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A se ries im peda nce e lement equipped with coaxial connectors ma y be evaluated as a two-port 
ne twork . Precision co nnectors grea tly reduce the uncertainties associate d with the se r ies connec ti on, 
making prac ti cal several measureme nt techniques whic h involve se ri es impedances. This paper 
d iscusses techniq ues for ex te nding the ra nge of immittance bridges to high va lu es of adm ittance or 
impedance, for measuring very s mall admitta nces with in cre me ntal sta ndards of o rdina ry ra nge, a nd 
for using a bridge to measure its ow n re ference open-circuit admitt ance or short-c irc uit impedance_ 
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1. Introduction 2. Method for Evaluating Two-Port 
Immittances 

A number of meas uring techniques whi ch are com­
monly used at audio frequencies, have long been con­
sidered impractical for use at radio frequencie s. Among 
these are the techniques which require connecting one 
component in series with another. The use of precision 
coaxial connectors (1, 2) , greatly reduces uncertainties 
in series and shunt immittances associated with the 
connecti on, making it practical to use series conn ec ted 
compone nts for precision measurements at radio 
freque ncies. 

A two-port immiLta nce may be represented by an 
equivale nt pi ne twork such as that of fi gure 1, at any 
sin gle frequency [3]. The procedure for measuring the 
ele me nts of the pi is well known , but is reviewed he£e 
for the sake of co nve nie nce. 

When a circuit ele me nt is equipped with preCISIOn 
connec tors, th e ele ments of its equivalent circuit are 
fixed by the shielding afforded by the coaxial construc­
tion and by the precisely repeatable connection. A 
shielded series element may be treated as a two-port 
network and represented by an equivalent pi or tee at a 
given frequency, and if it is equipped with precision 
connectors, the elements of the equivalent pi or tee 
may be accurately evaluated by open- and short­
circuit measurements. This paper discusses the use of 
series immittances in the form of precision two-port 
standards in extending the range of immittance meas­
uring instruments to large immittances, in measuring 
low-valued admittances in terms of relatively large 
in cremental standards, and in measuring the imped­
ance of the reference short-circ uit of an impedance 
bridge, or the admittance of the reference open-circuit 
of a n admittan ce bridge. 

· EleClrOnw.g:nt.'t ics Div is ion . Circu it S tandard s Sec ti on , Na tional Burea u of Standards, 
Boulder Labora turies. Bou lder. Colo. 80302. 

403-833 0 - 70 - 2 

79 

Pori A « 
> 
1 Yo 

FIG URE 1. Pi equiva.lent oj two·port network. 

With port A of the two-port cOllnected to an admit­
tance bridge , and port B shorted , the input admittance 
measured by the bridge is 

(1) 

When the short is removed, port B is open circuited, 
and the bridge measures the input admittance 

(2) 

With port B connected to the bridge and port A shorted , 
the input admittance is given by 

(3) 



When the short is removed, port A is open, and the 
input admittance is 

(4) 

Note that the two-port must be equipped with nominally 
identical connectors for this series of measurements 
to be possible_ Equations (1), (2), and (3) are solved 
simultaneously for Ya, Yb , and Yc, yielding 

Yb = [(Y1 - Y2 )Y3] 1/2, (5) 

Y,, = Y1-Y/i, (6) 
and 

Yc= Yl- Y/i - (7) 

So far it has been assumed that the open circuit 
actually represents zero admittance across the open 
port, and that the short circuit actually represents 
zero impedance_ This assumption is not accurate. The 
short may have an impedance consisting of about 
0.5 mn (milliohm) resistan ce and 5 X 10 - 12 henry 
inductance, and the open may have an admittance 
consisting of a fringing capacitance of the order of 
0_2 pF [4]. The conductance of an open circuit can 
usually be neglected, as can the error caused by a non­
zero short where all admittances are of the order of 0.1 
mho or smaller. When the fringing capacitance at the 
open end of the two-port is taken into account, (2) 
becomes 

(8) 

and (4) becomes 

(9) 

where Yfl is the "fringe admittance" at one open end 
of the two-port , and Yf2 is the fringe admittance at the 
other. Fringe admittance is used instead of fringe 
capacitance because the equations than apply to the 
more general case of a lossy open circuit. If the two­
port is equipped with precision connectors, the two 
fringe admittances will be very nearly equal. 

The fringe admittance .at the bridge terminal, Yf 3, 
is removed when connection is made to the bridge 
terminal. Each of the measurements (1) through (4) is 
therefore in error by the amount Yf 3, and this admit­
tance must be added to the measured admittance in 
order to obtain the correct values for Ya + Yb , etc. 

