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Measurements of shear stress for various shearing flow histories at 25 °C are correlated through
the BKZ elastic fluid theory. The data are on 10 percent PIB solution in cetane. The histories include
single step stress relaxation, suddenly applied steady shear. steady shearing flow., stress relaxation

after steady shear.
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1. Introduction

In this paper we present the results of a series of
experiments on a single sample of polyisobutylene
solution subjected to various histories of simple shear.
The work was done as a part of a larger program to
study the appropriateness of a fairly general constitu-
tive equation, the Bernstein, Kearsley, Zapas (BKZ)
elastic fluid [1].! in describing a wide range of non-
linear viscoelastic behavior for a range of materials.
This larger purpose influenced both the choice of test
material and the choice of experiments. In the first
place, the studies were confined to a single sample so
as to provide a test of the correlations between experi-
ments predicted by the assumed constitutive equation.
The sample was chosen to show essentially complete
relaxation within the time scale of the experiment,
since earlier studies [2] had been made on materials
with longer relaxation times. The deformations are
various histories of simple shear, because they are
experimentally convenient deformations and because
they are convenient to analyze in terms of the assumed
constitutive equation.

Some measurements of normal stresses were made
on this sample, but we encountered serious discrep-
ancies when we attempted to correlate them with the
shear data. This trouble has been traced to the recently
discovered “‘pressure hole error” [3] and the difficulty
resolved, but we have postponed publication of the
normal stress data to avoid further delay in the
presentation of the shear stress measurements.

In the course of these studies some measurement
errors, customarily ignored, were found to be sur-
prisingly large and some correction methods were
worked out and are presented here. A specialized form
of the BKZ elastic fluid was used in this paper to

! Figures in brackets indicate the literature references at the end of this paper.
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correlate our experiments with very good success.
Although this special form is neither unique nor exact,
it has been chosen to be consistent with a wide range
of phenomena beyond that described in this paper,
and should be of considerable practical use.

2. General Considerations

The class of motions which we shall consider will be
limited to simple shearing histories.

In the incompressible isothermal form of the BKZ
theory [1, 4] the value of the shearing stress at time ¢
is given by the following relation

o(t)= (2.1)

t
—f Waly(t)—vy(r), t—1)(y(t) —y(7))dr

where y(7) is the amount of shear at time 7 and W,
is a function of strain and time.2 If W , is known, the
shearing stress o (¢) for any simple shearing flow can
be calculated through eq (2.1). Of course, the form of
W is not specified by the theory and in general the
function W, must be determined through experiments.

A good idea of the function W, can be obtained from
examining a single step stress relaxation history in
simple shear. In such a deformation the shearing
history is given by:

y(r)=0 for 7 <0
2.2)
v(7) = y= constant for 7> 0.
By substituting ¢ =t —7and (2.2) in (2.1), we get
[ %
e [ ode=W () @3

% I‘Zt_]uzninn (2.1) is equivalent to eq (3.11) of Bernstein {4] except for a change of notation.
W of this equation is equal to —2(U;,+ U},) of Bernstein, and our (1) is Bernstein’s oa.



where

oW (y.
W, (y, 1) =22 1) 2.4)
a1
and
W (y, »)=0.

In this paper we shall refer to W as the relaxation
function. From (2.3) it follows that W or W, may be
obtained from single step stress relaxation measure-
ments in shear at different strains and from this the
stress for any simple shearing flow history may be
predicted. This approach is similar to the one used
for simple extension histories [2].

Bernstein [5] has shown that the function
may also be obtained from experiments of suddenly
applied steady shear. Thus, in principle, we should
be able to obtain W (vy. t) from a series of experi-
ments, and then proceed to check the BKZ theory by
comparing measured and predicted stress for simple
shearing histories.

Of course, one can never realize experimentally
these shearing histories exactly as assumed. From
some of the experiments which approximated suddenly
applied constant rate of shear history, discussed in
section 6, we were able to get a rough approximation
of the relaxation function. Applying corrections which
will be discussed later using an iterative scheme,
we recalculated a function W which is consistent with
all our experiments which include measurements of
viscosity as a function of the rate of shear, stress
relaxation after shear (for different rates of shear),
measurement of stress as a function of time for sud-
denly applied steady shear, and single step stress
relaxation experiments. These results, we felt, justi-
fied the use of an expression for W (v, t) which can
describe all our experiments and which is a special
form of a more detailed expression consistent with

the behavior of other materials and other deformations,
viz:

dIn Wiy, t)

dlny 22

H(y, t)=W(y,t) <1+

: 1 0.145
Wy ) =005 = [y 2.6)
43y (1+0.06y)3

where G(t) is the shear stress relaxation modulus.?
It is evident that there are many other forms which
are consistent with our experimental data. Our motiva-
tion for choosing form (2.6) is its relative simplicity
and its consistency with a strain potential function
[1]. Furthermore, form (2.6) is useful in process control
engineering since an immediate translation from the
linear to the nonlinear behavior can be made as a

3Notice that G(t), the shear relaxation modulus, is the limit of relaxation function
W (y. t) as y goes to zero.
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function of temperature, molecular weight, and

concentration.

