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1. Introduction 

The Widom·Kadanoff-Domb scaling hypothes is 
[1 -3] t provides a qualitative characterization for the 
the rmodynami c fea tures of a sccond-ord e r phase 
transition [4]. Scalin g incorporal es Ih e us ual powe r 
law form s for the various physical anomalies and more 
genpra ll y se rvps as a lowes t order asymptotic dpsc rip· 
tion c lose to the c riti cal point lS]. Such limiting be· 
havior has bee n found in variou s math e mali ca l models 
and also appears to be valid in real sys tc ms. 

Des pite the re lative s uccess of the scaling approach, 
th e re remain s a definit e need for a more global picture 
of the c riti ca l region. This is e vident during th e analysis 
of bulk th e rmodynami c data where there e xi s ts first 
the problem of determining those physical quantiti es 
which sa ti s fy the basic condition s required by simple 
scalin g. For so me systems, this selection is easily based 
upon some known/intrinsic physical property (sym· 
metry); whereas for others, the actual choice is less 
certain 15]. The determination is further complicated 
by the spcondary problem. that of estimating the actual 
range ove r which scalin g remains valid [6] . 

Th ese diffic ulti es are particularly e~ident in the 
appli cal ion of the scaling description to real fluids near 
th e ir c riti cal point [4]. Here there is some experimental 
indication of a partial anti·symmetry about the critical 
isochore in the c he mical potential jL-number density 
p represe ntation not present with ei ther the pressure 
p or the s pecific volume v coordinate~ . !tis also known, 

I Fi g:u n'~ in brackl ·ts ind i('ate lilt" lil eratun ' reft'rt'lWl's at lilt' end of thi s paper. 

L 

howevc r , th a t the phase boundary lacks thi s sa me 
sy mme tr y in a ny sc I of variables . Th e coe xi slen ce 
curve is rather asy mmetri c a bout Ihe crilical isoc hore 
with s uch dni a tion s he in g descrihed b y th e cmpirical 
" law of rcclilinear diameter." Des pite Ihe fa c t Ihat 
thi s non sy mnlPlric behavior cannot be accommodated 
within the us ual lowes t order sca lin g description, til(' 
fluid data appear to scale in Ihp prefe rred jLp coordi
nates ove r a ratllPr large region about the c riti ca llJoint 
(in a de ns it y ran ge o[ ±30 pe rce nt a nd a te mperature 
width of se veral percent from their reduced c riti cal 
values [4]). 

An unders tanding and reso lution o[ s uch behavior 
is hampered by an a lmost co mple te ignoran ce of what 
is beyond th e lowes t orde r scaling description. Si nce 
any res ults will be biased by the neglect of unknown 
term s, one cannot hope to e xtract any more than a 
simple qualitative picture from the experimental data 
without some knowledge as to the struct ure of correc
tions to the asymptotic scaling form. The present 
article represents an attempt to gain some insight into 
the structure of such terms. The idea was to construct 
a "model" calculation in corporati ng modification of the 
usual scaling formulation. Based upon an extension of 
classical thermodynamic ideas, the scheme describes 
systems lacking any known or simple sym met ry and 
extends a scaling interpre tation over an en largcd region 
about the transition. The approach allows for t he fir st 
time discussion of the various contribut ions arising 
[rom asymmetry and higher ordered corrections to the 
asymptotic scaling be havior and th e ir influ e nce on 
observable physical properti es . (After co mple ting th e 
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work reported here, we learned that Domb and Gaunt 
have looked at the structure of correction terms to the 
co mpletely symmetric Ising model equation of s tate 
Pl . ) 

It should be pointed out. however , that the formula
tion given here is just one possible way of going beyond 
simple asymptotic scaling. For this reason , it is mos t 
important to emphasize the underlyin g formal structure 
rather than any of the individual numerical results. 
While the discussion is applied to fluid systems, the 
approach is easily adopted to other physical situation s. 
The magne ti c problem, with a comple tely sy mme tric 
phase boundary, has been discussed elsewhere [8]. 

