JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematical Sciences Vol. 74B, No. 4, October–December 1970

Contractifiable Semigroups

Philip R. Meyers*

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(September 17, 1970)

Consider a continuous semigroup of operators on a metric space, indexed $\{T_t\}$ by the nonnegative real numbers. It is shown that if any one of the operators can be made into a contraction by some topology-preserving remetrization, then for each $\lambda \epsilon(0, 1)$ there is a metric under which each operator $T_t(t > 0)$ becomes a contraction with contraction constant λ^t . With the operators regarded as describing the evolution of an autonomous dynamical system, this metric can be used to define a Lyapanov function.

Key words: Contractions; functional analysis; operators; semigroups; stability theory.

1. Introduction

This paper is the fifth in a series [1-4],¹ dealing with the question of when continuous selfmappings, of a metrizable topological space X, can be made into contractions by choosing a suitable metric for X. A single map f with this property will be termed *contractifiable*. It was shown in [2] that such maps f are characterized by the properties one would expect in view of Banach's Contraction Principle, namely the existence in X of a fixed point ξ of f and an open neighborhood U of ξ such that ²

$$f^n(x) \to \xi$$
 (all $x \in X$), (1.1)

$$f^n(U) \to \{\xi\}. \tag{1.2}$$

Now let \mathcal{T} be a commutative *family* of self-mappings of X, with common fixed-point ξ . Assume the members of \mathcal{T} are individually contractifiable, so that there are collections $\{d_f: f \in \mathcal{T}\}$ and $\{\lambda_f: f \in \mathcal{T}\}$ such that each $f \in \mathcal{T}$ is a contraction mapping of metric space (X, d_f) with $\lambda_f \in (0, 1)$ as contraction constant. If d_f can be chosen independent of f, we term \mathcal{T} simultaneously contracti*fiable*. In [3] it is shown that \mathcal{T} will indeed be simultaneously contractifiable, if it is *finite*. The present paper provides the analogous result for the most important special case of infinite families \mathcal{T} .

The special case is given by $\mathcal{T} = \mathcal{S} - \{T_0\}$, where $\mathcal{S} = \{T_t: t \in R^+\}$ is an R^+ -semigroup of operators on metric space (X, d). Here R^+ is the topological semigroup of nonnegative real numbers under addition, d is a metric on X (the "original" metric, prior to remetrization), and each T_t is a continuous self-mapping of X. The terminology means that T_0 is the identity map of X, that the semigroup property $T_{t+s} = T_t T_s$ is satisfied, and that the continuity property

$$\sup \left\{ d\left(T_t(x), T_s(x)\right) : x \in X \right\} \to 0 \qquad (\text{as } s \to t)$$
(1.3)

holds for all $t \in \mathbb{R}^+$. Our main result is the following.

AMS Subject Classification. Primary 20M99.

^{*}Present address: Dynamic Access Corporation, 220 Park Avenue South, New York City, New York 10003.

¹ Figures in brackets indicate the literature references at the end of the paper.

² To avoid inessential technical complications we assume throughout that ξ actually lies in X, instead of being an "ideal point" corresponding to a class of equivalent Cauchy sequences.

THEOREM: Let $\mathscr{S} = \{T_t: t \in \mathbb{R}^+\}$ be an \mathbb{R}^+ -semigroup of operators on (X, d). If any member T_{τ} of \mathscr{S} is contractifiable, then for each $\lambda \epsilon(0, 1)$ there is a topologically equivalent metric ρ_{λ} such that each $T_t(t > 0)$ is a contraction on (X, ρ_{λ}) with λ^t as contraction constant.

This result must be distinguished from that in [4], where it was shown that there existed metrics $\rho_{\lambda}^{(t)}$ such that each $T_t(t > 0)$ is a contraction on $(X, \rho_{\lambda}^{(t)})$ with λ as contraction constant. In particular, although the relationship of our topic with asymptotic stability was worked out in Theorem 2 of [4], it is only the above theorem which makes evident the association with a Lyapanov function for the semigroup \mathscr{S} and the point $\xi \epsilon X$.

In this stability-theoretic context, X is interpreted as the space of possible "states" of an autonomous dynamical system, while $T_t(x)$ is interpreted as the system's state at time t if its initial state was x. The fixed-point property of ξ characterizes it as an "equilibrium state," whose stability is to be studied. In terms of the metric ρ_{λ} of the above Theorem, set

$$L(x) = \rho_{\lambda}(\xi, x).$$

Then L is continuous, and positive-definite with respect to ξ . Since

$$L(T_{s+t}(x)) \leq \lambda^{s} L(T_t(x)),$$

L is nonincreasing along every trajectory, and strictly decreasing unless and until the trajectory reaches ξ . These properties identify L as a Lyapanov function.