Note that Yf3 will be different from Yf l and Yf2 unless 
the connectors are sexless. Even when precision 
connectors, which are sexless by definition, are used , 
Yf3 may be different from Yfl and Yf2 because of differ­
ences in the configuration of conductors near the open 
circuit. For example, the fringe capacitance of a 
connector mounted flush with a large ground plane will 
differ considerably from that of an identical connector 
at the end of a two-port several inches above the 
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ground plane. The three fringe admittances for preci ­
sion connectors can be made virtually identical by 
using a shielding cap instead of an open terminal to 
provide the reference open circuit admittance. Wh en 
the corrections for the fringe admittances are made , 
(1) through (4) must be rewritten 

(10) 

(11) 

(12) 
and 

(13) 

where Y1 , Y2 , etc., still refer to the admittances 
measured at the bridge terminal. The first three equa­
tions of this set may be solved as before, yielding 

Y/, '=' Gb + jwCb = [(Y1 - Y2 ) (Y3 + Yfl + Yf3 )] 1/ 2, (14) 

Ya = Yj + Yf3 - Yb , (15) 
and 

(16) 

Section 3.3 of this paper describes a technique for 
measuring the reference , or "fringe," admittance of an 
admittance bridge and of a two-port admittance. 

A two-port immittance may also be represented by 
the equivalent tee of figure 2, and the elements 

Port A Port B 

FIGU RE 2. Tee Equivalent of two-port network. 

evaluated by measurements with an impedance bridge. 
With port A connected to the bridge and B open, the 
bridge measures 

ZI + Z S3 = Za + Z/i, (17) 

where ZS3 is the impedance of the reference short 
circuit which is removed when the two-port is con­
nected to the bridge, and the effect of fringing capaci­
tance is considered negligible. When port B is shorted, 
the bridge measures 

(18) 

where Z SJ is the impedance of the short on port B, and 
is not necessarily equal to Z S:I. With port B connected 
to the bridge and port A open, the bridge measures 

(19) 



With port A shorted, the bridge measures 

(20) 

The first three equations of this set may be solved for 
Z ([, Z b, and Z c, yielding 

and 

(21) 

(22) 

(23) 

Section 3.3 presents a technique for measuring the 
short-circuit impedances. 

Solving (14) for Yb involves taking the square root of 
a complex number. The solution s are 

C2= A ± v/i2+B2 
02 ' (24) 

and 

(25) 

where 

and 

8 = w[(C I - G2 ) (c'J + CII + CI3 ) + C3 (C I - C2 )]. 

(27) 

Thus, Gb and Co are obtainable in terms of measured 
conductances and capacitances. 

The effec t of m eas ure ment errors on a meas urement 
of this type may be e valuated by the technique of 
taking the total differential of the quantity measured 
[5]. The approximate error in Gb , denoted by 8Cb , is 
given by 

OG = aGo 84 + aGb 8B 
b aA a8 ' 

(28) 

where 8A and 88 are small errors in A and 8 given by 

-and 

aB 
88 = -C 8C I + _ a I 

aA 
·+-C OGII a II 

+ aA "'C 
aC U j:3 

j:3 

a8 
-+-C 8Cj3_ a 13 

(29) 

(30) 

81 

While there is little to be gained by pursuing the 
algebra further, it is instructive to take a simple 
example to illustrate the order of magnitude of the 
errors to be expected in meas ure ments of this type. 
If a co nductance with suffic iently hi gh q 2(q = 200 for 
error of 1 in 104) is mea ured, the expression for 
Gfi redu ces to Gl = A. Furthermore, for a high-q 
condu ctan ce 

(31) 

and 

For the case described, G1 = G3 ~ G2 , and 

and the error in measuring a pure series conductance 
by thi s tec hnique is approximately the same as the 
error in meas urin g a two-te rminal conductance with 
the same bridge . 

3. Applications 

3.1. Range Extension to Very Large Immittances 

Hartshorn [6] s hows that capacitors too large for 
direc t meas ure me nt may be meas ured by connecting 
the m in series with s malle r known capacitors. The 
capacitance of the seri es co mbination is smaller than 
that of either capacitor and thi s capacitan ce may be 
made to fall within the range of direc t meas ure me nt. 
The same princ iple may be used in meas urin g any 
admittance too large for direct meas ure ment with 
available in strume nts. The measuremen t is accom­
plished by evaluating the elements of the equivalent 
pi (fi g. 1) the n conn ecting th e unknown admittance to 
the two-port and measuring the input admittance of 
the combination. Th e value of the unknown admittance 
is then calculated from the computed elements of 
the pi and the measured input admittance of the 
combination. 

