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A series impedance element equipped with coaxial connectors may be evaluated as a two-port
network. Precision connectors greatly reduce the uncertainties associated with the series connection,
making practical several measurement techniques which involve series impedances. This paper
discusses techniques for extending the range of immittance bridges to high values of admittance or
impedance, for measuring very small admittances with incremental standards of ordinary range, and
for using a bridge to measure its own reference open-circuit admittance or short-circuit impedance.
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1. Introduction

A number of measuring techniques which are com-
monly used at audio frequencies, have long been con-
sidered impractical for use at radio frequencies. Among
these are the techniques which require connecting one
component in series with another. The use of precision
coaxial connectors (1, 2), greatly reduces uncertainties
in series and shunt immittances associated with the
connection, making it practical to use series connected
components for precision measurements at radio
frequencies.

When a circuit element is equipped with precision
connectors, the elements of its equivalent circuit are
fixed by the shielding afforded by the coaxial construc-
tion and by the precisely repeatable connection. A
shielded series element may be treated as a two-port
network and represented by an equivalent pi or tee at a
given frequency, and if it is equipped with precision
connectors, the elements of the equivalent pi or tee
may be accurately evaluated by open- and short-
circuit measurements. This paper discusses the use of
series immittances in the form of precision two-port
standards in extending the range of immittance meas-
uring instruments to large immittances, in measuring
low-valued admittances in terms of relatively large
incremental standards, and in measuring the imped-
ance of the reference short-circuit of an impedance
bridge, or the admittance of the reference open-circuit
of an admittance bridge.
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2. Method for Evaluating Two-Port
Immittances

A two-port immittance may be represented by an
equivalent pi network such as that of figure 1, at any
single frequency [3]. The procedure for measuring the
elements of the piis well known, but is reviewed here
for the sake of convenience.

Yb
Port A Port B
Ya Ye
o— o
FIGURE 1. Pi equivalent of two-port network.

With port A of the two-port connected to an admit-
tance bridge, and port B shorted, the input admittance
measured by the bridge is

Y=Y+ Y. (1)

When the short is removed, port B is open circuited,
and the bridge measures the input admittance

Yb Y(‘

Y) = Y” o
2=ttty oy

@)

With port B connected to the bridge and port A shorted,
the input admittance is given by

Y.‘l = Y[l ar Y(‘- (3)



When the short is removed, port A is open, and the
input admittance is

Yu Yb

Y4: Y{‘+ Y,, ¥ Yb.

4)

Note that the two-port must be equipped with nominally
identical connectors for this series of measurements
to be possible. Equations (1), (2), and (3) are solved
simultaneously for Y, Y;. and Y., yielding

Y’):[(Yl——Y:Z)Y:]]I/Zv (5)

6)
()

So far it has been assumed that the open circuit
actually represents zero admittance across the open
port, and that the short circuit actually represents
zero impedance. This assumption is not accurate. The
short may have an impedance consisting of about
0.5 mQ (milliohm) resistance and 5X 1012 henry
inductance, and the open may have an admittance
consisting of a fringing capacitance of the order of
0.2 pF [4]. The conductance of an open circuit can
usually be neglected, as can the error caused by a non-
zero short where all admittances are of the order of 0.1
mho or smaller. When the fringing capacitance at the
open end of the two-port is taken into account, (2)

Yo=Y, — Y’M
and
Y(':Yx_Yl)-

becomes Yo(Yot Yo
SR
Y- =Y, b C f1
2 =Yt Yy+Y.+Y’ ®)
and (4) becomes
- Yb ( Yu + Yfz )
Y=Y .+ Yot Yot Voo Yy’ 9)

where Yy, is the “fringe admittance” at one open end
of the two-port, and Y}, is the fringe admittance at the
other. Fringe admittance is used instead of fringe
capacitance because the equations than apply to the
more general case of a lossy open circuit. If the two-
port is equipped with precision connectors, the two
fringe admittances will be very nearly equal.

The fringe admittance at the bridge terminal, Y3,
is removed when connection is made to the bridge
terminal. Each of the measurements (1) through (4) is
therefore in error by the amount Y;;, and this admit-
tance must be added to the measured admittance in
order to obtain the correct values for Y,+ Y, etc.

