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Bars of sintered polycrystalline alumina were machined to nominal dimensions of 12.7 by 1.27
by 0.32 em. Surfaces were machined flat and parallel. The mass, dimensions, and resonance frequencies
(flexural and torsional) were measured at 25 °C. The exact frequency is specified for each bar and is
typically about 2030 Hz for flexural resonance and 11250 Hz for torsional resonance. The effect of
suspension loading on resonance frequency was determined and a correction made. Each bar can be
used as a frequency standard with an uncertainty for values measured in air of about #=0.03 Hz for
flexure and #0.08 Hz for torsion. The effect of atmosphere on resonance frequency was determined
and a correction was made for this effect. The uncertainty for resonance frequencies in vacuum is
about =0.06 Hz for flexure and #0.18 Hz for torsion. Each bar can also be used as a dynamic elasticity
standard with an uncertainty estimated to be about 0.2 percent for the shear modulus and 0.4 percent
for Young’s modulus.
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1. Introduction

Elastic moduli of solids are of interest both as funda-
mental data needed in the calculation of many solid
state properties and as engineering data [1]." Modern
sound velocity and resonance techniques permit their
determination to high accuracy provided that the mass
and demensions of specimens can be accurately de-
termined and provided that care is taken to eliminate
or allow for certain loading effects. One popular
technique is to determine the frequencies of the funda-
mental normal modes of vibration by the Forster
method [2] in which a slender rod or bar is suspended
horizontally on two fine wires or threads passing around
the bar near the nodes of vibration. One wire is vi-
brated by a driver energized by a variable frequency
oscillator. The other wire is attached to a detector. The
driving frequency is varied until the desired mode of
resonance (usually flexural or torsional) is excited and
the frequency at resonance is measured. Procedures to
identify the mode which is excited and accurate equa-
tions for calculating elastic moduli from these frequen-
cies have been described [3].

The simplicity of the Forster method and its adapt-
ability to measurements at high temperature have led
to its widespread use. The accuracy with which fre-

! Figures in brackets indicate the literature references at the end of this paper.

quency can be measured with a crystal-controlled
counter and the reproducibility of a given resonance
frequency in a particular experimental arrangement
sometimes obscures the fact that serious systematic
errors can be present. The two most gross errors are
the improper identification of the vibrational mode of
the specimen which is excited or the exciting of a
vibration of some part of the apparatus other than the
specimen. Such errors may appear unlikely to pass
undetected, but experience in consulting with operators
just beginning to use the method has shown that such
errors do occur. More subtle errors which are usually
smaller and may pass unnoticed even by experienced
operators include loading effects caused by the sus-
pension or the surrounding atmosphere and tempera-
ture errors. The loading effects cause the specimen to
resonate at a frequency slightly different from that of
free vibration. The free vibration required for the speci-
men also makes it impossible to contact the specimens
with a thermocouple unless the latter is used as one of
the suspensions. This is usually undesirable because
of the mechanical characteristics of thermocouple wire.
Ordinarily a thermocouple placed very near the speci-
men is used to measure the temperature. The tempera-
ture difference between this couple and the specimen
may be appreciable in high temperature measure-
ments. It is, therefore, very useful for an operator to
have a standard specimen with accurately known reso-
nance frequencies and to have the temperature de-
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pendence of these frequencies in order to estimate the
magnitude of these errors in his apparatus. The calcu-
lation of elastic moduli from resonance frequencies is
sufficiently complicated that an example is useful for
this purpose also. The complexity in these calculations
arises because for a complete determination of the two
independent moduli an iteration process is required to
solve the simultaneous equations.

