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Consider a continuou s se migroup of operators on a metri c s pace, ind exed {T,} by the nonnegative 
re aJ numbers. It is shown that if anyone of the operators can be made into a contrac tion by some 
topology-prese rving remetri zat ion , then for each AE (O, 1) the re is a metri c under which each operator 
T,( t > 0) becomes a cont. rac tion with contrac tion con stant A' . With the ope rators regarded as describ
ing the evolution of an autonomous dynamical sys tem, thi s metri c can be used to defin e a Lyapanov 
fu nction. 
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1. Introduction 

This paper is the fifth in a series [1- 4] ,1 dealing with the question of when continuous self
mappings, of a metrizable topological space X , can be made into contractions by choosing a suitable 
metric for X. A single map / with this property will be termed contractifiabLe. It was shown in [2] 
that such maps / are characterized by the properties one would expect in view of Banach's Contrac
tion Principle, namely the exi stence in X of a fix ed point ~ of / and an ope n neighborhood U of ~ 
such that 2 

(all xEX) , (1.1) 

(1.2) 

Now let .?! be a commutative/amiLy of self-mappings of X, with common fixed·point r Assume 
the members of .?! are individually contractifiable, so that there are collections {df :fE .?!} and 
{Arif.?!} suc h that eac h if.?! is a contraction mapping of metric space (X, d:J) with AfdO , 1) as 
contraction constant. If df can be chosen independent of /, we term '?! simultaneously contracti· 
fiable. In [3] it is shown that '?! will indeed be simultaneously contractifiable, if it is finite. The 
present paper provides the analogous result for the most important special case of infinite families ff. 

The special case is given by .?!=Y-{To}, where Y ={Tt:tER+} is an R +-semigroup 0/ 
operators on metric space (X, d). Here R + is the topological semigroup of nonnegative real numbers 
under addition, d is a metric on X (the "original" metric, prior to remetrization), and each Tt is a 
continuous self-mapping of X. The terminology means that To is the identity map of X, that the semi
group property T,+s = T, Ts is satisfied , and that the continuity property 

(as s ~ t) 

holds for all tER + . Our main result is the following. 

AMS Subject Classifi cation. Primary 20M99. 
*Present address: Dyn amic Access Corporation , 220 P ark Avenue South , New York City , New York ]0003. 
I Figures in bracke ts indicate the literature refe rences at the end of the pape r. 

(1.3) 

2 To avoid inessential technical complications we assume throughout that § ac tually li es in X, instead of being an "ideal point" correspo nding to a clas s of equiva

lent Cauchy sequences. 
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THEOREM: Let :7= {Tt:teR+} be an R+-semigroup of operators on (X, d). If any member T, 
of :7 is contractifiable , then for each '\e(O, 1) there is a topologically equivalent metric PJo.. such that 
each Tt(t> 0) is a contraction on (X, Pl.) with At as contraction constant. 

This result must be distinguished from that in [4], where it was shown that there existed 
metrics p~) such that each Tt(t > 0) is a contraction on (X , p~) ) with II. as contraction constant. 
In particular, although the relationship of our topic with asymptotic stability was worked out in 
Theorem 2 of [4], it is only the above theorem which makes evident the association with a Lyapanov 
function for the semigroup:7 and the point gEX. 

In this stability-theoretic context, X is interpreted as the space of possible "states" of an 
autonomous dynamical system, while Tt(x) is interpreted as the system's state at time t if its initial 
state was x. The fixed-point property of g characterizes it as an "equilibrium state," whose stability 
is to be studied. In terms of the metric PA of the above Theorem, set 

Then L is continuous , and positive-definite with respect to g. Since 

L is nonincreasing along every trajectory, and strictly decreasing unless and until the trajectory 
reaches g. These properties identify L as a Lyapanov function. 

2. Two Lemmas 

The analysis will employ the notation 

5(x, r) = {yEX :d(x, y) :%: r}. (2.1) 

It is convenient to precede the main proof by the following two lemmas, the first of which is a 
slight generalization of the lemma in [4] . 