2. Formulation 

Our approach is based upon two relatively si mple 
observation s. Just as in Widom's original hypothesis [1], 
classi cal thermodynami cs suggests the framework of 
our analys is. Firs t, recall t hat from a free-energy fun c
tion analytic in two physical variables, density p and 
temperature T, on e will obtain an equation of s tate 
exhibitin g in genera] a nonsy mm e tri c phase boundary, 
deviation s from a completely symme tri c coexis ten ce 
curve givin g ri se to a finite slope of the rec tilinear 
diam eter. With s uch be havior. howeve r. one also ac
quires the c lassical (van der Waals-lik e) and quite in 
correct descripti on of th e critical region [9J. Thu s, 
in stead of using s uch physical variables , we shall 
follow Widom rl] and assume th e the rmodyn a mi c 
properti es near the criti cal point are appropriately 
described in te rm s of one inte ns ive physical quantity 
and one suitably redu ced variable x . Moreover, the 
description is to be consistent with the homoge neity 
hypoth esis . i.e., all fun ctions are to be regular and of a 
ge neral homogeneous form [5]. The exis tence of suc h 
nonclass ical forms has been demon strated in variou s 
model calculation s where the scaling behavior appears 
as the first te rm in an expan sion about the criti cal 
point. As an example, Coo per and Green [10] found 
that th e appropriate free-energy of th e Bose fluid is a 
function of th e reduced temperature t = (T - Tel IT,. 
and a reduced variable x = t 1 /1p 1- 1/13 , /1p = (p-Pcl lpc 
with the scaling form as th e dominant term in an expan· 
sion containing higher ordered homogeneous terms. 
(G aunt and Domb [7] have sugges ted a similar s tructure 
whic h applies to the Ising model.) As our second point , 
we s hall assert that in general th e free-energy den sit y 
in th e cri ti cal region is give n by a convergent expansion 
of the form 

YO 

F(p , T) -Fo(p, T) = 1 /1p 16TI L (/1pl ·H/~ (X) (1) 
s= 1 

where x = t 1 /1p 1- 1/i3. Here both I/f3 and a are to be 
arbitrary constants (not necessarily integer) and 
Fo(p , T) de notes any s mooth analytic part of the free
energy near the transition pc, Te . It is impli ci tly as
sumed that the fun ction F(p , T) is si ngle value every
where and sati s fies the well-known convexi ty co nditions 
for th ermodynami c stability [5J. The set of functions 

U ;(x)} are to be " well behaved" in the variable 
x = t 1 /1p 1- 1/13 over the real interval of interest (min 
x f ) :S x:S + 08. (We require only that F(p, T) sat isfy 
the physical conditions of continuit y and differentia
bility in the si ngle-phase region with each /~(x) 
analytic for x less than some finite cons tant R (see 
below).) Equivalently, one co uld tak e similar expres
sions for the chemical pot ential jL (p, Tl and the pres
surep(p , T) about the criti cal pointp = p c, t = O: 

x 

jL (p , T) = jLc+ jLo(t) + l /1p I6- 1 L ( /1p) ' jL, (x), (2) 
.';=1 

jJ (p , T) = Pc + Po ( l) + 1 /1p 1 6- 1 f (/1p) ' p,(x ). (3) 
.';= 1 

Both thermodynami c forces are to be well-behaved 
everywhere in th e si ngle-phase region and al so on the 
phase boundary (excep t perhaps at th e criti cal point). 
These ex pressions are also cons is te nt with the expe ri
mental obse rvation that both p and jL have con tinuous 
firs t deriva tiv es across th e criti cal isochore. The domi
nant s = 1 te rm of these expansion s represe nt the usual 
asy mptoti c scalin g expressions. The fun ctions jLs(x ) 
and !Js(x) are not ind e pendent but are the mselves 
related to the se t {f, (x )} throul!h th e th ermodynami c 
relations 

( T) ) of(p, T) I pp , = p- . 
cJp T 

(4) 

and 

jL(p , T) = (1 + p aO ) F(p. T) . (5) 
p T 

The form of Fo(p , T) must be cons istent with the 
ex press ion s for jL and p. Th e firs t few important rela
tions of this hierarchy are that 

and 

2.1. Two-Phase Region 

Below the critical temperature , t < 0, we seek simul
taneous (non -tri vial) solu ti ons to the condition s for 
thermodynamic stability of coexisting phases, PI. 
and pr; , 

Denoting the two branc hes by PI. - pc = /1p + and 
Pr, - p,. = /1p - , with /1p "" =± ( lt lll x "" I)i3, the shape of 
the phase boundary is found by expanding eqs (2) and 
(3) in a Taylor seri es abo ut x ~ respec tively , algebrai c 
co nsiste ncy requiring that 

(9) 
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Matc hing the variou s powers in Il lf3 we find that 
(i) xit=xiI=-xo, with both f..L1 (x) and PI (x ) 

va ni s hin g at X=-Xo; 
(ii ) xt=-xi=x l 

whe re XI = l-xol l- f3 

(iii ) in general xt= (-l)'x ;=x,. 

Thus we ide ntify f..L1 (x) with Griffith 's IS] hex) fun c ti on 
a nd th e c onditi o n that h (x = - xo) vanish along th e 
phase boundary. 