3. Experimental

The data reported in this paper were obtained on a
10-percent solution of polyisobutylene (vistanex L—100,
Enjay Chemical Co.)* in cetane. A Weissenberg
Rheogoniometer was used to shear the sample be-
tween a flat plate (7.5 cm diameter)and a cone such that
the angle of the gap was 0.0268 radians. The cone was
at the bottom and was connected to the driving shaft.
The plate was at the top and was connected to a torsion
bar which was used to measure the torque. For most
of the experiments a torsion bar of Vs-in diameter was
used. The stress-time measurements and the dynamic
response were recorded on an oscillograph.

The chamber enclosing the cone-plate assembly
was kept at a temperature of 25.0 °C = 0.1 °C. Ambient
temperature was controlled at 25.0 °C £0.5 °C. An
ambient temperature 3 degrees below the chamber
temperature caused a noticeable change in the curve
of viscosity versus rate of shear at high rates of shear.
The zero shear viscosity at this temperature varies
about 5 percent per degree.

Periodically, degradation checks were made on
samples of 10-percent PIB by taking viscosity versus
rate of shear data. No changes were observed over a
2 year period.

4. Behavior at Small Deformations

It is clear from eq (2.6) that the shear relaxation
modulus, G(¢), plays an important role in our curve
fitting scheme. Since stress relaxation measurements
cannot be carried out using deformations small enough
to yield an infinitesimal modulus, this is ordinarily
obtained by some sort of extrapolation procedure. An
alternate method, adopted here, is to calculate a curve
from measured values of the dynamic modulus, G’ (w)

[6]. We employed the conversion scheme given by
Marvin [7],

G(t) :(;/(w)ll/m:t

—fiH(T) (

using an approximation technique similar to the famil-
iar derivative schemes [6] for the relaxation spectrum,
H(7). Even though we must depend on extrapolation
for values of H(7) at small 7, the effect on G (¢) is slight.

Figure 1 shows the dynamic data and figure 2 the
derived values of G(¢). The dotted portion of figure 2
represents values extrapolated to times smaller than

7-2
(A ap

—e‘”")d In 7, 4.1)

*Certain commercial equipment, instruments, or materials are identified in this paper
in order to adequately specify the experimental procedure. In no case does such identifica-
tion imply recommendation or endorsement by the National Bureau of Standards, nor does

it imply that the material or equipment identified is necessarily the best available for the
purpose.
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FIGURE 1: Dynamic modulus G'(w) and dynamie viscosity n' ()
for a 10-percent PIB (L—100) solution in cetane.

Solid circles are the calculated values from eqs (4.2) and (4.3).

where 7' (w) is the dynamic viscosity. The solid circles
in figure 1 represent these values, which agree with
the measured curve. For values of o higher than 10 s—!
the integrals in (4.2) and (4.3) depend strongly on the
extrapolated region of G(t). Some of the values of

G(t) calculated from (4.1) are given in table 1.

TABLE 1. Shear relaxation modulus for 10 percent
Vistanex L—100 (in cetane) at 25 °C

t G(t) t G(t)

(s) (N/m2) (s) (N/m?)
1X10-3 2.11X103 [ 3 X10-! | 3.85X 10!
2X10-5 1.98 X 103 5 X10-1 ] 2.02X10!
5X10-5 1.78 x103.| 8 Xx10-!' | 1.05X 10!
1x10- 1.61 X103 1.0 7.8
2X10-4 1.45% 103 [ 2.0 2.5
X104 1.16 X 103 3.0 1.17
1 X10-3 9.5 X102 1.6 1.1 X101
2X10-3 7.4 X102 8.0 7.9 X10-2
5X10-3 5.2 X102 | 10.0 1.0 X 10-2
1 X10-2 3.8 X102 1.4 10! 1.2 X10-2
2X10-2 2.85 X102 1.8 < 10! 3.9 X10-3
5x10-2 1.8 X102 2.0x 10! 2.0 X10-3
I X101 1.08 < 102 3.0Xx 10! 9.87X10-5
2X10-1! 5.92 X 101
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FIGURE 2: Shear relaxation modulus, G(t), for a 10-percent PIB
(L—100) solution in cetane.