The foregoing are the primary reasons leading to the
development of a dynamic elasticity standard. A sec-
ondary motivation is the possibility of usingthe same bars
also as a standard for static measurement of Young’s
modulus in flexure. The static (isothermal) modulishould
be less than the dynamic (adiabatic) moduli by a small
amount calculable from an equation given, for example,
by Nye [4]. For alumina the difference for Young’s
modulus is only 0.2 percent. Static flexural measure-
ments, when carefully made and correctly analyzed
show good agreement with dynamic measurements
when this small difference is allowed for. Sources of
error (up to several percent) exist in static measure-
ment techniques which are difficult to locate and
eliminate. Thus, dynamic standards might be useful
for debugging static measurements.

The present elasticity standards were chosen to
meet the following criteria: (1) They should be in a
size range normally used for dynamic elasticity meas-
urements. (2) They should permit very accurate values
of resonance frequencies at 25 °C to be certified for use
in checking room temperature measurement proce-
dure. (3) Their size and shape should permit accurate
values of elastic moduli at 25 °C to be calculated and
certified. (4) The material used for the standard should
be stable over the temperature range 25 to 1000 °C to
permit certification of the ratio of frequency at elevated
temperature to frequency at 25 °C over this tempera-
ture range (from this information the frequencies
themselves and the elastic moduli can be calculated
over this temperature range).

2. Material

A standard elasticity bar should certainly be stable
under normal use. The most likely sources of trouble
with these bars are mechanical abrasion and thermal
effects. A standard elasticity bar should always be
handled with care so that damage from abrasions is
not likely, but it is desirable that the material of the
bar be sufficiently hard so that it would not be scratched
by contact with metals. The bar should withstand
heating in air to 1000 °C without change. These re-
quirements suggest the use of a hard, dense oxide.

Fused silica was considered for this use and would
apparently be quite suitable at 25 °C. It possesses the
advantages of elastic isotropy and of a high degree of
homogeneity. However, the density changes slowly
with time at 903 °C [5] so that the temperature range
for use would be limited to somewhat below 900 °C.
Furthermore, devitrification at the surface occurs
slowly at temperatures near 1000 °C; its rate may
depend on atmosphere and surface condition. Fused

silica was therefore not chosen despite its homogeneity
and ready availability because of the uncertainty
about the temperature limit which would certainly
have to be below 900 °C.

Polycrystalline alumina is elastically isotropic if
formed by a process which does not produce a pre-
ferred orientation. It is even harder than fused silica
so that it is very abrasion resistant. Polycrystalline
alumina is normally porous; this reduces the elastic
moduli but is not objectional unless the amount of
porosity varies sufficiently with position to cause an
unacceptable degree of inhomogeneity. A process for
the production of nearly pore-free polycrystalline
alumina has been developed and thin pieces are avail-
able commercially [6—9]. This process requires the
presence of a small amount of MgO to reduce the rate
of grain growth. The amount of MgO used (typically
0.25 wt %) is chosen to be within the range of solid
solubility at the sintering temperature (typically
1850 °C). The extent of solid solubility depends on
atmosphere and grain size; more importantly, the limit
of solid solubility decreases with decreasing tempera-
ture below 1730 °C [10]. Alumina produced by this
process will apparently be in a metastable state at
temperatures sufficiently below the sintering tempera-
ture. No work on the rate of precipitation of excess
MgO at 1000 °C has been located, but the strong
temperature dependence of diffusion rates in alumina
suggests that at temperatures below 1200 °C pre-
cipitation would be too slow to be significant in a
period of 1000 hours. Polycrystalline alumina was
therefore chosen and is believed to be sufficiently
stable at 1000 °C for the present purposes although
its behavior over extremely long times is not known.
After consultation with R. C. Anderson [11] and P. J.
Jorgensen [12] it was decided to use 0.1 percent MgO
and to isostatically cold press and sinter a single block
of nominal dimensions 2'/; by 2% by 47 in from which
40 specimen bars would be machined. The single-block
approach offered the advantages of chemical homo-
geneity of the starting powder and of lower cost. Re-
gions near the center of an isostatically cold pressed
and sintered block are typically more porous than
those near the surface, and it was recognized that the
large size chosen might result in appreciable total
porosity and some variation in porosity throughout the
block. It was believed, however, that these effects
would be small enough to be acceptable, and the single
block was manufactured. Sintering was carried out
under the direction of P. J. Jorgensen [12].

