)dV]] f(r)dV

where the local composition deviation is represented
by ([Ac]?); in order to indicate that it is associated
with the cutoff function f(r). The screening function
represents the limitation of the range of interaction
in the structural relaxation process, and thus is used
to limit the integration to a local volume. As discussed
earlier, this cutoff or screening function, f(r), is neces-
sary here, since the ultrasonic and viscosity results
show a saturation in the interaction of the viscous
relaxation process with the composition fluctuations
at temperatures close to the critical where the fluctua-
tions grow to macroscopic sizes. The specific form of
this function cannot be derived at this time, since the
microscopic mechanism of structural relaxation is not
known. In earlier papers [25, 17], the authors denoted
f(r) by a step function:

(12)

1 for r<ry

0 for r > ry. 1)

s =1
However, in order to take into account the gradual
decrease in influence as the distance from the flow

unit is increased, a Gaussian screening function is
used herein.

f(r)=exp (—r?/2r3). (14)
Little difference results from this choice, except that
the final equation may be solved in closed form. The
range of this function is r¢, and events which occur at
r > ry have little effect on the behavior of the flow unit
at the center.

The choice of a functional form for the pair corre-
lation function, G(r), presents a further problem. A
popular form, to date, has been the Ornstein-Zernike-
Debye (OZD) pair correlation function [24]:

(,fr/ A

G(r)ozn= kT

(15)
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where A is the range of interaction and «y is a material
constant. The Fourier transform of this expression has
had some success with light scattering [15], and low
angle x-ray scattering [16] at small wave numbers, £,
and is written as:

g(k)ozp=corkpT/(a+ bk?). (16)
The OZD pair correlation function is applicable only
at large distances since the validity of the Fourier
transform in eq (16) is limited to small £ As a result,
G(r) ozp has an unacceptable divergence at the origin,
and cannot represent the critical correlation function
at small distances. This failure of the OZD function to
suitably represent the supercritical correlation func-
tion has been demonstrated in various x-ray measure-
ments [16, 26] for large k-values, as the inverse intensity
departs drastically from a k>dependence (eq (16)).
Following our model, we see that at temperatures close
to the critical point, the correlation length A is of the
order of r¢, and the integration of eq (12) weighs heavily
the intermediate portion of the pair correlation func-
tion. It has been shown in a previous paper [25] that, as
a result, the OZD function fails to describe adequately
the data near 7. In order to improve this present model
let us choose a function which satisfies the same
asymptotic conditions as the OZD function for small
k and large r, and has a better behavior where the latter
fails at large & and intermediate distances. The condi-
tions which must be met are that the Fourier transform
of the correlation function follow a k*-dependence at
low k-values, and that the function be finite at the
origin (r=0). The well-known Gaussian function
satisfied these requirements.

G'(r)=agksTexp (—r2/2A2%) (17)
with a Fourier transform:
g' (k) = oy kpTexp (—k2/2k?%) (18)

where k= 1/A. The Fourier transform of the Gaussian
expression may be expanded into a series at small
wave numbers:

limit &' (k) =ag, ksTI[1+3(k/k)2+3(k/c)*+ . . ]

k=0

(19)

thus having the same asymptotic behavior (a+ bk?)
as the OZD function. Furthermore, the additional posi-
tive k*term which appears for larger k-values is con-
sistent with an upward bend in the intensity curves
(/=" versus k?) resulting from low-angle x-ray scattering
measurements. In addition, the Gaussian pair-correla-
tion function remains finite at the origin, and therefore
can be normalized to one —a necessary property since
the correlation function is a probability density. We
have chosen this particular form for the correlation
function only as a means of analyzing our results.
Although the Gaussian function appears to satisfy a
number of conditions for suitability, since we cannot



formulate the functional form of the screening function,
f(r), from microscopic considerations, we by no means
intend to propose that agreement of the model with
data should suggest the Gaussian expression as a new
universal supercritical correlation function.

The local deviation in composition is now given by
the integration of the pair-correlation function as per
eq (12).

(20)

2 3/2
<(AC)Z>(;auss:a(;kHT|: A :|

AZ+r2

Defining the ratio of the structural relaxation range,
ro, to the correlation length, A, by %, and using the
temperature dependence of A discussed earlier,

R =r)/\AN= (l‘o/[) (T/Tr’_ 1)1/2

= 2o(TT.— 1)1 (1)

we may write the local deviation in composition in
terms of reduced temperature:

((Ac)*iauss= ks T [ (22)

1 3/2
1+%’3(T/T,-—])] ’

The expression is now inserted into eq (9) and once a
suitable value of (0 In7/dc) is obtained, the distribution
of relaxation times or activation energies may be ex-
pressed in terms of the reduced temperature.