LEMMA 1: Given xeX, t> 0, and YJ > 0, there exists 0> ° such that 

for all se[O, t]. 

PROOF: If not, then there exist sequences On --'» 0, S (n)e[O, tJ, and xne5 (x , On) such that 

(2.2) 

By passing to a subsequence, we may assumes(n) --'»se[O, tJ. Then 

By the continuity condition (1.3) and the fact s(n) --'»s , the first and third summands on the right 
tend to ° as n --'» 00; since Ts is continuous and On --'» ° implies Xn --'» x, the same is true of the second 
summand. Thus the last display leads to a contradiction of (2.2). 

LEMMA 2: If some T, is contractifiable, then there is an open neighborhood U of g such that 

T~U) ~ U for all t ~ 0, (2.3) 

as t--'»OO. (2.4) 
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PROOF: Since Tr is contractifiable, there is an open neighborhood Ur of q such that n'(Ur)~ {q} 
as n ~ 00. As shown in [2], it can further be assumed that Tr( Ur) CUr. For each SE[O, 7], define 
the open set 

and put 
U= n {Us* :sE[O, 7]}. 

To prove (2 .3) for any given t;3 0, choose any SE[O, 7 J and write 

t+S= n7+er (erE[O, 7 J; integral n ;3 0). 

Then since U C U~, we have 

so that Tt(U) C Us*. Hence (2.3) holds. 
To prove (2.4), consider any YJ > o. By Lemma 1, there is a 8> 0 such that 

for all SE[O, 7]. 

Choose N so large that 
for all n ;3 N . 

Then for t ;3 to( YJ ) = N 7 we have 

t= n7+ er 
and so 

This establishes (2.4). 
Clearly qEU; to prove U an open neighborhood of q, it remains to show that U is open. Consider 

any XEU . We assert the existence of a 8 > 0 such that 

for all SE[O, 7J ; (2.5) 

this impliesS(x, 8) C U, and thus that U is open. If no such 8 existed, there would be sequences 
8n ~ 0, s(n)E[O, 7J and XnES(X, 8n) such that TS (lI)(xn) EX - Ur. By passing to a subsequence, we 
may assume s(n) ~ SE[O, 7J. Then 

arguing as in the proof of Lemma 1 we find that Ts(n)(xn) ~Ts(.r;). This however contradicts the 
fact that each TS (lI)(xn) lies in the closed set X - Ur, whereas XEU implies Ts (X)EU r. 

3. Proof of Theorem 

The proof follows that in [2], for which the underlying semigroup was that of the nonnegative 
integers rather than R +, but the additional details which are needed warrant a full account. The 
first step is to construct a metric pm , topologically equivalent to d, with respect to which each 
Tt is nonexpanding in the sense that 

p",(Tt(x), Tt (y)) ~ pm(X, y) 
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This is accomplished by setting 

Pm( X, y) = sup {d(Tb), Tt(Y)) : t;?: a}. (3 .2) 

It will initially be shown that (3.2) yields a finite result. For each xEX, observe that 

is a continuous image of [0, 7], and hence is compact. Let p be a metric on X such that TT is a 
contraction on (X, p) , with 8e( 0 , 1) as contraction constant. Then 

is finite. Writing any t ;?: 0 as 

t= n7+ (T ((Te[O, 7]; integral n ;?: 0), (3 .3) 

we obtain 

Since n ~ 00 as t ~ 00, it follows that 

as t ~ 00. (3.4) 

For particular x, yEX, this implies that 

as t ~ 00. Thus there is a to > 0 such that 

for all t > to. 