The sintered block was diamond ground to produce
flat surfaces with opposite surfaces parallel and adja-
cent surfaces perpendicular. The density was deter-
mined from the mass (corrected for air bouyancy) and
the dimensions (measured after overnight equilibration
in a constant temperature room at 23.9 °C). The result
was 3.933 =0.002 gm/cm*® where the uncertainty is the
gross standard deviation calculated from the individual
standard deviations of the mass and length determina-
tions. The density of pure single crystal alumina is
3.986 gm/cm?® as determined by hydrostatic weighing
[13] or 3.987 gm/cm? from x-ray parameter measure-
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ment [14]. On this basis, the average porosity of the
block was 1.3 percent.

The block was marked off into individual specimens
as shown in figure 1 and specimen numbers A1, A2, . ..
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FIGURE 1. Pattern of resonance bars machined from original

cold-pressed and sintered alumina block.

D13 were lightly inscribed on one end with a diamond
point scriber. The block was then diamond sawed into
bars in accordance with this pattern. The four large
bars A3, B3, C9, and D9 were reserved for possible
machining of cylinders and the remaining 40 bars were
prepared as elasticity standards. Each bar was given
a fine diamond grind to produce flat surfaces with
opposite sides parallel and adjacent sides perpendicu-
lar. The mass (corrected for air bouyancy) and the
dimensions of each bar are given in table 1.

Bars A3 and B3 were examined by x-ray techniques.
The prime concern was the possible existence of a
preferred orientation of the crystallites which would
cause the specimens to be anisotropic. Back-reflection
x-ray patterns showed no such preferred orientation
[15]. They also yielded the information that the average
crystallite size (determined from the number of spots
for a given reflection, the beam size, and the adsorp-
tion) was 24 wm. High-resolution high-intensity dif-
| fractometer patterns showed almost exclusively the
I a-alumina phase as expected. A very weak pattern,
identified as due to the presence of MgAl,O, (spinel),
was also present; the intensity, however, indicated that
the proportion of MgAl,O, was much less than one
percent.

3. Experimental Procedure and Frequency
Corrections

The general procedure for exciting a resonance and
probing the vibrational pattern with a pickup to identify
the vibrational mode has been described by Spinner

and Tefft [3], who also describe the electronic com-
ponents required. The following specific items of
equipment were used in the present work but many
similar components exist and would presumably be
equally satisfactory. The driver was an Astatic model
M 41-8 phonograph record recording head. It was
driven by a Hewlett-Packard 463—A precision am-
plifier driven in turn by a General Radio frequency
synthesizer Model 1163—-AR7C with automatic sweep
unit. The frequency was monitored with a Beckman
timer Model 6147 which in turn was standardized with
the NBS 100 kHz frequency so that the driving fre-
quency measurement should be accurate to 1 part
in 105, The pickup was an Astatic L-121 crystal
phonograph cartridge for use in air or an Astatic 51—3
ceramic phonograph cartridge for use at reduced pres-
sures. The signal was amplified by an Applied Cyber-
netics System Model 1A260V battery-powered low-
noise amplifier. The signal was continuously monitored
on a Dumont Model 304—AR oscilloscope which was
supplemented for measurements of response to auto-
matic frequency sweep by a Tektronix type 564
storage oscilloscope with a type 3A72 dual-trace
plug-in amplifier and a type 2B67 plug-in time base.
The use of a frequency synthesizer having a sweep
unit is very desirable for this work which requires the
combined capabilities of searching over wide frequency
ranges (to find the resonances) and of very precise
tuning (to determine the frequency of a resonance
response as little as 0.1 Hz broad). The automatic
feature of the sweep unit used allowed smooth fre-
quency change (typically 1 Hz frequency change in
10 seconds) in locating the exact maximum of the
vibrational amplitude corresponding to resonance.
Even with very low sweep rates the slow response of
the specimens caused a shift of the maximum ampli-
tude of response from the resonance frequency, but
by sweeping in both directions, recording the ampli-
tudes on the storage oscilloscope, and noting how the
maximum responses approached each other as the
sweep rate was lowered this effect could be overcome.