If the unknown admittance, Yx" is connected to port 
B and port A is connected to the bridge, the meas ured 
input admittance is given by 

(33) 

from which is obtained 

(34) 

t The Quality Factor of an immiltance element, denoted by "q," is defined to be the 
ratio of the major immittance component to the minor immittance component. Thu s. 

wL we R C 
q l ~ R' qc=C' qr =-;;;L' and fly=- we· 



In some cases, the elements of the pi are of no partic­
ular interest, and it is desirable to calculate Yx directly 
from the measured values Yt, Y2 , and Y3 • In this case 
an expression for Yx is obtained by substituting (14), 
(15), and (16) into (33): 

Yx= (y, - Y2 )(Yl+ Yj 3 ) + (Y I - Y2 )YI1 _ 

YI-Y:; (35) 

After expanding (34) or (35) and separating variables , 
the error in measuring Cx and Cx may be evaluated, 
as before, by taking the total differential of the quantity. 
The operation is straightforward, if somewhat labori­
ous, and will not be pursued further. An idea of the 
magnitude of errors to be expected in measurements of 
thi s sort may be obtained by considering the case of 
a pure capacitor measured in series with a pure 
capacitor- that is, all conductances are zero. For 
this idealized case, (35) becomes 

and the error in measuring C;x. is 

1 
8C;x'= C

I 
_ C:; [(CII - Cx )8C I - (C:l + CII + C/3 )8C2 

+ (C5 - C2 )8C3 + (C:l + C x + CI3 )8C 

+ (C 5 - C 2 )8C/3 + (C 1 - C 2)8CI1 ]. (37) 

The errors in CI, C2 , C:h and C:; are composed of two 
components; a calibration error and a random error due 
to imprecision of the measuring capacitor. If C I and C3 

are approximately equal, the calibration error will be 
the same for both, and it is proper to consider the sign 
of the error term in combining the errors. Since C2 and 
C:; maybe greatly different from C 1 and C 3, there is 
no assurance the calibration errors are in the same 
direction; and their signs should not be considered in 
combining the error terms. Figure 3 shows the accuracy 
which may be expected in series measurement of 
capacitors between 10 pF and 0.01 p,F assuming the 
error in measuring C" C2 , C3 , and C5 to be ±(0_05%+ 
0.05 pF), the error in CII and Cn to be about 0.001 pF, 
and 

CI = C3 = 1000 pF 

C2 = 5 pF 

CII = C/3= 0.2 pF, 

and rms addition of the random errors. The accuracy 
obtainable by direct measurement under the same 
conditions is shown for comparison. 

The range of admittances which can be measured 
with a given instrument by this method lies between 
zero (two-port open) and infinity (two-port shorted)_ 
Because the accuracy is not as good as that obtained 
for direct measurement, only values outside the range 
of available instruments will ordinarily be measured 
in this way. The technique was tested by measuring a 
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number of capacitors directly, and in series with a 
two-port capacitor. The results appear in table 1. The 
good agreement between the two methods shows there 
are no serious errors inherent in the technique. 
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FIGURE 3. Accuracy obtainable in measurement of capacitance by 
direct measurement, and by series measurement. 

TABLE 1. Capacitance measured at 3 MHz by direct 
measurement and by measurement in series with a 
100-pF capacitor 

Direct Series 
Nominal measure- measure- Difference 

capacitance ment ment (percent) 
pF pF 

1000 pF (A) 1006.77 1006.62 0.014 
1000 pF (B) 1002.76 1002.63 .013 
500 pF 501.78 501.71 .014 
200 pF 200.66 200.71 -.025 
100pF 101.06 101.D9 -.03 

The usable range of an impedance bridge may be 
similarly extended by connecting an unknown large 
impedance in parallel with a smaller impedance whose 
value is within the range of the bridge. In this case, 
the two-port is more conveniently represented by the 
equivalent tee of figure 2. In practice, the two-port 
may be formed by connecting the smaller impedance 
to one port of a coaxial tee junction and using the 
other two as active ports (fig. 4). In this case, the 
elements of the tee are obtained by impedance 
measurements , and the unknown impedanc€, Z x , IS 

given by 



He re again , th e ran ge of the bridge is ext~md ed to 
cove r impedan ces be twee n zero (two-port horted) to 
infinity (two-port open)_ 

~ortB 
(to Unknown Laroe 

Impedance) 

FIGU RE 4. Tee arrangement for measuring large impedance in 
), paraLLel with smaller impedance. 