The dotted portion shows the extrapolated region.

(1/w) for the highest measured frequency. As a critical
check on both the conversion and the extrapolation,
we calculated G’ (w) and n'(w) from the well known
relations [6]

(}'(w):wfx (G(t)  sinwidlnt (42

%

n'(w):fx tG(t) cos wdlnt, 4.3)

=00

5. Single Step Stress Relaxation in Shear

In section 2 the definition of a single step stress
relaxation history in simple shear was given in which
the step is instantaneous. In practice, it takes a finite
time to reach the desired deformation, and it can be
shown that the measured stress is an upper bound of
the stress relaxation function. At long times the differ-
ence between the relaxation function and the bound
becomes small. With a knowledge of the actual strain
history, one can estimate this difference and obtain a
better bound for the relaxation function.

With the history

y(r) =0, r=<0
_Y
Y(T)—[ o o<rt<t, (5.1)
1

y(7)=7y(t) =y,

where ¢, is the time required to reach the maximum
strain, eq (2.1) becomes

W(y.r):g—([—)
Y
+f’i’ W, (yll—t:‘f‘f’ §><§+::_l>(lf. (5.2)

Since the quantity given by the integral in (5.2) is nega-
t
tive,l(—) is an upper bound of W (y, t). Since — W .(y, t)

£
is a monotone nonincreasing function of ¢, the ratio of
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al(t)

[W (y, t) goes to unity at high values of ¢.

For values of vy such that

| Wiy, t) | =|aW,(ay. t)], 0<sasl

a condition satisfied in the stress relaxation data re-
ported here, it can be shown [8] that o (t+¢)/y for
t =t is a lower bound of W (v, t).?

An example of the two bounds and the function
Wy, t)is shown in figure 3 for y=10.2 and ;= 0.03 s.
The values of W (y, t) are the values that we used to
correlate our different experiments. We see that even
for values of t=10 ¢, the upper bound is high. The
average of the two bounds gives agreement to within
1 percent. In the example in figure 3, a very good
approximation of W (7, t) can be obtained by averaging
the time of the two bounds, viz,

o(t+3t,) ~W(y. 1)

In our experiments the strains were induced through
a shaft of the rheogoniometer normally used for sinus-
oidal deformation histories. The motion of the cone
was monitored with a transducer. The deformations
were obtained by using a springloaded lever arm to
drive .the shaft through part of a cycle. This arrange-
ment allowed us to obtain strains up to y=1.8. By
using only a part of the sinusoidal deformation, we
could obtain a motion of the cone very close to a ramp
function. The time required to reach the maximum
strain was of the order of 0.01 to 0.05 s.
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FIGURE 3: Bounds of W(vy. t) for y=0.2 and t,=0.03 s.

5This is equivalent to taking the relaxation from the instant of reaching the final shear

value.
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Unfortunately, in our experimental system there is
another complication due to the motion of the upper
platen. The true strain at any time ¢ is more nearly
2(1) —% where K is a constant depending on the
stiffness of the torsion bar and the geometry of the
cone and plate, and g(¢) is the nominal strain at ¢ cal-
culated from the motion of the cone. With a stiffer
torsion bar the error due to the motion of the upper
plate would be smaller but small stresses could not be
measured with enough precision. If the motion of the
cone is monitored, one can calculate the error due to
the motion of the plate. In our measurements the error
in the stress at the early times was 6 percent.

Figure 4 shows a plot of W (v, t) versus 7y in which
both corrections were made. The isochrones at the
early times are in very good agreement with eq (2.6)
which corresponds with the lines. To the extent that
the isochrones are parallel in this type of a plot, i.e.,
superposition occurs by a vertical translation, one can
justify the representation of W (v, t) as a product of
the stress relaxation modulus and a function of shear,
v, i.e., eq (2.6).

1=0.06 8 R
008 ———o————o0—0 O
L O St
N
;“ 0.2 —0. = O——o0—
£
= 03
3_.; N
= 0.6 = =
8 08 5 m
ol o %)
e ‘q“%w
5 o o o
o
o ) W
2.0 WW\Q&K
2 -l (0]

LOG §

FIGURE 4: [sochrones of W (v, t) versus .

The lines indicate the calculated behavior from eq (2.6).

6. Suddenly Applied Constant Rate of Shear

With our experimental arrangement we found that
we could not obtain an instantaneous constant rate of
shear. For that reason we monitored and measured
the motion of the cone with a transducer during the
early part of the shearing. The monitoring arrangement
prevented the use of the temperature control chamber.
Therefore, the measurements were done at room tem-
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FIGURE 5: The solid lines represent the stress calculated for a suddenly applied rate
of shear for the rates of shear indicated.