Each bar was suspended horizontally using fine silk
thread and the loop method of suspension [16]in which
both the thread from the driver needle and the thread
from the pickup needle are cemented to their respec-
tive needles at two points. Each thread then forms a
continuous loop and supports the specimen without a
knot at any point. Approximate values of the flexural
and torsional resonance frequency were determined
with the thread placed symmetrically some distance
from the nodes. The vibrational pattern was probed to
verify the identification of the nodes as previously
described [3]. The measured internal friction of low-
loss specimens is strongly affected by the suspension
position [17]; the resonance frequency is affected to an
extent which is much smaller but which is still signifi-
cant for the present accurate frequency determina-
tions. As in the previous work [17], a specimen was
suspended with the driver and pickup threads posi-
tioned symmetrically. To obtain a correction for the
effect of the suspension one of the specimens was
suspended at several pairs of symmetrically located
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TABLE 1. Properties of alumina standard reference bars for frequency and dynamic elastic moduli at 25 °C in
vacuum

Bar Mass Length Width Thickness Density Flexural Torsional | Young’s Shear | Poisson’s

Number Frequency | Frequency | Modulus | Modulus Ratio

Grams cm cm cm glem? Hz Hz 10" N/m?* | 10" N|m?*

Al 20.5174 12.7003 1.271 0.3222 3.944 2037.56 11249.5 3.900 1.581 0.233
A2 20.4679 12.7002 1.271 3223 3.934 2032.37 11224.3 3.869 1.569 232
A6 20.4364 12.7000 1.271 3223 3.928 2027.82 11203.5 3.846 1.561 232
A7 20.4388 12.7001 1.271 3223 3.929 2027.46 11200.4 3.844 1.560 232
A8 20.4458 12.7003 1.271 .3226 3.926 2027.57 11201.8 3.835 1.557 231
A9 20.4686 12.7003 1.271 .3228 3.929 2030.70 11216.1 3.847 1.562 8232
A10 20.4708 12.7005 127 3225 3.932 2031.64 11220.8 3.860 1.566 8232
All 20.4972 12.7006 1.271 .3226 3.936 2035.43 11237.8 3.876 RS2 8233
Al12 20.5017 12.7008 1.271 8222 3.941 2037.12 11247.6 3.898 1.580 8233
Al13 20.5579 12.7011 1.271 3223 3.951 2043.29 11279.6 3.928 1.592 8233
B1 20.4863 12.6998 1.271 0.3224 3.937 2030.55 11216.5 3.863 2.568 0.232
B2 20.4270 12.6998 1.271 15223 3.926 2027.62 11200.6 3.844 1.560 a2
B6 20.2490 12.6995 1.271 3221 3.894 2002.33 11071.3 3.720 1913 .230
B7 20.2543 12.6995 1.271 3225 3.891 2000.70 11062.4 3.702 1.506 229
B8 20.2694 12.6996 1.271 .3226 3.893 2003.93 11079.0 3.714 1.510 229
B9 20.2847 12.6996 1.271 $322l; 3.895 2005.27 11085.2 3.719 151163 .230
B10 20.3098 12.6998 1.271 .3226 3.900 2009.27 11107.4 3.741 152! .230
B11 20.3535 12.7002 1.271 S22 3.914 2015.61 11141.7 3.790 1.540 .230
B12 20.4553 12.7005 1.271 .3223 3.931 2029.48 11213.0 3.856 1.566 2311
B13 20.5947 12.7016 1.271 .3226 3.955 2046.57 11298.6 3.937 1.596 233
C1 20.5713 12.7008 1.271 0.3227 3.949 2044.29 11289.1 3.919 1.590 0.233
2 20.4124 12.6998 L2701 3227 3.920 2022.39 11177.9 3.808 1.548 .230
@3 20.2913 12.6996 1.271 .3220 3.905 2008.83 11109.9 3.759 1.529 .230