3 .2_ Range Extension to Very Small Admittances 

Harts horn [6] also di scusses th e meas ureme nt of 
very small capacitors using an incremental capacitor 
of ordinary ran ge. As he puts it: "Conde nsers of very 
low value may also be measured by a seri es me thod. 
A conde nser of low value c is placed in se ri es with a 
variable s tandard of ordinary ran ge C. Th e capacitance 
of the co mbination being cC/(C + c), a s mall change 
tJ.C in the standard produ ces a c hange in the com­
bination of approximately tJ.Ce2/ (C + e)2, which is for 
example, 100 times smaller than tJ.C if Cle = 9. Thus, 
if the s mall co ndenser to be meas ured is added in 
paralJeI with s uch a co mbinati on, a nd th e s tandard 
condenser if then diminished until the res ultant 
capacitance is restored to its original value, the 
capacitance added is equal to the change in the 
reading of the standard divided by 100. This me thod is 
convenie nt when no standard of low range is available; 
but when a standard of the microme ter type is available 
the substitution method s hould be e mployed , as there 
is always some uncertainty in any estim ation of the 
effect of the co nnecting lead in a se ri es co mbination­
however small the lead may be. " 

The same principle applies to meas uring any s mall 
ad milta nce, and the use of precision co nnectors 
eliminates muc h of the " uncertainty in any es timation 
of the effect of the connecting lead. " The series admit­
tance may be represented by an equivale nt pi, and 
evaluated by measureme nts with an admittance 
bridge. When the incremental admittance is connected 
to the two-port, the circuit of figure 5 results. 

The input admittance of this network , Y i , is 

(39) 

and the change in input admittance with change in Y I 

is give n by 
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where YI is the initial value, and Y; is the final value. 
When all the elements of the network are of like kind 
a nd are sufficiently pure (q greater than abo ut 200 for 

FIGU RE 5. Equivalent circuit of incremental admittance standard 
connected to two-port standard for measurement of very smaLL 
admittances. 

1 in 104 error) the minor component may be neglected 
in calc ulatin g the change in effective value for the 
major co mpone nt. 

For sufficie ntly pure capacitors 

and for nearly pure conduc tances 

(42) 

Again , so me insight into the magnitude of errors to 
be expected in meas ure me nts of thi s type may be ob­
tained by co nsid erin g the me asure me nt of a capacitor 
by a n in cre me ntal capacitor in seri es with a two-po rt 
capacitor where all capacitors are lossless. The 
relative error in a measure ment of thi s type, obtained 
by taking th e total differential of (41) a nd dividing by 
tJ.C;, is 

8 (tJ.C;) 8C; -8C ) 8C; + 8Cb+ 8Cc 

tJ.C ; C; -C) C; + Cb + Cc 

8C) + 8Cb + 8Cc + 28Cb 

C) +Cb+ Cc Cb ' 
(43) 

P erhaps the most useful application of this tech­
nique lies in checking the calibration of incremental 
capacitors against low-valued standards such as those 
provided by short sections of precision coaxial line . 
The Field and Sinclair technique [7] may be used for 
finding corrections proportional to C2 in incremental 
capacitors; and it is easy to show that there are no 
significant errors proportional to C2 or higher-order 
terms by measuring capacitors of appropriate value 
over different ranges of the incremental capacitor. 
None of these techniques are capable of detecting 
errors proportional to C, however , and another tech­
nique is needed for a complete calibration of these 
instruments. 



If the error III measuring the small capacitor IS 

given by 

oCb = kCb ± EpF 

oCc=kCc±EpF 

oC I = kC I ±EpF 

oC; = kC; ± EpF, 

the maximum error in !1C I may be written as 

The term involving E may be large enough to prevent a 
good determination of k with a single measure ment; but 
thi s term is random in nature and may be reduced 
considerably by re peated measurements. 

This technique was tes ted by measuring accurately­
known (to within 0.01%) capacitors with nominal 
values of 5, 13, and 15 pF, in terms of a 1000 pF 
incremental capacitor connected in series with a 
nominally 100 pF capacitor and a nominally 82 pF 
capacitor. The results of the measure ments, which 
appear in table 2, indicate a linear correction of the 
order of - 0.01 to - 0.03 percent in this particular 
capacitor. 