The open circles are experimental data, and the solid circles are calculated values using the true history of the
motion.

perature. Since it took about 20 s to complete a run,
the temperature variation was no more than 0.5 °C
at 25 °C.

For these runs, due to the limitations of the trans-
ducer, we could monitor strains only up to y= 0.4. On
repeating an experiment, different strain histories were
invariably obtained (over the early part of the time
scale); this was probably caused by differing positions
of the gear teeth. So, from each series of repetitive
runs, we selected the one with the least deviation from
a constant rate of shear.

Using eq (2.1) with the history

y(r)=0, <0
(6.1)
y(7)=vy7, 7=0; v = constant
we obtain ¢
N (S 81nW(7§,§)>
o(t) *yJ’o W(yé, &) (l +————a 7 dé (6.2)

where y=v¢ and v is the rate of shear. In figure 5 we
show the data as obtained. The lines represent the
prediction of (6.2) and (2.6) which assume a suddenly
applied steady shear (for the rates of shear indicated),
and the black solid circles are values calculated from
(2.1) and (2.6) using the true history of the motion. The
agreement is very good. The inertia of the upper platen
and assembly was not corrected for. We estimated for
v=22.2 s~ ! that the inertial effect caused an error of

— . alnW i N
6 Throughout the paper we shall use the notation TR to represent the derivative of
ny

In W with respect to the derivative of the logarithm of the first argument.
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less than 2 percent. Figure 5 shows at high rates of
shear an overshoot of the stress o (¢) as it approaches
its limiting value.
From eq (6.2) the maximum value of the stress should
occur when
dIn W(y,t)

dInvy i

(6.3)

Our empirical form of W (v, t), eq (2.6), satisfies this
condition at y=2.44.

In table 2 we show the strains at which the maximum
of the stress occurs from other data.” Middleman’s
data [9] were estimated from the published graphs. The
data of the more concentrated polyisobutylene solu-
tions were obtained in our laboratory. The zero shear
viscosities at 25 °C were 4460 poise for the 15.1
percent concentration and 17,760 poise for the 19.3-
percent concentration. Assuming the principle of
reduced variables with respect to concentration to be
valid [10], we see that the rates of shear reported in
table 2 for the higher concentrations will be 8 times as
high when reduced to 10-percent concentration, for
which the zero shear viscosity is 540 poise.®

The position of this overshoot can be used to study
the error caused by the motion of the upper platen.
It is easy to show this error by experiments with torsion
bars of different diameters. In figure 6 we show the
data obtained from a 15.1 percent solution at a nominal

“If eq (2.6) is correct for all concentrations, the maximum of the stress must occur at
the same value of y.
8The reduced rate of shear yy is given as

A .M
IR
N

cy

Cs

()

where 7 is the zero shear viscosity at concentration ¢,.
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FIGURE 6: Stress versus time, using different torsion bars for the same

nominal rate of shear of 22.2 s=' applied at t=0. for a I5.1-

percent solution of PIB in cetane.

rate of shear of 22.2 s—!. The open circles show the
data obtained with a 0.125-in torsion bar. The solid
circles are data obtained with a 0.25-in bar and the
black triangles, with a 0.35-in bar. The histories of the
motion of the cone for all the runs were almost identi-
cal, so that a direct comparison can be made of the
effect of the motion of the upper platen. The maximum
occurs at t=0.11 s for the 0.25-in and 0.35-in bars and
at t=0.16 s for the 0.125-in bar.

TABLE 2. Values of y at which the maximum of the
shearing stress occurs for the designated rates of shear
15.1 percent 19.3 percent Middleman’s
v Vistanex L-100 | Vistanex L.-100 | Data on Polyiso-
(in cetane) (in cetane) butylene BASF
ati25 et 258 @ B-50 at 23.9 °C
(0048 e I | e 245
T B e | e 2.4
(02475 [atasaemt AR M LN S 223
1747/ D255 Vi et A PR B
5.56 2155 DALY ORI (SR R
LK 25 T S PP e N
22.2 ) 2 O R | Ko e

7. Steady State Shearing Flow

In the previous section we examined the stress from
suddenly applied constant rate of shear. After a certain
time, as can be observed, the shearing stress reaches a
limiting value independent of time. The viscosity,
1(y), which is the ratio of this shearing stress to the
rate of shear, is given by

) dé.

d In W(v¢, &)

9 Iny )

n(«))sz W (€. &) <1+

(
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In figure 7 we show the experimental values of viscosity
as the open circles. The solid circles are the values
calculated from (7.1) and (2.6). In the same figure we
show the dynamic viscosity n'(w). We observe that
the two curves cannot be superposed by a shift along
the horizontal axis.

