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1. Introduction 

In th is pape r we prese nt the res ults of a seri es of 
experiment s on a sin gle sample of polyisobutylene 
solution subjected to vario us hi s tori es of s imple shea r. 
The work -was done as a part of a larger program to 
study th e a ppropriate ness of a fairly gene ral cons titu 
tive equation , th e Bern stein , Kearsley, Zapas (BKZ) 
elas tic fluid [11,1 in d escribin g a wide ra nge of non
lin ear viscoelas ti c be havior for a range of ma terials. 
This larger purpose influ e nced both th e c hoice of tes t 
materi al and th e choice of experime nts. In th e firs t 
place, th e s tudi es were confined to a single sampl e so 
as to provide a test of the correla tions between experi
me nts predic ted by the assumed cons titutive equa tion. 
The sampl e was chosen to show essentially comple te 
relaxa tion within the time scale of the experiment , 
since earli e r s tudies [2J had been made on mate r ial s 
with longe r relaxation tim es. The d eformations are 
various hi s tories of simple s hear, because they are 
experimen tally conveni ent deformation s and becau se 
they are co nvenient to analyze in term s of the assumed 
cons titutiv e equation. 

Some me asureme nts of normal stresses were made 
on thi s sample, but we encountered se rious di screp
ancies whe n we a tte mpted to correlate them with th e 
shear data. Thi s trouble has been traced to the recently 
disco vered " press ure hole e rror" [3J and the diffic ulty 
resolved , but we have postponed publication of the 
norm al stress da ta to a void furthe r delay in the 
prese ntatio n of th e shear stress measure ments. 

In th e course of th ese s tudies some measurement 
errors, cus tomarily ignored , were found to be s ur
prisingly la rge a nd some correct ion me thods were 
worked out a nd are presented here . A , pecialized form 
of th e BKZ elasti c fluid was used in th is pape r to 

1 Figures in brackets ind ica te t he li te ra ture refere nces a l the end of t his pape r. 
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correlate our expe r iments with very good s uccess. 
Although thi s s pec ial fo rm is ne ithe r uniqu e nor exac t , 
it has been c hosen to be consis te nt with a wide range 
of phe nomena beyond that described in thi s pa per , 
and should be of conside rable prac ti cal use. 

2. General Considerations 

Th e class of motions whi ch we shall consider will be 
limited to simple s he aring hi s tori es . 

In th e in compressible isothe rmal form of th e BKZ 
th eory [1 , 4J th e value of th e shearing s tress a t time t 
is given by th e followin g relation 

U(t ) = (2. 1) 

-f ", W ,Jy ( t ) - Y(T) , t - T) (y ( t ) - Y (T))dT 

where y ( T) is th e amount of shear at time T and W* 
is a fun c tion of s train and time.2 If W * is kn own , the 
shearin g s tress a- (t ) for a ny simple shearing fl ow can 
be calculated through eq (2.1). Of course, the form of 
W* is not s pecified by the theory and in general the 
fun ction W* must be determined through experiments. 

A good idea of the function W * can be obtained from 
examining a single step stress relaxation history in 
simple shear. In s uch a deformation the shearin rr 
his tory is given by: b 

for T < 0 

Y(T) = y = constant 
(2 .2) 

for T> O. 

By subs tituting t" = t - T and (2.2) in (2.1), we get 

U (f ) f '" -=- W*( y , t")dt" = W( y , t ) 
y ( 

(2.3) 

:! Equa tion (2. 1) is equ ivalen t 10 e(1 (3. 11 ) of Be rn ste in :41 except for a c hange uf no tat ion. 
1,1* of thi s t:quat ioll is eq ual 10 - '2(U,,+ V, , ) of Be rn s te in . a nd our a(/) is Be rn s l t: in 's ifl:!. 



where 
W ( t) = a W (y , t) 

* y, at (2.4) 

and 

W(y, co) = 0. 

In this paper we shall refer to W as the relaxation 
function . From (2.3) it follows that W or W* may be 
obtained from single step stress relaxation measure
ments in shear at different strains and from this the 
stress for any simple shearing flow history may be 
predicted. This approach is similar to the one used 
for simple extension histories [2]. 