C4 20.2657 12.6995 1.271 3224 3.895 2003.08 11079.2 DN/ 1.512 .229
C5 20.2505 12.6996 1.271 3225 3.891 2000.34 11065.0 3.701 1.506 .229
Cé6 20.2209 12.6996 1.271 3221 3.890 1998.10 11054.9 3.700 1.506 .229
C7 20.2274 12.6995 1.271 3221 3.891 1998.73 11058.1 3.705 1.508 .229
C8 20.2634 12.6997 1.271 3227 3.891 2002.42 11075.3 3.705 1.508 .229
C12 20.4375 12.7005 1.271 .3221 3.932 2026.81 11202.1 3.851 1.564 .231
C13 20.5306 12.6999 1.271 3227 3.942 2038.65 11258.3 3.892 1.579 232
D1 20.5638 12.7006 1.271 0.3226 3.950 2043.27 11281.4 3919 1.589 0.233
D2 20.5251 12.7003 11271 3227 3.942 2038.87 11260.4 3.892 1.579 232
D3 20.5001 12.7004 1.271 .3228 3.935 2035.35 11243.1 3.869 1.570 232
D4 20.4892 12.7003 L2701 .3226 3.935 2033.30 11234.1 3.866 1.570 232
D5 20.4838 12.7002 1.271 .3224 3.937 2033.87 11237.6 3.876 1.573 8232
D6 20.4787 12.7004 1120711 3225 3.935 2031.77 11227.5 3.863 1.569 231
D7 20.4863 12.7004 1.271 322014 3.934 2033.46 11234.8 3.863 1.568 232
D8 20.4796 12.7006 1.271 .3226 3.934 2033.59 11236.1 3.867 1.570 231
D12 20.5332 12.7013 1.271 .3226 3.942 2039.18 11259.8 3.896 1.580 235
D13 20.5710 12.7007 1.271 .3227 3.948 2045.14 11290.3 3.923 1.591 s

2 For use in air subtract 0.99 Hz from flexural resonance frequency and 2.25 Hz from torsional resonance frequency.

Estimated accuracy is given in terms of standard deviation based on repeated measurements for length, width, and thickness. For
other quantities the estimated uncertainty is based on estimates of the accuracy of the instruments involved, the equations used, the correc-
tion factors, and the specimen homogeneity as described in the text. The estimated standard deviations are: mass =0.0001 gm, length = 0.0002
cm, width #0.0001 c¢m, thickness #0.0003 ¢cm, density = 0.004 gm/cm?®. The estimated uncertainties are: flexural frequency in vacuum +0.06
Hz, torsional frequency in vacuum +0.18 Hz, Young’s modulus =0.016 X 10! N/m2, shear modulus #0.003%x10!" N/m2, and Poisson’s ratio
+0.005. The values of resonance frequency in air, obtainable as described above, are more accurate than the vacuum values because they
were directly determined. The corresponding estimated uncertainties are =0.03 Hz for the flexural resonance frequency and =0.08 Hz for
the torsional resonance frequency in air at one atmosphere pressure.

points and a series of frequencies determined. The
measured values for the fundamental flexural reso-
nance pass through a minimum, taken as the value for
free vibration in air, corresponding to suspension
position at the nodes of vibration. One position of the
suspension (near the nodes) was chosen as a “standard”
position and a correction factor determined for this
position. All specimens were measured with the sus-

pension at this position and with the same suspension
(i.e., the same threads and needles) used for all meas-
urements. The measured frequency was then corrected
to give the free resonance frequency of flexure in air
at the test temperature by substracting 0.05 Hz. For
torsion the equivalent correction was made by sub-
tracting 0.13 Hz.