8. Stress Relaxation After Steady Shear

In this history the material is initially sheared at a
constant rate of shear y until the shearing stress is
independent of time. The motion stops at time we
call zero, and we observe the subsequent decay of the
stress as a function of time. The strain history at time
7 is given by

v(7) =vy7r+ 0. 7<0
8.1)
Y(7) = o, 7=0.
From (2.1) and the conditions of (8.1) we obtain ?
= . dln W
(T(t)zyf W(y(f—t),f)(l+ L )dg. 8.2)
t dlnvy

In figure 8 and figure 9 we show the experimental
results with the open circles and the calculated results
with the solid circles. The experimental points fall
slightly higher than the calculated values, as the
motion of the upper platen would lead one to expect.

At the limit of zero rate of shear, (8.2) reduces to

[ x®©
ﬂ:f G(&)dE. 8.3)
By t
Differentiating (8.3) with respect to t we get
=T (8.4)
Y

In principle we can obtain G(¢) from this limit, but
this method is not an accurate one. Since in the previ-
ous section we mentioned the errors due to the motion
of the upper platen, it is interesting to look at an
example where these errors are very pronounced.
From (8.3) using an integration by parts we obtain

lfxa(t)(ltzfx(;(t)t(lt. (8.5)
Y Jo 0
From eq (4.2) by taking the limit as w goes to zero,
we get )
lim & (;") - f "G (8.6)
w0 @ 0

9For brevity, when W appears in an integral without its arguments, it is understood that
they are the same as for the preceding W.
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FIGURE 7: The viscosity as a function of rate of shear.

The open circles are experimental data, and the solid circles are calculated values. The dynamic viscosity is also
shown for comparison.
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FIGURE 8: Stress relaxation after steady shear, for rates of shear
v=0.556 s~\(I), y=1.77 s~\(II), and y=11.1 s=Y(II).

The open circles are experimental data, and the solid circles are calculatec.

and from (8.5) and (8.6) we obtain
G (o)

; 8.7)

lfx
v Jo

y

o(t)dt= lim

w—0

In figure 10 we show a plot of

ny o(t)dt
0
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FIGURE 9: Stress relaxation after steady shear, for rates of shear
y=0.177 s=\(IV), y=1.11 s7(V), and y=5.56 s~Y(VI).

The open circles are experimental data, and the solid circles are calculated.

versus 7y using different torsion bars. The error intro-
duced by the motion of the platen is very dramatic.

9. Discussion

The good agreement between the experimental
data and the calculated values shows the validity of
the BKZ theory even for materials where the shear
relaxation modulus falls very quickly. The relatively
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FiGURE 10. Variation uf}‘/f o(t)dt as a function of vy using dif-
0

ferent torsion bars. where o(t) is the measured stress after the
cessation of steady shear.

simple form that we used to represent the function
W (y, t) seems to describe the behavior adequately,
at least within the range of shearing deformations of
our experiments. The separation of W(y, t) into a
product of two functions, one of time and one of strain,
ie., W(y, t)=G(t)Wr(y), may be an oversimplifica-
tion. Although a more complicated form of W(y, t)
gave us better agreement, we felt that the uncertainty
in our experimental data did not justify its use.

Our purpose in this paper is not to establish a unique
form of W(y, t), but rather to show how a wide
variety of measurements from different shear histories
can be related. Indeed, we know that the behavior
of plasticized PVC is not consistent with a W (y, t)
which is a product of a function of strain and a function
of time. Experiments on normal stresses are more
critically dependent on the values of W (v, t) at long
times and large strains. For instance, the first normal
stress difference, o (t) —o(t), for a suddenly

applied constant rate of shear, given by eq (6.1), can
be calculated from [4]

JdIn W

o1 (t) —onlt) =¥ J: W (¥, €) <2+ alny

)eie

9.1)

In general, if the function W is such that at high values
of y we have

dln W
— < e

dlny . 9.2)
then the maximum of o;(t) — 0. (t) will occur at
time t,, for which

J ln W(ytm» tnl) S
dIny

For longer times o(t) — 02 (t) will tend to level to
a lower value. This behavior of the first normal stress
difference is roughly similar to that of the shear stress.
There are clear differences however; a comparison of
eq (9.1) with eq (6.2) shows that the overshoot for
the shearing stress, if it occurs, must do so at an earlier
time than t,. It may well be possible, however, to
find a form of W(y, t) compatible with the shear
stress data of this paper which never satisfies the
condition (9.2) for any value of y.
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