With th e boundary condition f..L1 (- xo) = 0 we ca n 
also solve th e diffe re nti a l equation (6) for I I (x). The 
homoge neous soluti on is a cons tant times Ixl f3 (8+ 1); th e 
ge neral solution may be writte n as 

II(X) =X f3UJ+ ll [ II(-xo) - f3f ~' dy f..L 1(y) J. (10) 
1- " 1f3(8+ 1) . y{3(8 +ll ...1.0 - .1 0 

Th e diffe re nce be twee n th e two coex is tin g de nsiti ("s 
is found to be ~i ve n by 

PI. - p(;= [ 1_ ~ul{3 ] 111f3 

+ [f3 (f3 + I ) ( ~ ) ~+ x~ J 111:lf3+. . .. Ol) 
2 Xu Xo 

De via ti ons fro m a co mpl e te ly symm e tri c coex is te nce 
c urv e a re desc rib e d by th e mean d e ns it y of th e two 
ph ases 

1 [ - f3x ] P=2(PL+ p r;) = pC+ l-xo l~+ 1 1 1 1~f3+ 0 (l t I4f3). 

(12) 

Thi s is e quivale nt to th e us ual " law of rectilinear 
diam e te r" in th e class ical case (f3 = 112) , but has th e 
c uriou s feature th at for real fluid s (f3 < 112) th e average 
d e ns it y P is c urve d a nd co mes into the c riti cal poi nt 
with zero s lope. See fi gure 1. Whe n XI = 0 , th e ph ase 
bound ary is symme tri c to thi s order. 

It is also poss ibl e to describe the form of tlw vapor 
press ure c urv e us in g the e qu ati on for pep , T) 

[ /h (- xu) 
fJ cocx. (p , T) = Pc + fJo (I) + It 1 {3(8+ I l I _ xol {3(8+ I ) 

+ O(I ~f3) ] (13) 

with a s imilar ex press io n fo r the c he mical pote ntial in 
th e two·phase regio n (rep lace II , by f..L s)' H e re p o( l ) is 
a s mooth a nalyti c fun ction in th e te mpe ra ture. 

While the s pec ifi c heat C,. in th e two·phase region 
can be obtain ed from th e free-e nergy F(p , T) , it is 

w 
a:: 
o 
I 
U 
o 
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...J 
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u 
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1: 1(;l HI·; 1. i.Uc/IS of II/('(/n densilies fur coeXiSlilli-! I' I)({ SI's . 

CurVt' I (da ... h{'(/ lilu') u"lIal rl"('Iilirlt'ar diarnt'lt'r ; 
(:urv(' 2 (vt"rlj('al lillt'l l illi ' of 1I1('an dl'lI~il} of ('o mplelt'J) :-Ylllr lll'Iric pl1a .. ,· huundaq 

tiki' IIwt ::,uPpoM,(1 hy lowt'::'1 urd t'r :-t'ill ing: 
Curvl' :{ (solid lint') lo('u~ or !!wan dt'tl:-.ilit,::- ~lI~q,';:t':-olt'd h) ('q (12), 

pe rh aps more inte res lin g to loo k a l the indi vidu a l co n
tributions from th e c he mi ca l po te nti a l f..L and press ure 
fJ as ex hibil ed in Ih e th e rmody nam ic ide ntit y (Ya ng 
a nd Yang [11] ) 

(14) 

As the c riti cal point is ap proached from below T,. 
alo ng th e c rit ica l isoc hore p = p c, th e a no ma lous 
te mpe ra ture varia tion is give n by 

whe re 

A _= f3(o+l) {f3(o + l ) -- l } [ /h(-XO)-pcf..L~(-xo) J. 1- xol f3(8+1) 

H ere th e express ions [or th e press ure (13) and c he mi ca l 
po tenti a l on th e phase boundary have been used and 
it has bee n ass umed th a t th e diffe re n ce /h(x)-p cf..L ~(x) 
does not vanish a l X=-Xo . T he asy mptoti c be haviorof 
Ih e s pec ifi c hea t is thus c har acterized by a criti ca l 
exponent a = 2 - f3 (0 + 1) and a coe ffi c ie nt d e te rmi ne d 
e nti re ly by t he form of./I (x) at x = - Xu (see e q (7)). In 
th e s imple scalin g formulation w he re f..L (p , T) is 
regu la r, th e div erge nce of th e specific heat a long th e 
c riti calisoc hore (T < Te) co mes e ntire ly from th e 
(a~fllap)Pe contribution . Th is formulati on perm it s co n
tribution s from eith er th e press ure and c he mi cal 
pote ntial by trea tin g both the rmod ynam ic forces o n 
an equal bas is. 
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2.2. Single-Phase Region 

All of the thermodynamic properties of the homoge
neous fluid in the one-phase region can be obtained 

. directly from the free-energy F(p, T)_ We assume that 
no higher order discontinuities exist anywhere in this 
region includin g the critical isochore x = 00. This 
implies that th e express ion for f-L(p, T) and pep, T) in 
the (x, I) plane exist and are everywhere convergent 
for large R < x ~ Xl . 

