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1. Introduction

The Widom-Kadanoff-Domb scaling hypothesis
[1-3]" provides a qualitative characterization for the
thermodynamic features of a second-order phase

transition [4]. Scaling incorporates the usual power

law forms for the various physical anomalies and more
generally serves as a lowest order asymptotic descrip-
tion close to the critical point [5]. Such limiting be-
havior has been found in various mathematical models
and also appears to be valid in real systems.

Despite the relative success of the scaling approach,
there remains a definite need for a more global picture
of the critical region. This is evident during the analysis
of bulk thermodynamic data where there exists first
the problem of determining those physical quantities
which satisfy the basic conditions required by simple
scaling. For some systems, this selection is easily based
upon some known/intrinsic physical property (sym-
melry); whereas for others, the actual choice is less
certain [5]. The determination is further complicated
by the secondary problem, that of estimating the actual
range over which scaling remains valid [6].

These difficulties are particularly evident in the
application of the scaling description to real fluids near
their critical point [4]. Here there is some experimental
indication of a partial anti-symmetry about the critical
isochore in the chemical potential w —number density
p representation not present with either the pressure
p or the specific volume v ¢ :oordinates. It is also known,

! Figures in brackets indicate the literature references at the end of this paper.

liquid-gas transition: phase boundary: phase transition:

however, that the phase boundary lacks this same
symmetry in any set of variables. The coexistence
curve is rather asymmetric about the critical isochore
with such deviations being described by the empirical
“law of rectilinear diameter.” Despite the fact that
this nonsymmetric behavior cannot be accommodated
within the usual lowest order scaling description, the
fluid data appear to scale in the preferred w-p coordi-
nates over a rather large region about the critical point
(in a density range of =30 percent and a temperature
width of several percent from their reduced critical
values [4]).

An understanding and resolution of such behavior
is hampered by an almost complete ignorance of what
is beyond the lowest order scaling description. Since
any results will be biased by the neglect of unknown
terms, one cannot hope to extract any more than a
simple qualitative picture from the experimental data
without some knowledge as to the structure of correc-
tions to the asymptotic scaling form. The present
article represents an attempt to gain some insight into
the structure of such terms. The idea was to construct
a “model” calculation incorporating modification of the
usual scaling formulation. Based upon an extension of
classical thermodynamic ideas, the scheme describes
systems lacking any known or simple symmetry and
extends a scaling interpretation over an enlarged region
about the transition. The approach allows for the first
time discussion of the various contributions arising
from asymmetry and higher ordered corrections to the
asymptotic scaling behavior and their influence on
observable physical properties. (After completing the
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work reported here, we learned that Domb and Gaunt
have looked at the structure of correction terms to the
completely symmetric Ising model equation of state
[71.)

It should be pointed out. however, that the formula-
tion given here is just one possible way of going beyond
simple asymptotic scaling. For this reason, it is most
important to emphasize the underlying formal structure
rather than any of the individual numerical results.
While the discussion is applied to fluid systems. the
approach is easily adopted to other physical situations.
The magnetic problem, with a completely symmetric
phase boundary, has been discussed elsewhere [8].

2. Formulation

Our approach is based upon two relatively simple
observations. Just as in Widom’s original hypothesis [1].
classical thermodynamics suggests the framework of
our analysis. First, recall that from a free-energy func-
tion analytic in two physical variables, density p and
temperature T, one will obtain an equation of state
exhibiting in general a nonsymmetric phase boundary.
deviations from a completely symmetric coexistence
curve giving rise to a finite slope of the rectilinear
diameter. With such behavior. however. one also ac-
quires the classical (van der Waals-like) and quite in-

correct description of the ecritical region [9]. Thus,
instead of using such physical variables. we shall

follow Widom [1] and assume the thermodynamic
properties near the critical point are appropriately
described in terms of one intensive physical quantity
and one suitably reduced variable x. Moreover, the
description is to be consistent with the homogeneity
hypothesis. i.e.. all functions are to be regular and of a
general homogeneous form [5]. The existence of such
nonclassical forms has been demonstrated in various
model calculations where the scaling behavior appears
as the first term in an expansion about the critical
point. As an example, Cooper and Green [10] found
that the appropriate free-energy of the Bose fluid is a
function of the reduced temperature t= (T—T,)/T.
and a reduced variable x=t|Ap |2, Ap=(p—p.)/pc
with the scaling form as the dominant term in an expan-
sion containing higher ordered homogeneous terms.
(Gaunt and Domb [7] have suggested a similar structure
which applies to the Ising model.) As our second point,
we shall assert that in general the free-energy density
in the critical region is given by a convergent expansion
of the form

F(p, T)—=Folp, T)=[8p [*13 (Ap)sfi(x) (1)
s=1

where x=1| Ap | ~"/A. Here both 1/8 and & are to be
arbitrary constants (not necessarily integer) and
Fo(p, T) denotes any smooth analytic part of the free-
energy near the transition pe, Te. It is implicitly as-
sumed that the function F'(p, T) is single value every-
where and satisfies the well-known convexity conditions
for thermodynamic stability [5]. The set of functions