Since d(u, v) must be bounded on the compact subset 

of X X X, it follows that (3.2) indeed yields a finit e result. 
The positive definiteness and symmetry of pm follow directly from the corresponding properties 

of d. The triangle inequality for pm follows from the fact that, for any t ;?: 0, 

Thus pm is indeed a metric on the set carr ying space X. That pm has the nonexpanding property 
(3.1) follows easily from (3 .2). Thus it only remains to prove that pm and d are topologically equivalent. 
Since pm ;?: d, we have 

implies d(Xn , x) ~ 0, 

and so it suffices to prove the converse impli cation. 
Consider then any xeX and any 1/ > o. With U as in Lemma 2, there is no loss of generality for 

what follows in assuming YJ small enough that 

S(g, YJ ) c:; U. 
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By (3.4), there is a teO) > 0 such that 

d(~,T,(x)) < rJl2 forall t ~ t(O), (3.6 ) 

and by Lemma 1 there is a 0' > 0 such that 

T,(S(x, 0')) <:;::; S(Ts(x), Yf /2) for all sE[O, teO)]. (3.7) 

Since Tt(U)~{~} as t~oo , there is a t(1) > 0 s uch that 

for all t > t (1); (3.8) 

and by Lemma 1 the re is a 0" > 0 s uc h that 

T,(S(x, 0")) <:;::; SeT, (x), Yf /2) for all SE[O, teO) + t(1)]. (3.9) 

Le t 0 = mi n (0', 0") ; we will show that 

(all t ~ 0), (3.10) 

and es tabli shin g the exis te nce (for any x and Yf) of a 0 with thi s las t property comple tes the c urrent 
ste p of the proof. 

That (3.10) holds for O ~ t ~ t(O) + t(1) follows from (3.9). Suppose the n thatt > t(O )+ t(1). 
By (3.7) with S = t(O) , (3.6) with t = teO), and (3.5), we have 

and s in ce t-t(O) > t(1) , (3.8) yields 

1,(S(x, 0)) = TI - t(o)T,(o)(S(x, 0)) <:;::; T, _,(o!CU) <:;::; S(~, Yf/2) , 

implying (3. 10). 
For the second step in constructing the desired metric Ph, we begin by observing that the 

pro;Jerties (2.3) and (2.4) of U imply 

as t~ 00 . 

We now define 

vex) =sup {t:xETt(U)} for XED, 

so that v (~) = 00 and 0 ~ v (x) < 00 for XED - {~}, and also set 

for xu - D, 

so that (- (0) < v (x) < 0 in thi s case.:J Using the continuity of the semigroup, it is readily shown 
that the extrema in these definitions of vex) are actually attained. For our purposes, the criti cal 
property of v (x) is 

v(T,(x)) ~ vex) +t, (3.11) 

:I The finiten ess of v(x) is an easy consequence of (3.4). 
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with verification straightforward. 4 With the further definition 

c(x, y) = min {v(x), v(y)} (3.1 ~) 
it follows from (3.11) that 

c(Tt(x), Tt(Y));?: c(x, y) +t. (3.13) 
Now define 

(3.14) 

which has the correct limiting form d)o..(g, g) =0. Then d)o.. is positive definite and symmetric, and 
by (3.13) also has the property 

(3.15 ) 

desired for p l,. However, d)o.. may not satisfy the triangle inequality. 
This is rectified in the third and last step of the construction. Denote by Lxy the set of chains 

O'xy= [x=xo, XI, ... , Xm=Y] 

from x to y, with associated lengths 

In 

L)o..(O'xy) = 2:dA(Xi , Xi-I), 
1 

and put 

P)o.. (x, y) = inf { LA (O'Xy) :O'xYE!.XY}

We shall show that P)o.. is the desired metric. 
The contraction property 

follows by applying (3.15) to the links [Xi-l, Xi] of any chain O'xy. Clearly P)o.. is symmetric and 
PJ..(x , x) =0; the triangle law holds since following a O'xy with a O'yz yields a O'xz. 