In general, the isothermal compressibility KT is 
given by 

= ILlp la- 1 f (Llp)H [(0 + 5-1 )-~ aa ] f-Ls(x) (16) 
Pc s = 1 f3 x 

with the thermodynamic stabi lity [5] requiring that Kr 
be everywhere non-negative. The dominant thermo
dynamic behavior near th e criti cal isochore (x large) 
is given by th e leading term in thi s expression (5 = 1) 
and is lik e that found from simple scaling. As the 
c riti cal point is approached along the coexistence 
c urve within the si ngle -phase region. the compress
ibility dive rges as It l- Y ' wherey'=f3(o-I), provided 
f-L;( -xu)~ O . 

The th ermodynami c behavior of tlte specific heat 
in the homogeneous phase is given by 

C,.=- T(a~F/ap)p, 

which may be written as 

c..= 1 + 1 ~ 11/3(a+s- I) -~ [P.~(X)-pc{f-L~(X)+f-L'~_ J(X)}] 
" T L..J I x/3(a+s- 1 ) -~ pc c s= J 

(17) 

with f-Lo(x)= O (neglecting the smooth contribution 
from Fo(p, I')). Since PI(X)=Pcf-LI(X), the lowest 
possible contribution to the specific heat must come 
from an s ~ 2 term in this expression. Herein the 
single phase, just as in the two-phase region, the 
avai lable experime ntal ev idence suggests that the 
pressure term (a~plaT2)pc is much larger than the 
chemical potential term [12]. About the critical iso
chore above T,., the specific heat varies as Ill -a, 
where a = 2 - f3 (0 + s -1), with s determined by the 
first non vanishing term in the limit as x ~ x. (The 
anomaly in the specific heat along the critical isochore 
is also given by Fr Itl - a , where a=2-f3(0 + r) andF,. 
denotes the limit off.(x)·x - /liI>+ " - I) as x~oo.J Such 
struc ture admits the possibility of different values for 
th e cri ti cal indices a and a'. If, for example, the 
leading s' = 2 were finite in the two-phase region and 
then vanis h above Tc at large x [see eqs 15, 17], s 

would be greater than 2 and th us th e difference 
la-a' I= f3ls-s' l cou ld be greater than zero_ 

3. Discussion 

The extended formulation of thermodynamic scaling 
presented here provides a quite genera] description 
for the critical region of a fluid. The formalism proceeds 
beyond the usual lowest order asymptotic behavior 
and accommodates both the chemical potential and 
pressure as equivalent physical variables. Within th e 
description it is possible to note contributions from the 
various higher ordered terms (5 > 1) and of the two 
quantities p, f-L to the various physical anomalies. We 
found. for exam pIe, that the diffe re nce between th e 
potential and pressure variables is not only re fl ec ted 
in the shape of the coexistence curve (as determined 
by the value of x J), but also e n te rs i nto the leadi ng 
behavior of the spec ifi c heat. 

We also expec t extended scaling to be valid beyond 
th e asymptotically small range of simple scaling, with 
contribution s from the additional terms affecting th e 
determination of the values of the criti cal indi ces away 
from the acutal critical point. For example. the experi
mentally determined s hape of the coexis tence curve 
f3* would be greater or less than the true f3 , the modi
fication depending upon both the sign and magnitude 
of the additional terms of eq (1). 

In the ra ther spec ial cases where I /f3 is an eve n 
integer, the formulation recovers the c lass ical thermo
dynamic description of a va n der Waals sys tem. For 
f3 = 112, this is just th e familiar parabolic coexiste nce 
cur've of the mean-field result, with the us ual recti
linear diameter p= Pc+ p~ l t l . 

As mentioned before. any comparison of these re
sult s to th e physical feature s must remain somewhat 
qualitative. This is because tbe formulation is esse n
tially analytic everywh ere and must therefore suffer 
the same defects as all "classical" equa tion s of s tate . 
However, we believe the utility of this a nalys is li es 
in the display of certain features whic h must eventually 
be contained in any complete thermodynamic descrip
tion of the critical region. 

The au thor wishes to thank J. M. H. Levelt-Sengers 
and Melville S. Green for discussions involving thi s 
work. 
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