4. Calculations

The factor (9 In7/dc) presents the final problem.
Throughout the paper, we have discussed the relaxa-
tion properties in terms of the natural logarithm of
time, In 7, instead of the time. A useful transform is
accomplished by the Eyring Rate Equation.

7= Ae-SkpeEIkpT 23)
Therefore:

77 = %”/ o E=ENkpTo—(S—S)kp

(24)

This transformation allows the use of “activation
energy’’ distributions instead of distributions in In7.
The activation energy format is used here for conven-
ience and to calculate (JIn7/dc). We are not con-
cerned with whether shear structural relaxation occurs
by a simple rate process in the strict Eyring sense, in
these glasses, although some indication to that effect
is seen in the Arrhenian behavior of the most probable
relaxation time at temperatures above 900 °C.

Some data [27] is available on the relative behavior
of the activation entropy and energy as a function of
composition in a borosilicate system where B,O;
replaces SiO.. Since this process occurs during the
phase separation of the oxides investigated herein,

we will use the relative magnitudes of (%) and

S
<%> to deduce the proper temperature dependence of

dc
equation.

(5 )=3(5)+ () (G )- () (50)

(25)

al . .
( n’r) in our system, according to the following

In order to compare the equation with the data [27] we
combine the first and third terms:

((?ln'z')_ 1 <()E)~l(ﬁ>
dc A‘[;T dc A'[; dc
Measurements of viscosity at high temperatures in

the Arrhenius temperature range yield both terms of
eq (26). Figure 6 represents the temperature depend-

(26)

dln 7t
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FIGURE 6. Plot of (9ln7/dc) typical of the immiscible system

studied here.
These points were calculated from the data of Ref. [27].

activation energy term appears to dominate in the
temperature range of interest to us and the factor

dc
ture. Thus we may write:

<8_};1>:[2,15<1_0T99>—0.627] 27)

The width of the relaxation time spectrum g(ln 7)
consequently becomes:

((Aln 7)) =((AE)?)/ (kpT)>.

al
< ,n T) is found to change inversely with tempera-

. 1000 2 T 1 o
=a(,[2.15<——T—>—0.627] (A-,;?)[H%Z] 28)
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Before comparing the results with our model, we note
from figure 4, that two of the samples investigated
(samples 2 and 3) follow curves which appear to be
shifted from the others. In the case of sample 3, there
may be a high temperature residual width responsible
for the shift. Since we are only interested in analyzing
the broadening attributed to the change in structure
resulting from the composition fluctuations, we sub-
tract this width, and consider only the fractional change
in width. A lack of high temperature data prevents a
similar analysis of the data from sample 2, therefore,
we will assume that it also has a residual width.
The data in the form:

2)-1
A=((Aln 7)?) {a(gA»,,v'[z.l.a(@)—o.em] }

1 3/2

is plotted in figure 7 for all four samples. The individual
deviations from the composite curve are of the order
of the experimental uncertainty, as can be seen from
the error bars on the data. At this point, the equation
proposed above can be fitted to the data, with a( and
2 as undetermined variables. The results are shown in
figure 7. The proposed function describes the three
regions in the curve. Of particular interest are the large
increase in width and the saturation of the width near
T.. Using the value of 11 A for [/, the range of inter-
action for structural relaxation. rq, is calculated to be
41 A. In a previous paper, using the OZD function,
we calculated r to be 56 A [25]. This shows that while
the form of the pair-correlation function influences the
value obtained, its order of magnitude is well estab-
lished by the data in relation to the three regions
measured in ((A In 7)%). Such a large value for r
indicates that shear viscous flow is truly a wide ranging
process!

(29)
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FIGURE 7. Comparison of the critical increase in width, with the

proposed model, (solid line).