Bernstein [51 has shown that the function 

( a In W(y, t) ) 
?t' ( y, [) = W ( y, [) 1 + a In y (2.5) 

may also be obtained from experiments of suddenly 
applied steady shear. Thus, in principle, we should 
be able to obtain W(y, t) from a series of experi
ments , and then proceed to check the BKZ theory by 
comparing measured and predicted stress for simple 
shearing histories. 

Of course, one can never realize experimentally 
these shearing histories exactly as assumed. From 
some of the experiments which approximated suddenly 
applied constant rate of shear history, discussed in 
section 6, we were able to get a rough approximation 
of the relaxation function . Applying corrections which 
will be discussed later using an iterative scheme, 
we recalculated a function W which is consistent with 
all our experiments which include measurements of 
viscosity as a function of the rate of shear, stress 
relaxation after shear (for different rates of shear), 
measurement of stress as a function of time for sud
denly applied steady shear, and single step stress 
relaxation experiments. These results, we felt , justi
fied the use of an expression for W(y, I) which can 
describe all our experiments and which is a special 
form of a more detailed expression consistent with 
the behavior of other materials and other deformations, 
VIZ: 

W(y, [) = G([) ( 1 + 0.145 IY1 ) 
1 + ~y2 o + 0.06y2) 5/ 2 

(2.6) 

where G (I) is the s hear stress relaxation modulus. ~ 
It is evident that th ere are many other forms which 
are consistent with our experimental data. Our motiva
tion for choosing form (2.6) is its relative simplicity 
and its consistency with a strain potential fun ction 
[1]. Furthermore, form (2.6) is useful in process control 
engineering since an immediate translation from the 
linear to the nonlinear behavior can be made as a 

3 Notice that (; (t). the s hear re laxat ion modulus, is the limit of relaxation function 
W (y . 1) as y goes to ze ro. 
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function of temperature , molecular weight, and 
concentration. 

3. Experimental 

The data reported in this paper were obtained on a 
10-percent solution of polyisobutylene (vistanex L- lOO, 
Enjay Chemical CO.)4 in cetane. A Weissenberg 
Rheogoniometer was used to shear the sample be
tween a flat plate (7.5 cm diameter) and a cone such that 
the angle of the gap was 0.0268 radians . The cone was 
at the bottom and was connected to the driving shaft. 
The plate was at the top and was connected to a torsion 
bar which was used to measure the torque. For most 
of the experiments a torsion bar of lis -in diam eter was I 

used. The stress-time measurements and the dynamic 
response were recorded on an oscillograph. 

The chamber enclosing the cone-plate assembly 
was kept at a temperature of 25.0 °C ± 0.1 0c. Ambient 
temperature was controlled at 25.0 °C ± 0.5 °C . An 
ambient temperature 3 degrees below the chamber 
temperature caused a noticeable change in the curve 
of viscosity versus rate of shear at high rates of shear. 
The zero shear viscosity at this temperature varies 
about 5 percent per degree. 

Periodically, degradation checks were made on 
samples of 10-percent PIB by ta}<ing viscosity versus 
rate of shear data. No changes were observed over a 
2 year period. 

4 . Behavior at Small Deformations 

It is clear from eq (2.6) that the shear relaxation 
modulus , G(l), plays an important role in our curve 
fitting scheme. Since stress relaxation measurements 
cannot be carried out using deformations small enough 
to yield an infinitesimal modulus, this is ordinarily 
obtained by some sort of extrapolation procedure. An 
alternate method, adopted here , is to calculate a curve 
from measured values of the dynamic modulus , G' (w) 
[6]. We employed the conversion scheme given by 
Marvin [7], 

G(t) = G' (w) I llw=t 

(4.1) 

using an approximation technique similar to the famil
iar derivative schemes [61 for the relaxation spectrum, 
H (T). Even though we must depend on extrapolation 
for values of H ( T) at small T, the effect on G ([) is slight. 