The temperature dependence in the vicinity of 25 °C
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was next determined for two bars. The elastic moduli
of alumina are known to vary smoothly with tempera-
ture and to be approximately linear near 25 °C [18, 19].
The temperature coeflicients for the flexural and tor-
sional resonance frequencies for these two bars were
determined to be —0.117 Hz/°C and —0.710 Hz/°C,
respectively.

The bars are so nearly identical that the same cor-
rection factors for suspension effect and temperature
can be used for all bars. As can be seen the correction
factors for these suspensions and for minor deviations
of the test temperature from 25 °C are small (small
enough to be neglected in most elastic moduli measure-
ments), but they are not negligible for the present
purpose. Accordingly, the following procedure was
adopted. A careful measurement of the flexural and
torsional resonance frequencies for each bar was made
by suspending the bar within a heavy-walled, acous-
tically insulated box and allowing it to come to tempera-
ture equilibrium. The temperature was read to 0.1 °C
and each measured resonance frequency was taken as
the average of the value corresponding to the maximum
amplitude of vibration for a slow increasing-frequency
sweep and a decreasing-frequency sweep. Values were
determined to 0.01 Hz. These values, corrected as
above for temperature and suspension effect are the
free resonance frequencies in air at 25 °C.

The atmosphere is known to affect both the resonance
frequency and damping and it is sometimes suggested,
especially for damping, that the viscous drag on the
moving specimen is responsible. While viscous drag
may be important for certain types of internal friction
measurements (e.g., the torsion of thin cylinders)
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it is apparently not the predominant atmospheric
effect on the frequencies of specimens of the present
size and shape. To determine the cause and size of
the effect of atmosphere on frequency, specimens
were suspended in a large vacuum chamber which
also contained the driver and pickup. The resonance
frequency was first measured in air. The chamber was
then evacuated and filled in stages with argon. Figures
2 and 3 show the dependence of the flexural and tor-
sional resonance frequencies upon pressure of argon.
The straight lines were drawn by a visual fit. Figures
2 and 3 show that the pressure dependence of the
resonance frequencies is essentially linear over the
entire range of measurement. This differs markedly
from the bahavior of the viscosity which changes little
down to pressures of about 1 mm of Hg and then de-
creases rapidly with futher lowering of the pressure.
Such a linear dependence upon pressure is, however,
to be expected from the variation of the acoustic
impedance with pressure. For small acoustical load-
ing the frequency should change in proportion to the
acoustic impedance. The latter is proportional to
pc which for an ideal gas is proportional to (pp)'? or
to y'?M'"2p where p is density, ¢ is velocity of sound,
p is pressure, y=0C,/C, and M is mean molecular
weight [20]. The molecular weights of argon and air
are 39.95 and 29.12, respectively [21]; their y values
are 1.668 and 1.403 [20]. Thus the ratio of the shift of
resonance frequency in going from vacuum to 1 atm
pressure of argon to the same shift for air is predicted
to be (yM)!2,./(yM)}2=1.277. The measured fre-
quency shifts are 1.24 Hz and 0.99 Hz for flexure giv-
ing a ratio of 1.25; the corresponding values for torsion
are 2.90 Hz and 2.25 Hz giving a ratio of 1.29. The
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bars are sufficiently alike that the same frequency
shifts apply to all bars. The free resonance frequency
at 25 °C in vacuum is thus given by the free resonance
frequengcy at 25 °C in air plus a correction factor which
is 0.99 Hz for flexure and 2.25 Hz for torsion.