TABLE 2. Measurement of coaxial line capacitance 
standards at 3 MHz using a lOOO-pF incremental 
capacitor with 82-pF and lOO-pF series capacitors 

Nominal Calculated Series measurement Diffe rence (%) 
capac i- capaci-
tance tance 82 pF 100 pF 82 pF 100 pF 

5 pF 5.0753 5.0761 5.0757 0.016 0.008 
12 pF 11.864 11.861 11.860 - .027 -.036 
15 pF 15.240 15.235 15.233 - .033 -.064 

3.3. Measurement of Reference Open-Circuit Admit­
tance or Short-Circuit Impedance 

Measurements of admittance or impedance will be 
in error by the uncertainty in the reference open­
circuit admittance, or short-circuit impedance. Since 
this might be the principal source of error in measuring 
small immittances, it is desirable to meas ure these 
reference immittances accurately. 

The measureme nt described in section 3.1. can be 
rearranged to allow an admittance bridge to measure 
the admittance of its reference open circuit or an 
impedance bridge to measure the impedance or its 
reference · short circuit. Equation (35) may be rear­
ranged to read 
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When Yx is measured directly with the bridge, the 
quantity observed, YIlI , is Yx' less the admittance 
removed when Y.l' is connected to the bridge terminal: 

(46) 

Two different admittances may be measured, yielding 
the two equations 

(YII/I + Yf3 )(YI - Y5 ) = (Y5 - Yt)(Y:J + Yf3) 

+ (YI - Yt)Yfl , (47) 
and 

(Ym2 + Yf3) (YI - Y~) = (Y~ - Yt ) (Y3 + Yf:J) 

+ (YI - Yt ) Yfl, (48) 

where it is now assumed that the two fringe admit· 
tances of the two· port are equal to Yfl . Subtracting (48) 
from (47) and rearranging yields 

Y _ YlI/t(YI - Yi) - YII/I (YI- Y5 ) _ Yl 
j:l- 2(Y~ - Y5 ) 2 ' (49) 

and Yf3 may be obtained. Yfl may be obtained by sub­
stituting Y{:J into one of the original equations. 

When Yj1 = Yj2 = Yj 3 = Yf, as is the case when the 
terminals of the two-port and the bridge terminal are 
identical and have identical environments in the open­
circuit condition, Yf may be obtained from the equation 

(50) 

An exactly analagous situation exists for the meas­
urement of the impedance of the short used as the 
reference for an impedance bridge. In this case, the 
equations are 

(51) 

for Z SI = Z st= Z s:J= Z s and 

Z =ZII/2(ZI-Z~) -ZlIIl(ZI-Z 5) _Z:J 
s3 2(T -Z-) 2 

" " 
(52) 

for Z S I = Z S2 ~ Z S:J. 

This technique was used to measure the fringe 
capacitance of the NBS 0.750 in, 50-n coaxial connec­
tor at 1 kHz, with a I-in long closed cap as the refer­
ence condition. The value obtained for the fringe 
capacitance, assuming Cfl = Cf2 = Cf 3, was 0.2078 pF 
with an estimated standard deviation of 0.0004 pF. 
This value agrees well with the 0.2070 pF obtained by 
a measurement involving a calculable line section. 

An attempt to measure the impedance of the shorted 
NBS connector at 100 kHz, using al1 impedance bridge , 
yielded inconsistent values. The inconsistencies are 
attributed to the fact that the impedance of the short is 



s maller th a n tha t whi ch the bridge is capable of resolv­
in g. The res ista nce of the short was then meas ured at 
dc using a Wheats tone resistance bridge . The a verage 
of the measured values , attributed primarily to con­
tac t resistance, was 0.00016 n, with the values ob­
tained ranging from 0.00004 to 0.00030 n. 

4. Conclusions 

The application of precision coaxial connectors to 
radio frequ ency immittance meas ure me nts makes 
practical the use of measurement techniques which 
are usually considered useful only at audio frequencies. 
In particular, series impedances equipped with pre­
cision connectors may be treated as two-port devices 
and ac c urately e valuated at a give n freque ncy. Using 
these two-ports as series impedance transformers 
makes poss ible a signifi cant range exte nsion for admit­
tan ce a nd impeda nce measuring instrume nts. These 
impeda nce tra nsformers also ma ke it practi cal to 
measure very s mall admittances in terms of large 
admitta nce in cre me nts - a technique whic h has been 
inverted a nd used to compare 1000 pF in cre mental 
capac itors to low- valued , coaxi al line sta ndards of 
capacita nce. In addition, it is possible to use an admit-
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tance bridge to measure its own frin ge capac ita nce and 
an impedance bridge to measure the impedance of its 
reference short-circuit by proper appu cation of seri es 
impedance transformers. 
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