Figure 1 shows the dynamic data and figure 2 the 
derived values of G ([). The dotted portion of figure 2 
represents values extrapolated to times smaller than 

~Cert a in comm erc ial equipment , instrum ent s. or ma te rial s are identified in thi s paper 
in order to adequat e ly spec ify the experiment a l procedure. In no case does s uch identifica· 
tion imply recommendation or e ndorseme nt by the .'Jational Bureau of S tandards . nor does 
it imply that the mat erial or equipment identified is necessarily the best avail able fo r th e 
purpose. 
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(l /w) for the highest measured freque ncy. As a critical 
chec k on both th e convers ion and the extrapolation , 
we calc ulated C'( w) and 1) '( w ) from th e well known 
relation s [6 1 

C' ( w ) = w L: IC (l ) sin wi dIn I (4.2) 

1)' ( w) = f ""oc lC ( t) cos wl dIn l , (4.3) 
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where 1)' (w) is the dynami c viscosity. The solid circles 
in figure 1 repres ent these valu es, which agree with 
the measured curve. For values of w hi gh er than 10 S- l 

the integrals in (4.2) and (4.3) de pe nd strongly on the 
extrapolated region of C (t) . Some of the values of 
C(t) calculated from (4.1) are give n in table 1. 

TABLE 1. Shear relaxation modulus /or 10 percent 
Vistanex L- l 00 (in cetane) at 25 °C 

t (; ( t ) t (; (t) 
(s ) (Nlm") (5 ) (Nlm ") 

1 x 10- ' 2. 1 J x 10" 3 X 10 - 1 3.85 X 10' 
2 X 10 - 5 1.98 X 10" 5 X 10- 1 2.02 x lO' 
S x 10 - 5 1.78 x 10"· 8 X 10 - ' 1.05 x 10' 
1 x 10- ' 1.6 1 x 10 " 1.0 7.8 
2 x 10- 4 1.45 x 10" 2. 0 2.57 
5 x 10- ' 1. 16 x 10" 3.0 1.1 7 
I x 10- " 9. 5 X 10" 4.6 4. 1 x 10- ' 

:1 x 10- " 7.4 X 10" 8. 0 7.9 X 10- " 
5 x 10- " 5.2 X 10" 10. 0 4.0 X 10- " 
I X 10- 2 3 .8 X 10' 1.4 X 10 ' 1.2 X 10- ' 
2 x 10 - " 2 .85 X LO" 1.8 x 10' 3.9 x 10 - " 
5 x 10- " 1.8 X 10" :1.0 x 10' 2.0 x 10 - " 
1 X 10- ' 1.08 x 10' 3.0 X 10 ' 9.87 x 10- ' 
:1 x 10- ' 5. 92 x 10' 

5. Single Step Stress Relaxation in Shear 

In secti on 2 th e definition of a s ingle s te p s tress 
relaxation his tory in simple shear was given in whi ch 
the s te p is in s tantaneou s. In practice , it takes a finite 
t ime to reach th e desired deformation, and it can be 
shown that the m easured s tress is an upper bound of 
the s tress relaxati on fun ction. At long tim es the differ
ence be tween the relaxation fun ction a nd th e bound 
becom es s mail. With a knowledge of th e actual s train 
hi story, on e can es timate thi s difference and obtain a 
better bound for th e relaxation fun c tion. 

With the history 

Y(T) = O, T :;;; O 

Y(T) =1. T , 0 :;;; T :;;; tl (5.1) 
II 

Y(T) = y (I) = y , II :;;; T :;;; I 

where tl is the tim e required to reach the maximum 
strain , eq (2 .1) becomes 

Since the quantity given by the integral in (5.2) is nega

tive , r:r(l ) is an upper bound of W (y , t). Since - W *( y , t) 
Y 

is a monotone nonincreasing func tion of t, the ratio of 



a-(t) /W(y, t) goes to unity at high values of t. 
y 
For values of y such that 

a condition satisfied in the stress relaxation data reo 
ported here, it can be shown [81 that a- (I + t l ) /y for 
1 ~/ I is a lower bound of W(y, t).o 

An example of the two bounds and the function 
W(y, I) is shown in figure 3 for y=0.2 andt l = 0.03 S. 