4. Calculation of Elastic Moduli and Estimates
of Error

Spinner and Tefft [3] have reviewed the equations
for calculation of elastic moduli of homogeneous,
isotropic material from the resonance frequencies of
slender bars. Their recommended equations were used.
The shear modulus, G was calculated from the density,
p. length, [, and fundamental torsional resonance fre-
quency, f;, using

G=pR(2lf;)? (1)

where R is a shape factor given by

b\2
L (2) 0.008515?
1.991 1+=
4—2.521;—‘ e
’ exp(W))-f-l

a

—0.060 (g):m <é— )L
a a

in which b is width and a is thickness. The flexural
motion is in the direction of the thickness.

Spinner and Tefft estimate that this calculation
should give G values accurate to within 0.2 percent
when b/l < 0.3 and b/a < 10 as they are for the present
specimens.

Young’s modulus, Y, was calculated from

2)

Y=0.94642 (pl*f?|a*)T (3)

in which f; is the fundamental flexural resonance fre-
quency and T is a correction factor given by

2 4
T=146.585(1+0.07521.+0.81092) (%‘) —0.868 (%’)

_8.340(1+0.2023u +2.173u?) (a/l)*
1+6.338 (1 + 0.14081 0 + 1.536p2) (a/l)?

(4)

in which w is Poisson’s ratio.

For each bar a single value of G was calculated which
does not require Poisson’s ratio in the calculation. An
initial value of Y was calculated taking 7= 1.000 which
is the value of T for a very thin bar, i.e., for t/[=0. A
value of Poisson’s ratio was then calculated from

p=(Y26)—1 )

and Y was recalculated using this value of w. This

process was repeated until self consistent values of Y
and u were obtained. The accuracy of this type of
calculation for homogeneous bars of the length-to-
thickness ratio used here has been judged to be better
than 0.1 percent judging from an empirical study with
steel specimens by Spinner, Reichard, and Tefft [24].

The above estimates of uncertainty > are those of the
equations themselves. Additional uncertainty arises
from variations in thickness (uncertainties associated
with measurements of frequency, mass, length, and
width are smaller). For the shear modulus the thickness
enters only to the —1 power through the density. An
uncertainty of 0.1 percent in the thickness (the prob-
able error based on 5 measurements) is typical and
gives an uncertainty (from this source alone) of about
0.1 percent in the shear modulus. For Young’s modulus
the thickness enters to the —3 power (including its
presence in the density) giving an uncertainty (from
this source alone) of 0.3 percent in Young’s modulus.

The above considerations of error do not include
the effect of inhomogeneous distribution of porosity.
Porosity differences from bar to bar change elastic
moduli values but this is fully taken into account in
the calculations and does not introduce additional
uncertainty into the moduli values provided that the
porosity is homogeneously distributed within each
bar. Examination of the density values in table 1
shows that the corner bars (Al, A13, D1, and D13 in
fig. 1) form the most dense groups followed in order of
decreasing density by the following groups: those
having a face on the original surface (B1, C1, B13,
and C13), those having an edge on the original surface
(A2, A6, A7, A8, A9, A10, Al1, A12, D2, D3, D4, D5,
D6, D7, D8, and D12), and those entirely within the
original bar (B2, B6, B7, B8, B9, B10, B11, B12, C2,
C3, C4, C5, C6, C7, C8, and C12). As mentioned
previously, this type of porosity gradient is commonly
observed in cold pressed and sintered bars. If the
porosity distribution was the same for all planes
parallel to the end of the block shown in figure 1 (no
longitudinal component of the gradient); it could
probably be ignored. However, there must be a
similar gradient from end to end of the original large
bar. It is probable -that the lengthwise gradient is
smallest in the four corner bars because the porosity
is least and because these bars have directly ex-
perienced the applied pressure. Similarly, it is probable
that the lengthwise porosity gradient increases in the
order of decreasing density. If this effect introduces
systematic error into the calculated moduli, we would
expect plots of Young’s modulus or the shear modulus
as a function of porosity to give a different curve for
each of the four groups of bars. In fact, all points fall
on the same plot within the random scatter as judged
by eye. This scatter is consistent with the above esti-
mates of error due to thickness uncertainty; any