Note that Yy, will be different from Y;; and Y;» unless
the connectors are sexless. Even when precision
connectors, which are sexless by definition, are used,
Y;; may be different from Y, and Y;» because of differ-
ences in the configuration of conductors near the open
circuit. For example, the fringe capacitance of a
connector mounted flush with a large ground plane will
differ considerably from that of an identical connector
at the end of a two-port several inches above the
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ground plane. The three fringe admittances for preci-
sion connectors can be made virtually identical by
using a shielding cap instead of an open terminal to
provide the reference open circuit admittance. When
the corrections for the fringe admittances are made,
(1) through (4) must be rewritten

Y1+Yf3:Ya+ Y, (10)
Yo(Ye+Yr1)
Dy e 1
s e ab
Y+ Y=Y, + Y, (12)
and
Yo(Yo+Yss)
Yi+Y;=Y +——- 13
trs TR (13)

where Y,, Y., etc., still refer to the admittances
measured at the bridge terminal. The first three equa-
tions of this set may be solved as before, yielding

Yy=Gp+ jwCy=[(Yi—Ys) (Ys+ Y+ Yp) 1%, (14)
Yn == Yl + Yf:s = Yln (15)
and
Yp:Y3+Yf3—Yb. (16)

Section 3.3 of this paper describes a technique for
measuring the reference, or “fringe,”” admittance of an
admittance bridge and of a two-port admittance.

A two-port immittance may also be represented by
the equivalent tee of figure 2, and the elements

O

FIGURE 2. Tee Equivalent of two-port network.

evaluated by measurements with an impedance bridge.
With port A connected to the bridge and B open, the
bridge measures

L1+ Zp=2,+7Z, (17)
where Zg3 is the impedance of the reference short
circuit which is removed when the two-port is con-
nected to the bridge, and the effect of fringing capaci-
tance is considered negligible. When port B is shorted,
the bridge measures

Zp\ LcainZn )

Z)“I‘Z :Z(l+ ”
b o kT Zoy

(18)

where Z,; is the impedance of the short on port B, and
is not necessarily equal to Zg. With port B connected
to the bridge and port A open, the bridge measures

Zst+Zs=2Zy+7Z.. (19)



With port A shorted, the bridge measures

Zb(Z(1+Z.v2)

Z4+Z“ Za+Zb+Zx2'

Lot (20)

The first three equations of this set may be solved for
Za, 2y, and Z., yielding

Zv=[(Z1—2:)(Zs+Zs+Zg)]'", (21)
Zo=Z\+Z u—Zy, (22)

and
Zo=Z3+7Zu5—2Z,. (23)

Section 3.3 presents a technique for measuring the
short-circuit impedances.

Solving (14) for Y, involves taking the square root of
a complex number. The solutions are

A+ VAT B

g= = =% (24)
and
G iZw\/m (25)
where
A= (G1—6»)G3— 0*(C,—Cy) (C3+ Cri+Cpy), (26)
and
B il G — o) (Gl R C ok Gl (G e
@7)

Thus, G, and C, are obtainable in terms of measured
conductances and capacitances.

The effect of measurement errors on a measurement
of this type may be evaluated by the technique of
taking the total differential of the quantity measured
[5] The approximate error in G;, denoted by 8G,, is
given by

aGy
oB

e ("'b s1+ 20 5p. (28)

where 84 and 6B are small errors in 4 and B given by

A aA oA
84_8(;[ 8(:1"‘()(”8( +...+I,f]5(‘fl
A y
+aT‘“ &Cyy (29)
and
B, -
OB = 0 81+ (JC, ;8(, (30)
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While there is little to be gained by pursuing the
algebra further, it is instructive to take a simple
example to illustrate the order of magnitude of the
errors to be expected in measurements of this type.
If a conductance with sufficiently high ¢*(g = 200 for
error of 1 in 10%) is measured, the expression for

G; reduces to Gj=A. Furthermore, for a high-q
conductance

(1)2((:| — (Jg) (C;;+ (Jf]‘f‘ (J./:;) < ((1‘1_(1‘3)(1‘ 3

(31)
and
, 1
8G)y = 26, [G3(8G,1—8Gs) + (61— G)8G3].  (32)
b

For the case described, G; = G35 > G,, and
8Gy = (1/2017) (2(;1;501) =66,

and the error in measuring a pure series conductance
by this technique is approximately the same as the
error in measuring a two-terminal conductance with
the same bridge.

3. Applications

3.1. Range Extension to Very Large Immittances

Hartshorn [6] shows that capacitors too large for
direct measurement may be measured by connecting
them in series with smaller known capacitors. The
capacitance of the series combination is smaller than
that of either capacitor and this capacitance may be
made to fall within the range of direct measurement.
The same principle may be used in measuring any
admittance too large for direct measurement with
available instruments. The measurement is accom-
plished by evaluating the elements of the equivalent
pi (fig. 1) then connecting the unknown admittance to
the two-port and measuring the input admittance of
the combination. The value of the unknown admittance
is then calculated from the computed elements of
the pi and the measured input admittance of the
combination.