5. Summary and Conclusion
5.1. Treatment of Supercritical Relaxation Experiments
by the Environmental Relaxation Model

A model is proposed which indicates that systems
with a broad continuous distribution of mobilities will
exhibit large supercritical effects. The model predicts
that the supercritical effect will manifest itself in the
width of the distribution of relaxation times. The relax-
ation mechanism is assumed to be characterized by a
distance, ry, which represents a finite range for the
interactions which lead to relaxation. This range is
characteristic of the material and independent of
critical point phenomena. The dependence of width on
reduced temperature, €, consists of three regions
characterized by the relative sizes of A, the range of
fluctuations, and r¢ the range of structural influence,
as shown in figure 8 where we have represented the

FIGURE 8.

Typical microstructure expected to produce the three
regions in the distribution of relaxation times, as a function of the
relative sizes of ry and A(e).

distribution of mobilities by two distinct phases for
simplicity. Region I, in which A(€) < ry, represents
high temperatures, far above 7., and shows that due
to space averaging within Vy=4/3 mri, all relaxing
species interact with similar neichborhoods and the
distribution of relaxation times is narrow, and in simple
liquids is single. The distribution is temperature in-
dependent and Arrhenian viscosity behavior is ob-
served. In Region II, as one approaches the critical
temperature, A approaches ro. Now, large differences
in environment appear as relaxing species begin to
be surrounded by different local environments. The
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width of the relaxation time spectrum increases as
the temperature approaches the critical point and the
viscosity no longer follows Arrhenian behavior. An
anomalous excess viscosity appears. In Region III,
A(€) > ry, the temperature is close to the critical
point, and the fluctuations are large. Relaxing species
are well imbeded within the fluctuations so that further
changes in A(€) have little effect on the local com-
positions. The width of the relaxation time spectrum
saturates, changing little as one approaches T.. This
is reflected in a saturation of the anomalous excess
viscosity despite a divergence of the correlation length
A. The viscosity appears to revert to Arrhenian be-
havior because, although a broad distribution of re-
laxation times remains at temperatures near 7., the
character of the distribution ceases the change with
temperature that gave rise to the non-Arrhenian
behavior. Actual Arrhenian behavior is however only
observed if the most probable relaxation time, 7', is
also Arrhenian. The Gaussian function proposed fits
all three regions well and has the proper asymptotic
behavior near and far from 7. The range of structural
influence, ro, is quite large with a value of 41 to 56 A
and spans over many molecular diameters. This
explains why, in some oxide glasses, the addition of
small amounts of impurities changes the relaxation
properties: an addition of 5 ppm of Na.,O to pure SiO,
changes the viscosity by a factor of two [28].

5.2. Generalization to Other Materials

The work presented herein has been concerned with
explaining the origin of distributions of relaxation times
observed above the critical points of a series of immis-
cible oxide mixtures. For this reason, we have been
primarily concerned with describing the microstructure
in the environment in terms of supercritical composi-
tion fluctuations. Microstructure in the environment
may, however, arise from other causes: association,
density and various other ordering phenomena. The
analysis presented here would also apply in such cases
in qualitative terms. The three regions described pre-
viously would be expected to occur in an analysis of the
spectral width as the order parameter varies in size
relative to the range of structural influence, ro.

Boron trioxide glass, for example, has a log-Gaussian
shear distribution of relaxation times [8] but has no
composition fluctuations. Yet its relaxation time spec-
trum and its distribution of activation energies broaden
as the temperature is lowered, exhibiting not only
higher activation energy values as expected, but also
lower ones as well. This apparent paradox is easily
explained by the present relaxation model, as we attrib-
ute the appearance of lower and higher activation
energies to the formation of a distribution of regions
in the melt with varying degrees of association, some
low and some high (low E and high E). A temperature
dependent spectrum of relaxation times also occurs in
GeO, glass at temperatures near its transformation
region [13]. According to the model, this would indicate
that there is a degree of microheterogeneity whose size
is of the order of ry at the transformation region in this
glass. Since ry is a property of the material, it is likely
to vary little among simple oxide glassformers so that
the model suggests a value of 50 A to the size of the

microstructure in GeQO: in the transformation region.
Electron micrographs on GeO. [29] have revealed that,
indeed, there is microheterogeneity in GeO,_ in the
transformation region of the order of 25 to 50 A.

Although, the environmental relaxation model can
give a qualitative description of the behavior of the
width of the relaxation time spectrum in terms of the
size of the order parameter (i.e., Regions I, II, and III),
a description in terms of temperatures is not possible
for normal glasses. An analysis of the temperature
dependence of the order parameter, and the form of
the pair correlation function are needed before a treat-
ment similar to the immiscible melts can be carried out
on normal or single component molten oxides.
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