{fs(x)} are to be *“well behaved” in the variable
=t|Ap| Y8 over the real interval of interest (min
xy) <Sx=-+x (We require only that F(p, T') satisfy
the physical conditions of continuity and differentia-
bility in the single-phase region with each fi(x)
analytic for x less than some finite constant R (see
below).) Equivalently, one could take similar expres-
sions for the chemical potential w(p, T') and the pres-
sure p(p, T') about the critical point p=p., t=0:

w(p. T)=petpo(t) + [Ap|2-1 S (Ap)ps(x).  (2)
s=1

)(p. T) = petpolt) + | Ap |1 (Ap)*ps(x). (3)
s=1

Both thermodynamic forces are to be well-behaved
everywhere in the single-phase region and also on the
phase buunddry (except perhaps at the critical point).
These expressions are also consistent with the experi-
mental observation that both p and w have continuous
first derivatives across the critical isochore. The domi-
nant s= 1 term of these expansions represent the usual
asymptotic scaling expressions. The functions wg(x)
and ps(x) are not independent but are themselves
related to the set {fs(x)} through the thermodynamic
relations

o (p, T)
plp,. T)=p BT )[ (4)
and
P ) , .
wlo D =(15p 50 ) Flo.1). )

The form of Fo(p. T) must be consistent with the
expressions for w and p. The first few important rela-
tions of this hierarchy are that

[S—FI—E) ]f(x)‘—‘,ul(x):p;'pn(x) (6)

and
s (x) <->:[ —ii]/'w 7
ppe Mo (X 8 4z Ja(x): (7)

2.1. Two-Phase Region

Below the critical temperature. ¢t < 0. we seek simul-
taneous (non-trivial) solutions to the conditions for
thermodynamic stability of coexisting phases, p;.

and p,

p(p.T)=p(pe.T) andu(p,. T)=w(pe. T). (8)
Denoting the two branches by p,—p.=Ap* and
pe—pe=Ap~, with Ap*== (|¢|/|x*|)#, the shape of

the phase boundary is found by expanding eqs (2) and
(3) in a Taylor series about x; respectively, algebraic
consistency requiring that

x*=x§ +x5|e|PF+aF|e|284 . . .. (9)
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Matching the various powers in [t|# we find that

(i) xg=x5=—x0, with both w,(x) and p;(x)
vanishing at x =—x:

(ll) X|’ =0T = 0%
where x; = |— x| '8

_,04-,U-:s (X)

[ Ps(x)
(B(8+I)Ax a(—)>(pz(x) —pepa(x))
X

:I.r:—.r";

(iii) in general x; = (—1)"x,; =x,.

Thus we identify w, (x) with Griffith’s [5] A(x) function
and the condition that A(x=—x¢) vanish along the
phase boundary.

With the boundary condition w,(—x,) =0 we can

also solve the differential equation (6) for f;(x). The
i x|#@+1); the

general solution may be written as

Jilx )*Xﬁ(a*”['l x,”’[;(t;r)l) /3[

The difference between the two coexisting densities
is found to be cgiven by

2
—_— = | ———— [/3
e [|‘~’(0|ﬁ] ' '

['BﬁH ( ) 55]|/|¢W+.... (11)
2 X0 Xo

Deviations from a completely symmetric coexistence
curve are described by the mean density of the two
phases

M \)
dy ﬁ(am]' (10)

1 —
p=5(prtpc ):pr*[‘*_%;ﬁ] |26+ O(J¢]*).
A0

(12)
This is equivalent to the usual “law of rectilinear
diameter” in the classical case (8= 12), but has the
curious feature that for real fluids (8 < Y2) the average
density p is curved and comes into the critical point
with zero slope. See figure 1. When x, =0, the phase
boundary is symmetric to this order.
It is also possible to describe the form of the vapor
pressure curve using the equation for p(p, T)

[)2(_.’(0)

I)(‘uoxA(p* T) = Pe + ,)o + Il‘ﬁ(ﬁﬂ) l: ‘ ‘*.XU‘B(B‘”

+()(l’-"’)j| (13)

with a similar expression for the chemical potential in
the two-phase region (re pld( e ps by us). Here po(t) is
a smooth analytic function in the temperature.

While the specific heat €, in the two-phase region
can be obtained from the free-energy F(p, T). it is

AT
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FIGURE 1. Locus of mean densities for coexisting Phases.