> The word “uncertainty,” as used in this paper, means an estimated total uncertainty
derived from the consideration of possible sources of error in all the measurements involved
in the determination of the studied property. The estimation is generally based on previous
knowledge of the measuring processes involved: the estimates are not expressed in terms
of exact statistical measures, such as standard deviations, because they comprise both
random and systematic errors and are partly based on judgment rather than on repetitive

measurements of the same quantity.
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error arising from inaccuracy of the equations would
be a systematic error and so not reflected in the scatter
on these plots. The maximum deviation from the curve
for any bar is 0.3 percent for Young’s modulus and
0.2 percent for the shear modulus.

Combining possible errors from the equations and
the measurements we thus arrive at estimates of the
uncertainty of 0.2 percent for the shear modulus and
0.4 percent for Young’s modulus. These uncertainty
values refer to the dynamic elastic moduli.

The static Young’s modulus will be 0.2 percent less
than the dynamic Young’s modulus because of the
change from adiabatic to isothermal conditions as
mentioned previously. Determination of static elastic
moduli in bending places a very similar, though not
identical, stress field on a bar as resonance in the
fundamental mode of flexure. We therefore expect
inhomogeneous distribution of porosity to have
approximately the same effect on the stiffness of a bar
in dynamic or static flexure. In dynamic flexure in-
honogeneous distribution of porosity could also shift
resonance frequency (and therefore calculated moduli)
through the change of inertia. As noted above, no
appreciable difference in groups of bars of differing
porosity ranges was detected so that we believe this
dynamic effect is not appreciable and the same un-
certainties should hold for static and dynamic moduli
measured over the whole length of the bar. We do not
recommend cutting a bar into pieces; the reported
values may not apply to short pieces within the stated
uncertainty limits because of porosity variation along
the length of the bar. For very accurate static com-
parisons we recommend the use of the 8 high density
bars (Al, A13, B1, B13, C1, C13, D1, D13) to minimize

possible porosity gradient effects.

5. Summary and Recommendations

The resonance frequency of each bar is specified
to the nearest 0.1 Hz for the torsional resonance in
air at 1 atm pressure with an estimated uncertainty
of =0.08 Hz (relative uncertainty of 0.0007 percent);
for flexural resonance the frequency is specified to
the nearest 0.01 Hz with an estimated uncertainty of
#+0.03 Hz (relative uncertainty of 0.0015 percent).
These values correspond to free vibration, i.e., the
specimen must be supported in such a way that the
suspension does not add effective mass or stiffness. In
most situations the suspension will affect the resonance
frequency, perhaps by a few Hz, unless care is taken.
Use of one of the present bars will give the investigator
an indication of how much his suspension is affecting
the measured resonance frequency. He must not
use the difference as a correction factor to apply to
other materials, however, because the frequency shift
caused by a given suspension may differ markedly for
bars of different moduli, density, or size.

Chipping will affect the resonance frequencies.
Each bar is quite strong and hard so that no chipping
should occur with reasonable care, but impacts must
be avoided. The mass of the bar can be redetermined

as a confirmation that chipping has not occurred. If
a bar is extremely clean and dry, electrostatic charging
may cause a fluctuating apparent change in weight,
but this effect does not occur in normal practice.

The dynamic elastic moduli are given with an esti-
mated relative uncertainty of 0.2 percent for the shear
modulus and 0.4 percent for Young’s modulus. These
estimates of uncertainty assume the use of the whole
bar; cutting the bar into smaller pieces is not rec-
ommended because of possible porosity gradients.

Young’s modulus in static flexure will be 0.2 percent
less than the dynamic value because of the change
from adiabatic to isothermal conditions. Use of one
of the highest density bars is recommended for
accurate work in static flexure.
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