If the unknown admittance, Y, is connected to port
B and port A is connected to the bridge, the measured
input admittance is given by

Yb(Y('+Yr)
Y5:Ya+ =lir3y
Ve, 3)
from which is obtained
Yo(Ys+ Y —Y,
s e iy (34)

Yo+ Ye—Y;—Yp

?The Quality Factor of an immittance element, denoted by ““q,” is defined to be the
ratio of the major immittance component to the minor immittance component. Thus,
wl oC G

qu EF’ ge = , and gy =—

[GE Loy oG



In some cases, the elements of the pi are of no partic-
ular interest, and it is desirable to calculate Y, directly
from the measured values Y;, Y., and Y3. In this case
an expression for Y, is obtained by substituting (14),
(15), and (16) into (33):

_ (Y;—=Y,) (YVs+Yp)+ (Y —Ys)Y,

Yz Y,—Y,

(35)

After expanding (34) or (35) and separating variables,
the error in measuring G, and C, may be evaluated,
as before, by taking the total differential of the quantity.
The operation is straightforward, if somewhat labori-
ous, and will not be pursued further. An idea of the
magnitude of errors to be expected in measurements of
this sort may be obtained by considering the case of
a pure capacitor measured in series with a pure
capacitor—that is, all conductances are zero. For
this idealized case, (35) becomes

_(C5=Cy) (Cs+Cps) + (Ci = C2) Gy

CJ' Cl_‘(,,—) 0

(36)

and the error in measuring C, is

_ 1
MG
+ (C—,—C;)ﬁC;+ (C;;+ C‘1+ Cf;;)SC,-,

+ (Cs_CZ)SCf:;+ (Cl _CQ)SCfl].

[(Cr1—C2)dC, — (Cy+ Cpi + Cp3) 8C,

(37)

The errors in C;, C», C3, and C5 are composed of two
components; a calibration error and a random error due
to imprecision of the measuring capacitor. If C; and C;
are approximately equal, the calibration error will be
the same for both, and it is proper to consider the sign
of the error term in combining the errors. Since C» and
C5 may be greatly different from C, and C;, there is
no assurance the calibration errors are in the same
direction; and their signs should not be considered in
combining the error terms. Figure 3 shows the accuracy
which may be expected in series measurement of
capacitors between 10 pF and 0.01 uF assuming the
error in measuring C,, C», C3, and C; to be = (0.05% +
0.05 pF), the error in Cy, and Cy; to be about 0.001 pF,
and

C] = C;; =3 1000 pF

C,=5pF
Cf] = Cj‘:;: 0.2 pF,

and rms addition of the random errors. The accuracy
obtainable by direct measurement under the same
conditions is shown for comparison.

The range of admittances which can be measured
with a given instrument by this method lies between
zero (two-port open) and infinity (two-port shorted).
Because the accuracy is not as good as that obtained
for direct measurement, only values outside the range
of available instruments will ordinarily be measured
in this way. The technique was tested by measuring a
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number of capacitors directly, and in series with a
two-port capacitor. The results appear in table 1. The
good agreement between the two methods shows there
are no serious errors inherent in the technique.
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FIGURE 3. Accuracy obtainable in measurement of capacitance by
direct measurement, and by series measurement.

TABLE 1. Capacitance measured at 3 MHz by direct
measurement and by measurement in series with a
100-pF capacitor

Direct Series

Nominal measure- measure- Difference

capacitance ment ment (percent)
pF pF

1000 pF (A) 1006.77 1006.62 0.014
1000 pF (B) 1002.76 1002.63 .013
500 pF 501.78 501.71 .014
200 pF 200.66 200.71 =025
100 pF 101.06 101.09 =03

The usable range of an impedance bridge may be
similarly extended by connecting an unknown large
impedance in parallel with a smaller impedance whose
value is within the range of the bridge. In this case,
the two-port is more conveniently represented by the
equivalent tee of figure 2. In practice, the two-port
may be formed by connecting the smaller impedance
to one port of a coaxial tee junction and using the
other two as active ports (fig. 4). In this case, the
elements of the tee are obtained by impedance
measurements, and the unknown impedance, Z ., is
given by

(Zs—=2>)(Zs+Zs3) + (Z1—Z5)Zs: .