2. Two Lemmas

The analysis will employ the notation

$$S(x, r) = \{ y \in X : d(x, y) \le r \}.$$

$$(2.1)$$

It is convenient to precede the main proof by the following two lemmas, the first of which is a slight generalization of the lemma in [4].

LEMMA 1: Given $x \in X$, t > 0, and $\eta > 0$, there exists $\delta > 0$ such that

$$T_s(S(x, \delta)) \subseteq S(T_s(x), \eta)$$
 for all $s \in [0, t]$.

PROOF: If not, then there exist sequences $\delta_n \to 0$, $s(n) \in [0, t]$, and $x_n \in S(x, \delta_n)$ such that

$$d(T_{s(n)}(x), T_{s(n)}(x_n)) > \eta.$$
(2.2)

By passing to a subsequence, we may assume $s(n) \rightarrow s \in [0, t]$. Then

$$d(T_{s(n)}(x), T_{s(n)}(x_n)) \leq d(T_{s(n)}(x), T_s(x)) + d(T_s(x), T_s(x_n)) + d(T_s(x_n), T_{s(n)}(x_n)).$$

By the continuity condition (1.3) and the fact $s(n) \rightarrow s$, the first and third summands on the right tend to 0 as $n \rightarrow \infty$; since T_s is continuous and $\delta_n \rightarrow 0$ implies $x_n \rightarrow x$, the same is true of the second summand. Thus the last display leads to a contradiction of (2.2).

LEMMA 2: If some T_{τ} is contractifiable, then there is an open neighborhood U of ξ such that

$$T_t(U) \subseteq U$$
 for all $t \ge 0$, (2.3)

$$T_t(U) \to \{\xi\}$$
 as $t \to \infty$. (2.4)

PROOF: Since T_{τ} is contractifiable, there is an open neighborhood U_{τ} of ξ such that $T^n_{\tau}(U_{\tau}) \rightarrow \{\xi\}$ as $n \rightarrow \infty$. As shown in [2], it can further be assumed that $T_{\tau}(U_{\tau}) \subseteq U_{\tau}$. For each $s \in [0, \tau]$, define the open set

and put

 $U_s^* = \{ x \epsilon X : T_s(x) \epsilon U_\tau \}$ $U = \cap \{ U_s^* : s \epsilon [0, \tau] \}.$

To prove (2.3) for any given $t \ge 0$, choose any $s \in [0, \tau]$ and write

$$t+s=n\tau+\sigma$$
 ($\sigma \in [0,\tau]$; integral $n \ge 0$).

Then since $U \subset U^*_{\sigma}$, we have

$$T_{t+s}(U) = T_{\tau}^{n} T_{\sigma}(U) \subseteq T_{\tau}^{n}(U_{\tau}) \subseteq U_{\tau},$$

so that $T_t(U) \subseteq U_s^*$. Hence (2.3) holds.

To prove (2.4), consider any $\eta > 0$. By Lemma 1, there is a $\delta > 0$ such that

 $t = n\tau + \sigma$

 $T_s(S(\xi, \delta)) \subseteq S(\xi, \eta) \qquad \text{for all } s \in [0, \tau].$

Choose N so large that

 $T^n_{\tau}(U_{\tau}) \subseteq S(\xi, \delta)$ for all $n \ge N$.

Then for $t \ge t_0(\eta) = N\tau$ we have

and so

$$T_t(U) \subset T_t(U_0^*) = T_t(U_\tau) = T_\sigma T_\tau^n(U_\tau)$$

 $(n \geq N; \sigma \epsilon[0, \tau)),$

$$\subseteq T_{\sigma}(S(\xi, \delta)) \subseteq S(\xi, \eta).$$

This establishes (2.4).

Clearly $\xi \epsilon U$; to prove U an open neighborhood of ξ , it remains to show that U is open. Consider any $x \epsilon U$. We assert the existence of a $\delta > 0$ such that

$$T_s(S(x, \delta)) \subseteq U_\tau \qquad \text{for all } s \in [0, \tau]; \qquad (2.5)$$

this implies $S(x, \delta) \subseteq U$, and thus that U is open. If no such δ existed, there would be sequences $\delta_n \to 0$, $s(n)\epsilon[0, \tau]$ and $x_n\epsilon S(x, \delta_n)$ such that $T_{s(n)}(x_n)\epsilon X - U_{\tau}$. By passing to a subsequence, we may assume $s(n) \to s\epsilon[0, \tau]$. Then

$$d(T_{s(n)}(x_n), T_s(x)) \leq d(T_{s(n)}(x_n), T_s(x_n)) + d(T_s(x_n), T_s(x));$$

arguing as in the proof of Lemma 1 we find that $T_{s(n)}(x_n) \to T_s(x)$. This however contradicts the fact that each $T_{s(n)}(x_n)$ lies in the *closed* set $X - U_{\tau}$, whereas $x \in U$ implies $T_s(x) \in U_{\tau}$.