The values of W (y , t) are the values that we used to 
correlate our different experiments. We see that even 
for values of 1 = 10 II the upper bound is high. The 
average of the two bounds gives agreement to within 
1 perce nt. In the example in figure 3, a very good 
approximation of W (y, t) can be obtained by averaging 
the time of the two bounds, viz, 

In our experiments the strains were induced through 
a shaft of the rheogoniometer normally used for sinus
oidal deformation histories. The motion of the cone 
was monitored with a transducer. The deformations 
were obtained by using a springloaded lever arm to 
drive . the shaft through part of a cycle. This arrange
ment allowed us to obtain strains up to y = l.8. By 
using only a part of the sinusoidal deformation , we 
could obtain a motion of the cone very close to a ramp 
function. The time required to reach the maximum 
strain was of the order of 0.01 to 0.05 S. 
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FIGURE 3: Bounds ujW(y . I) jor y = O.2 (Ina I, = 0.03 s . 

.~ This is equivalent to taking the relaxation from the instant of reaching the final shear 
va lu e. 
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Unfortunately, in our experimental system there is 
another complication due to the motion of the upper 
platen. The true strain at any time t is more nearly 

g(t) - a-~t) where f( is a constant depending on the 

stiffness of the torsion bar and the geometry of the 
cone and plate, and g(t) is the nominal strain at t cal
culated from the motion of the cone. With a stiffer 
torsion bar the error due to the motion of the upper 
plate would be smaller but small stresses could not be 
measured with enough precision. If the motion of the 
cone is monitored, one can calculate the error due to 
the motion of the plate. In our measurements the error 
in the stress at the early times was 6 percent. 

Figure 4 shows a plot of W ( y, I) versus y in which 
both corrections were made. The isochrones at the 
early times are in very good agreement with eq (2.6) 
which corresponds with the lines. To the extent that 
the isochrones are parallel in this type of a plot , i.e., 
superposition occurs by a vertical translation, one can 
justify the representation of W (y, t) as a product of 
the stress relaxation modulus and a function of shear, 
y, i.e., eq (2.6). 

2 

-2 

FIGURE 4: Isochrones oIW(y. t) versus y. 

The lines indicate the calc ulated behavior from eq (2.6). 

6. Suddenly Applied Constant Rate of Shear 

With our experimental arrangement we found that 
we could not obtain an instantaneous constant rate of 
shear. For that reason we monitored and measured 
the motion of the cone with a transducer during the 
early part of the shearing. The monitoring arrangement 
prevented the use of the temperature control chamber. 
Therefore, the measurements were done at room tem-

- - - -- -----~- J 
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F,G UHE 5: Th e .sohd lin es represent th e stress calcillated/or a suddenly applied rute 
o./"shear/or the rates o./"shear indicated. 

The open c ircles are experim ental da ta, a nd the so lid c ircl es are ca lculat ed va lu es using th e tru e hi story of th e 
motio n. 

perature. Since it took about 20 s to complete a run, 
the temperature variation was no more than ± 0.5 °C 
at 25 °C. 

For these runs, due to the limitations of the tran s
ducer, we co uld monitor strain s only up to y = 0.4. On 
repeating an experiment, differen t strain histories were 
invariably obtained (over the early part of the time 
scale); thi s was probably caused by differing positions 
of the gear teeth. So, from each series of repetitive 
run s, we selected the one with the least de viation from 
a con stant rate of shear. 

Using eq (2. 1) with the history 

y( T) = 0, T< O 
(6. 1) 

Y(T)= YT,T ~ O ; y =constant 

we obtain 6 

where Y = y~ and y is the rate of shear. In figure 5 we 
show the data as obtained. The lines represent the 
prediction of (6_2) and (2.6) which assume a suddenly 
applied steady shear (for the rates of shear indicated), 
and the black solid circles are values calculated from 
(2.1) and (2.6) usin g the tru e hi story of the motion. The 
agreeme nt is very good. The in ertia of the upper platen 
and assembly was not corrected for. We es timated for 
y = 22.2 s - I that the inertial effect caused an error of 

6Througho ut the pape r we s hall use the not ation a tn If to re present the de rivat ive of 
a In 'Y 

In III wilh respect to the d erivative of the logar ithm of the firs t argument. 
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less than 2 perce nt. Figure 5 shows at high rates of 
shear an overshoot of the s tress cr(t) as it approaches 
its limitin g valu e. 