Lo A

(38)



Here again, the range of the bridge is extended to
cover impedances between zero (two-port shorted) to
infinity (two-port open).

= ..

(to Unknown Large
Port A Impedance)

(to Bridge)

Parallel Small Impedance

FIGURE 4. Tee arrangement for measuring large impedance in
parallel with smaller impedance.
3.2. Range Extension to Very Small Admittances

Hartshorn [6] also discusses the measurement of

very small capacitors using an incremental capacitor
of ordinary range. As he puts it: “Condensers of very
low value may also be measured by a series method.
A condenser of low value ¢ is placed in series with a
variable standard of ordinary range C. The capacitance
of the combination being ¢C/(C+¢), a small change
AC in the standard produces a change in the com-
bination of approximately ACc2/(C + ¢)?, which is for
example, 100 times smaller than AC if C/¢=9. Thus,
if the small condenser to be measured is added in
parallel with such a combination, and the standard
condenser if then diminished until the resultant
capacitance is restored to its original value, the
capacitance added is equal to the change in the
reading of the standard divided by 100. This method is
convenient when no standard of low range is available:
but when a standard of the micrometer type is available
the substitution method should be employed, as there
is always some uncertainty in any estimation of the
effect of the connecting lead in a series combination —
however small the lead may be.”

The same principle applies to measuring any small
admittance, and the use of precision connectors
eliminates much of the “uncertainty in any estimation
of the effect of the connecting lead.” The series admit-
tance may be represented by an equivalent pi, and
evaluated by measurements with an admittance
bridge. When the incremental admittance is connected
to the two-port, the circuit of figure 5 results.

The input admittance of this network, Y;, is

yh( yl 5 Y{)

Y,‘ = Y" 5
tY FY,+Y.

39)
and the change in input admittance with change in Y,
is given by

(Y —Y)Y;
Fr + Y+ Y ) (Y + Y+ V)’

AY;= (40)
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where Y, is the initial value, and Y/ is the final value.
When all the elements of the network are of like kind
and are sufficiently pure (g greater than about 200 for

o- AN\
Yb

Y

[

FIGURE 5. FEquivalent circuit of incremental admittance standard
connected to two-port standard for measurement of very small
admittances.

1 in 10* error) the minor component may be neglected
in calculating the change in effective value for the
major component.

For sufficiently pure capacitors

. AC,Ct
AC;=— = - TR e (41)
(C}.+ (41, SIS (lp) ((4, B (4/,+ (,(- )
and for nearly pure conductances
, AG,G3
A(Il o= (4‘2)

(G + Gy -GG+ G+ 5,)

Again, some insight into the magnitude of errors to
be expected in measurements of this type may be ob-
tained by considering the measurement of a capacitor
by an incremental capacitor in series with a two-port
capacitor where all capacitors are lossless. The
relative error in a measurement of this type, obtained
by taking the total differential of (41) and dividing by
AC;, is

8(AC;) _8Ci—8C, _8Ci+8C,+dC.
AC; (G =Gy G =R G G

_8(1,+8C,,+8C(-+28(,b' 43)
C,+Cy+C, Cy

Perhaps the most useful application of this tech-
nique lies in checking the calibration of incremental
capacitors against low-valued standards such as those
provided by short sections of precision coaxial line.
The Field and Sinclair technique [7] may be used for
finding corrections proportional to C2 in incremental
capacitors; and it is easy to show that there are no
significant errors proportional to C2 or higher-order
terms by measuring capacitors of appropriate value
over different ranges of the incremental capacitor.
None of these techniques are capable of detecting
errors proportional to C, however, and another tech-
nique is needed for a complete calibration of these
instruments.



If the error in measuring the small capacitor is
given by

0Cy= kCy + epF
6C.= kC. = epF
6C,=kC, = epF
8C{=kC{*epF,

the maximum error in AC, may be written as

5(AC) [3 3 3
AC, ~ B re e torarc T CrGrC
5
+C;—Cl]' (44)

The term involving € may be large enough to prevent a
good determination of £ with a single measurement; but
this term is random in nature and may be reduced
considerably by repeated measurements.

This technique was tested by measuring accurately-
known (to within 0.01%) capacitors with nominal
values of 5, 13, and 15 pF, in terms of a 1000 pF
incremental capacitor connected in series with a
nominally 100 pF capacitor and a nominally 82 pF
capacitor. The results of the measurements, which
appear in table 2, indicate a linear correction of the
order of —0.01 to —0.03 percent in this particular
capacitor.