Curve 1 (dashed line)-usual rectilinear diameter;

Curve 2 (vertical line)-line of mean density of completely symmetric phase boundary
like that supposed by lowest order sc

Curve 3 (solid line)-locus of mean densities st

ted by eq (12).

perhaps more interesting to look at the individual con-
tributions from the chemical potential w and pressure

p as exhibited in the thermodynamic identity (Yang

and Yang [11])

Y L e L)
/)C"—T<(')'I"-’),, pl((”,z)p. (14)

As the critical point is approached from below 7.

along the critical isochore p=p., the anomalous
temperature variation is given by
P'_;‘L:Ai.|,‘ﬁ(5'1),,:+()(,5(5‘:;)—z) (15)

where

P2 ( *’X()) “Pei2 (
| — xo[BG+D

=B(6+1){B(6+1)—1} {

*.Yn) :l

Here the expressions for the pressure (13) and chemical
potential on the phase boundary have been used and
it has been assumed that the difference ps(x) —peps(x)
does not vanish at x=—x,. The asymptotic behavior of
the specific heat is thus characterized by a critical
exponent «=2—fB(5-+ 1) and a coefficient determined
entirely by the form of /1 (x) at x=—x, (see eq (7). In
the simple scaling formulation where wip, T) is
regular, the let‘I"Pl]((“ of the specific heat along the
critical isochore (T'<T.) comes entirely from the
(@2p/aT?),.. (:(mtributinn. This formulation permits con-
tributions from either the pressure and chemical
potential by treating both thermodynamic forces on
an equal basis.
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2.2. Single-Phase Region

All of the thermodynamic properties of the homoge-
neous fluid in the one-phase region can be obtained
.directly from the free-energy F'(p, T). We assume that
no higher order discontinuities exist anywhere in this
region including the ecritical isochore x=oc. This
implies that the expression for w(p. T) and p(p. T) in
the (x, ¢) plane exist and are everywhere convergent
for large R < x < o,

In general, the isothermal compressibility Ky is

given by
0
2K 1= i)
[p*Kr] <5)p1'
‘AP|5 RN

E (Ap)s—! [(5+s—1)—§£]us(x) (16)

with the thermodynamic stability [5] requiring that Ky
be everywhere non-negative. The dominant thermo-
dynamic behavior near the critical isochore (x large)
is given by the leading term in this expression (s=1)
and is like that found from simple scaling. As the
critical point is approached along the coexistence
curve within the single-phase region, the compress-
ibility diverges as |t|="" where y'=B(8—1). provided
pi(—x9) #0.

The thermodynamic behavior of the specific heat
in the homogeneous phase is given by

Co=—T(32F[3T2)p

which may he written as

C :—“1+12 “|/3(5+\ =2 |: pl{“ +M\ I( )}]
( XB(5+.\ 1)
(17)
with wo(x)=0 (neglecting the smooth contribution

from Fo(p, T)). Since pi(x)=pewi(x), the lowest
possible contribution to the specific heat must come
from an s =2 term in this expression. Here in the
single phase, just as in the two-phase region, the
available experimental evidence suggests that the
pressure term (d2p/dT?)p. is much larger than the
chemical potential term [12]. About the critical iso-
chore above T., the specific heat varies as [t|~¢,
where a=2—(6+s—1), with s determined by the
first nonvanishing term in the limit as x — %. (The
anomaly in the specific heat along the critical isochore
is also given by F. |t
denotes the limit of /| (9( - x —po+r—1) as x —> .| Such
structure admits the p()sslblhty of different values for
the critical indices a and «'. If, for example, the
leading s’ =2 were finite in the two-phase region and
then vanish above T. at large x [see eqs 15, 17], s

, where a=2—B(8+r) and F,

would be

ja—a’|=8

oreater than 2 and thus the difference
s —s'| could be greater than zero.

3. Discussion

The extended formulation of thermodynamic scaling
presented here provides a quite general description
for the critical region of a fluid. The formalism proceeds
beyond the usual lowest order asymptotic behavior
and accommodates both the chemical potential and
pressure as equivalent physical variables. Within the
description it is possible to note contributions from the
various higher ordered terms (s > 1) and of the two
quantities p, u to the various physical anomalies. We
found, for example, that the difference between the
potential and pressure variables is not only reflected
in the shape of the coexistence curve (as determined
by the value of x;), but also enters into the leading
behavior of the specific heat.

We also expect extended scaling to be valid beyond
the asymptotically small range of simple scaling, with
contributions from the additional terms affecting the
determination of the values of the critical indices away
from the acutal critical point. For example, the experi-
mentally determined shape of the coexistence curve
B* would be greater or less than the true 8, the modi-
fication depending upon both the sign and magnitude
of the additional terms of eq (1).

In the rather special cases where 1/8 is an even
integer, the formulation recovers the classical thermo-
dynamic description of a van der Waals system. For
B="12, this is just the familiar parabolic coexistence
curve of the mean-field result, with the usual recti-
linear diameter p=p.+ p|t|.

As mentioned before, any comparison of these re-
sults to the physical features must remain somewhat
qualitative. This is because the formulation is essen-
tially analytic everywhere and must therefore suffer
the same defects as all “classical” equations of state.
However, we believe the utility of this analysis lies
in the display of certain features which must eventually
be contained in any complete thermodynamic descrip-
tion of the critical region.

The author wishes to thank J. M. H. Levelt-Sengers
and Melville S. Green for discussions involving this
work.
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