From eq (6.2) the maximum value of the stress should 
occur whe n 

a In W(y, l ) =- 1 
a In y . (6.3) 

Our empirical form of W ( y , t) , eq (2.6), sati sfies thi s 
condition at y = 2.44. 

In table 2 we show the strain s at which the maximum 
of the stress occurs from oth er data. 7 Middleman's 
data [9] were estimated from the published graphs. The 
data of the more conce ntrated polyisobutylene solu
tion s were obtained in our laboratory. The zero shear 
viscosities at 25 °C were 4460 poise for the 15_1 
percent concentration and 17,760 poise for the 19.3-
percent concentration_ Assuming the principle of 
reduced variables with respect to concentration to be 
valid [10], we see that the rates of shear reported in 
table 2 for the higher concentrations will be 8 times as 
high when reduced to 10-percent concentration, for 
which the zero shear viscosity is 540 poise.8 

The position of this overshoot can be used to study 
the error caused by the motion of the upper platen. 
It is easy to show this error by experiments with torsion 
bars of different diameters. In figure 6 we show the 
data obtained from a 15.1 percent solution at a nominal 

' If eq (2.6) is correc t for all concentra tions. the max imum of the stress must occur at 
the same valu e of y. 

II The reduced rat e of shea r Yli is given as 

where TJi is the ze ro shea r viscosit y at concent ration (." 1 . 
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FIG URE 6: Stress versus ti me, /Ising different torsion iwrs for the same 
nominal rate of shear of 22 .'1.1 - 1 applied at t = O, for a {s./· 
percent solution of PIS in cetane. 

rate of shear of 22.2 s - I. The open circles show the 
data obtained with a 0.125-in torsion bar. The solid 
circles are data obtained with a 0.25-in bar and the 
black triangles, with a 0.35-in bar. The histories of the 
motion of the cone for all the runs were almost identi
cal, so that a direct comparison can be made of the 
effect of the motion of the upper platen. The maximum 
occurs at t = 0.11 s for the 0.25-in and 0.35-in bars and 
at t = 0.16 s for the 0.125-in bar. 

TABLE 2. Values of l' at which the maximum of the 
shearing stress occurs for the designated rates of shear 

15.1 percent 19.3 percent Middleman's 
y Vistanex L- I00 Vistanex L- I00 Data on Polyiso-

(in cetane) (in cetane) butylene BASF 
at 25 °C a t 25 °C B- 50 at 23.9 °C 

0.0048 ...... . ..... 2.45 
.012 .. .... . .... . 2.4 
.024 ...... ... ... 2.3 

1.77 2 .. 55 2.55 ...... 
5.56 2.55 2.55 ...... 

ILl 2.5 2.5 ..... . 
22.2 2.5 2.55 .... .. 

7. Steady State Shearing Flow 

In the previous section we examined the stress from 
suddenly applied constant rate of shear. After a certain 
time, as can be observed, the shearing stress reaches a 
limiting value independent of time. The viscosity, 
1) (y), which is the ratio of this shearing stress to the 
rate of shear, is given by 

In figure 7 we show the experimental values of viscosity 
as the open circles. The solid circles are the values 1 

calculated from (7.1) and (2.6). In the same figure we 
show the dynamic viscosity 1)' (w) . We observe that 
the two curves cannot be superposed by a shift along 
the horizontal axis . 

8. Stress Relaxation After Steady Shear 

In this history the material is initially sheared at a 
constant rate of shear y until the shearing stress is 
independent of time. The motion stops at time we 
call zero, and we observe the subsequent decay of the 
stress as a function of time. The strain history at time 
7 is given by 

1'(7) = "'7+1'0 , 

1' ( 7) = Yo , 

7 :s 0 

7 ;;': O. 

From (2.1) and the conditions of (8.1) we obtain 9 

(8.1) 

In figure 8 and figure 9 we show the experimental 
results with the open circles and the calculated results 
with the solid circles. The experimental points fall 
slightly higher than the calculated values, as the 
motion of the upper platen would lead one to expect. 