TABLE 2. Measurement of coaxial line capacitance
standards at 3 MHz using a 1000-pF incremental
capacitor with 82-pF and 100-pF series capacitors

Nominal |[Calculated| Series measurement Difference (%)
capaci- capaci-
tance tance 82 pF 100 pF 82 pF 100 pF
5 pF 5.0753 5.0761 5.0757 0.016 0.008
12 pF 11.864 11.861 11.860 —.027 e 030)
15 pF 15.240 15.235 158235 —.033 —.064

3.3. Measurement of Reference Open-Circuit Admit-

tance or Short-Circuit Impedance

Measurements of admittance or impedance will be
in error by the uncertainty in the reference open-
circuit admittance, or short-circuit impedance. Since
this might be the principal source of error in measuring
small immittances, it is desirable to measure these
reference immittances accurately.

The measurement described in section 3.1. can be
rearranged to allow an admittance bridge to measure
the admittance of its reference open circuit or an
impedance bridge to measure the impedance or its
reference short circuit. Equation (35) may be rear-
ranged to read

YI(Y1 it Y:,)Z(Y':, _ Yg)(Y;+ Yf;;)+(Y1 = Yz)Yf] 5 (4'5)
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When Y, is measured directly with the bridge, the
quantity observed, Y., is Y, less the admittance
removed when Y, is connected to the bridge terminal:

Ym = Y.z' - Yf.‘i- (4‘6)

Two different admittances may be measured, yielding
the two equations

(You+Ym)(Yi=Y;)=(Y;=Y,) (Y5+ Yy3)

+ (Y1 —Y,5) Y, 47)
and
(Yo +Yps) (Yi=Y5)= (Y5 —=Y,) (Y5+Yy3)

+ (Y1 —=Y,) Yy, (48)

where it is now assumed that the two fringe admit-
tances of the two-port are equal to Y. Subtracting (48)
from (47) and rearranging yields

sz(Yl _Y';) _le(Yl_Y.'))__
2(Y,—Y5)

2

Yf:i = 2 s (4'9)

and Y;; may be obtained. Y;; may be obtained by sub-
stituting Y3 into one of the original equations.

When Y, =Yp=Yp=Y,, as is the case when the
terminals of the two-port and the bridge terminal are
identical and have identical environments in the open-
circuit condition, ¥y may be obtained from the equation

e YHI(YI _YS)_E

w AV —=Vo) @ 2

(50)

An exactly analagous situation exists for the meas-
urement of the impedance of the short used as the
reference for an impedance bridge. In this case, the
equations are

:Zm(ZI_Z.'))_é

22— Zy) 2 L
for Z,,.]:Z,\-g:Z_,»;;:Z,\- and
Zs;;:Zmz(Zl-Z.'))_anl(Zl—'ZT))_é 52)

D=V, %

for Z,\,-z :Zsz # Zs:i-

This technique was used to measure the fringe
capacitance of the NBS 0.750 in, 50-C) coaxial connec-
tor at 1 kHz, with a 1-in long closed cap as the refer-
ence condition. The value obtained for the fringe
capacitance, assuming Cy;;=Cp, = Cy3, was 0.2078 pF
with an estimated standard deviation of 0.0004 pF.
This value agrees well with the 0.2070 pF obtained by
a measurement involving a calculable line section.

An attempt to measure the impedance of the shorted
NBS connector at 100 kHz, using an impedance bridge,
yielded inconsistent values. The inconsistencies are
attributed to the fact that the impedance of the short is



smaller than that which the bridge is capable of resolv-
ing. The resistance of the short was then measured at
dc using a Wheatstone resistance bridge. The average
of the measured values, attributed primarily to con-
tact resistance, was 0.00016 Q, with the values ob-
tained ranging from 0.00004 to 0.00030 ().

4. Conclusions

The application of precision coaxial connectors to
radio frequency immittance measurements makes
practical the use of measurement techniques which
are usually considered useful only at audio frequencies.
In particular, series impedances equipped with pre-
cision connectors may be treated as two-port devices
and accurately evaluated at a given frequency. Using
these two-ports as series impedance transformers
makes possible a significant range extension for admit-
tance and impedance measuring instruments. These
impedance transformers also make it practical to
measure very small admittances in terms of large
admittance increments—a technique which has been
inverted and used to compare 1000 pF incremental
capacitors to low-valued, coaxial line standards of
capacitance. In addition, it is possible to use an admit-

tance bridge to measure its own fringe capacitance and
an impedance bridge to measure the impedance of its
reference short-circuit by proper application of series
impedance transformers.
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