It remains to show that pI, is positive definite. For (- (0) < v ~ 00, define the closed set 

(3.16) 

the sets {Kv} are a non ascending family, with limit {g}. 
Consider any x =;f g and any y =;f x; assume vex) ~ v(y) without loss of generality. Choose 

any s > O. First suppose y =;f g; then yu - Kv(y)+s. Thus any chain O'xy either has all its points in 
X - Kv(y )+s, implying 

or else has a last among its links which leaves K v( y) +s (and possibly is followed by other links), 
implying 

It follows that 

(3.17) 

----
• E.g., for v(x ) ., 0 we have x.T",,(U), implying T,(x) .T,(T"r'(U)) and thus T,( x) .T,T"r,(U) =T"r,+,(U) , from which (3.11) follows. 
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The remaining case, y= g, is covered by applying analogous reasoning to yield 

(3.18) 

By (3.17) and (3.18), px. is positive definite and hence indeed a metric, which must still be proved 
equivalent to Pill. 

Now define 
J.L(x) = inf {J.L ;::. O:T,..(X)EU} < 00; (3.19) 

it follows from the definition of v (x) that 

v(x) ;::. - J.L(x). (3.20) 

With the further definition 

(3.21) 

we have pm (x, BpJ,x) +s ) > 0 for all s > O. 
Consider any xu; we will show that 

PIIl(Xll, x) ~ 0 implies (3.22) 

First suppose x 01= ~; choose any s > O. Consider any YEX with 

pm(X , y) < pm(X, BJJ1,x) +s ) . (3.23) 

Then YEX - BJJ1,x)+s, implying T JJ1, x)+s (Y) EU and hence that J.L (x) + s ;::. J.L(Y). By (3.20), this implies 
v(y) ;::. - J.L(x) - s. Since (3 .20) also implies v(x) ;::. - J.L(x) - s, we have c(x, y) ;::. - J.L(x) - s, 
so that (3.23) implies the second inequality in 

(3.24) 

Since (3.23) implies the indicated inequality between the first and third terms of (3.24), (3.22) has 
been established for all x 0I=~. As for the case x=~, note that if p",(y,~) < Plll(~' Bo), then 
v(y) ;::. 0, and so C(~, y) ;::. 0 and 

(3.25) 

showing that (3.22) holds in this case also. 
It only remains to prove that 

implies pm(Xll, x) ~ o. (3.26) 

As above, first assume x 01= ~, and choose any s > O. Since Kv ~ {~}, the argument culminating 
in (3.25) shows that there exists k(x) > max {O, v(x) +s} such that ZEKk(x) implies Px.(~, z) 
< px.(x, 0/2. Then 

Consider any YEX for which 

px.(x, y) < P,,(x , g)/2. 
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It follows from ('t27) that in forming p>..(x, y) as an infimum, only chains disjoint from Kk(x) need be 
considered, implying 

Now suppose that y, besides obeying (3.28), also satisfies 

Then (3.29-30) imply 

p",(x, y) < pm(X, K v(x)+s) . 
We will show that 

that this is implied by (3.28) and (3.30), shows that (3.26) indeed holds for x =P g. 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

In case v(y) ~ v(x), (3.32) is obtained by applying (3.17) with x and y reversed, and then taking 
account of (3.31). In the contrary case, (3.31) implies yEX - Kv( x)+s; thus any chain U" xy either lies 
in X - Kv( x)+s, implying 

or else has a first among its links which enters Kv(x) +s , implying 

Taking (3.31) into account, it follows that 

which is equivalent to the desired result (3.32). 
Finally, (3.26) must be verified in the case x =~. Note that for any YJ > 0, there is a v > 0 such 

that p",(~, z) < YJ /2 for all zEKv. Consider any yEX such that 

PII/(~' y) > YJ; (3.33) 

it follows that v(y) < v and pm (y, Kv) ~ YJ/2. Choose s > 0 so that v(y) + s = v; then (3.18) yields 
the first inequality in 

(3.34) 

The contrapositive, of the implication of (3.34) by (3.33), is that P A(~' y) < 0 implies pm(~ , y) 0:;.; YJ. 
Since for each YJ > 0 there is a 0 > 0 with this property, (3.26) has indeed been verified for x = ~. 
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