At the limit of zero rate of shear, (8.2) reduces to 

Differentiating (8.3) with respect to t we get 

_ a-(t) = C(t) . 
l' 

(8.3) 

(8.4) 

In principle we can obtain C(t) from this limit, but 
this method is not an accurate one. Since in the previ
ous section we mentioned the errors due to the motion 
of the upper platen, it is interesting to look at an 
example where these errors are very pronounced. 
From (8.3) using an integration by parts we obtain 

] IX 1'" ~ a(t)dt = C(t)tdt . 
l' 0 0 

(8.5) 

From eq (4.2) by taking the limit as w goes to zero , 
we get 

. C'(W) IX hm --2-= C(t)tdt 
w--+O W 0 

(8.6) 

(7.1) 9 For brevit y, when Wappears in an int egra l withou t it s argu ments, it is unders tood tha t 
they are the same as for the preceding W. 
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FI GU RE 8: St re~s relaxation after steody shear, for rates of shear 
y = O.S56 s- '(I ), y= 1. 77 s- '(li) , and y= 11.1 s- '(II/ ). 

The open c ircles arc experi mental data , and the solid circles are calcula tcc!. 

and from (8.5) and (8.6) we obtain 

1 f oe G' (w) 
-: cr (t)dt = lim --.,-' 
y 0 w --> O w-

(8.7) 

In figure 10 we show a plot of 

y L" cr ( t ) cit 
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FIGURE 9: Stres> relaxation a}ier steady sil ear, for rate; of shear 
y= 0.177 5- '(1 V), y= 1.11 s- ' (V), and y= 5.56 s- ' (VI). 

The open ci rcles are experim ental data , and the solid ci rcles are calculated. 

versus y using different torsion bars. The error intro
duced by the motion of the platen is very dramatic. 

9. Discussion 

The good agreem ent be tween th e ex pe rim e ntal 
data and the calculated values shows the validity of 
the BKZ theory even for mate rials whe re the sh ear 
r elaxation modulus falls very qui c kly. The relatively 



<D 
o 
-' 

o 

-2 -I 
LOG (~,5- 1 ) 

DIA. IN 
~ 1/32 

• 1/16 

o 1/8 
-0- 1/4 

o 

FIG URE 10. Varialion oj'Y f. x a(t)dl as a ./unclion oj' y using eli/ 
{) 

./erelll lorsioll !Jars, where a(t) is the measured slress ({Iier Ihe 
cessalion o/sleady shear. 

simple form that we used to represe nt the function 
W(y, t) seems to describe the behavior adequately, 
at least within the range of shearing deformations of 
our experiments. The separation of W(y, t) into a 
product of two functions, one of time and one of strain, 
i.e., W(y, t) =G(t)Wu(y), may be an oversimplifica
tion. Although a more co mplicated form of W(y, t) 
gave us be tter agreement, we felt that the uncertainty 
in our experimental data did not justify its use. 

Our purpose in this paper is not to establish a unique 
form of W (y, t), but rather to show how a wide 
variety of measurements from differe nt shear histori es 
can be related. Indeed , we know that the behavior 
of plasti cized PVC is not consistent with a W(y, t) 
which is a product of a function of strain and a function 
of time. Experiments on normal stresses are more 
critically depe ndent on the values of W (y, t) at long 
times and large strains. For instance , the first normal 
stress differe nce, <TII(t)-<TZ2(t), for a suddenly 

applied constant rate of shear, given by eq (6.1), can 
be calculated from [4] 

<TII(t)-<TZZ(t)=y2 L W(yg, 0 (2+aa\:~)gdr 

(9.1) 

In general, if the function W is such that at high values 
of y we have 

a In W < -2 
a In y 

(9 .2) 

then the maximum of <TII(t)-<TZZ(t) will occur at 
time tl/l for which 

a In W( 1'tl/l' tl/') 
a In y 

-2. 

For longe r times <TII(t) -<Tzz(t) will tend to level to 
a lower value. This behavior of the first normal stress 
difference is roughly similar to that of the shear stress. 
There are clear differen ces however; a comparison of 
eq (9.1) with eq (6.2) shows that th e overshoot for 
the shearing stress, if it occurs, must do so at an earlier 
time than tl/l. It may well be possible , however , to 
find a form of W(y, t) co mpatible with the shear 
s tress data of thi s paper which never satisfies the 
co ndition (9.2) for any value of y_ 
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