3. Proof of Theorem

The proof follows that in [2], for which the underlying semigroup was that of the nonnegative integers rather than R^+ , but the additional details which are needed warrant a full account. The first step is to construct a metric ρ_m , topologically equivalent to d, with respect to which each T_t is nonexpanding in the sense that

$$\rho_m(T_t(x), T_t(y)) \le \rho_m(x, y) \qquad (x, y \in X).$$
(3.1)

This is accomplished by setting

$$\rho_m(x, y) = \sup \{ d(T_t(x), T_t(y)) : t \ge 0 \}.$$
(3.2)

It will initially be shown that (3.2) yields a finite result. For each $x \in X$, observe that

$$C_x = \{T_\sigma(x) : 0 \le \sigma \le \tau\}$$

is a continuous image of $[0, \tau]$, and hence is compact. Let ρ be a metric on X such that T_{τ} is a contraction on (X, ρ) , with $\theta \epsilon(0, 1)$ as contraction constant. Then

$$M_x = \max \left\{ \rho(\xi, z) : z \in C_x \right\}$$

is finite. Writing any $t \ge 0$ as

 $t = n\tau + \sigma \qquad (\sigma \epsilon [0, \tau]; \text{ integral } n \ge 0), \tag{3.3}$

we obtain

$$\rho(T_t(x), \xi) = \rho(T_{\tau}^n T_{\sigma}(x), T_{\tau}^n(\xi)) \leq \theta^n \rho(T_{\sigma}(x), \xi) \leq \theta^n M_x.$$

Since $n \to \infty$ as $t \to \infty$, it follows that

$$T_t(x) \to \xi$$
 as $t \to \infty$. (3.4)

For particular x, $y \in X$, this implies that

$$d(T_t(x), T_t(y)) \leq d(T_t(x), \xi) + d(\xi, T_t(y)) \rightarrow 0$$

as $t \to \infty$. Thus there is a $t_0 > 0$ such that

$$d(T_t(x), T_t(y)) < 1 \qquad \text{for all } t > t_0.$$

Since d(u, v) must be bounded on the compact subset

$$\{(T_t(x), T_t(y)) : 0 \le t \le t_0\}$$

of $X \times X$, it follows that (3.2) indeed yields a finite result.

The positive definiteness and symmetry of ρ_m follow directly from the corresponding properties of *d*. The triangle inequality for ρ_m follows from the fact that, for any $t \ge 0$,

$$d(T_t(x), T_t(y)) \leq d(T_t(x), T_t(z)) + d(T_t(z), T_t(y)) \leq \rho_m(x, z) + \rho_m(z, y).$$

Thus ρ_m is indeed a metric on the set carrying space X. That ρ_m has the nonexpanding property (3.1) follows easily from (3.2). Thus it only remains to prove that ρ_m and d are topologically equivalent. Since $\rho_m \ge d$, we have

$$\rho_m(x_n, x) \to 0$$
 implies $d(x_n, x) \to 0$,

and so it suffices to prove the converse implication.

Consider then any $x \in X$ and any $\eta > 0$. With U as in Lemma 2, there is no loss of generality for what follows in assuming η small enough that

$$S(\xi, \eta) \subseteq U. \tag{3.5}$$

By (3.4), there is a t(0) > 0 such that

$$d(\xi, T_t(x)) < \eta/2 \quad \text{for all} \quad t \ge t(0), \tag{3.6}$$

and by Lemma 1 there is a $\delta' > 0$ such that

 $T_s(S(x, \delta')) \subseteq S(T_s(x), \eta/2) \quad \text{for all} \quad s \in [0, t(0)].$ (3.7)

Since $T_t(U) \rightarrow \{\xi\}$ as $t \rightarrow \infty$, there is a t(1) > 0 such that

$$T_t(U) \subseteq S(\xi, \eta/2) \qquad \text{for all } t > t(1); \tag{3.8}$$

and by Lemma 1 there is a $\delta'' > 0$ such that

$$T_s(S(x, \delta'')) \subseteq S(T_s(x), \eta/2) \quad \text{for all } s \in [0, t(0) + t(1)].$$
(3.9)

Let $\delta = \min(\delta', \delta'')$; we will show that

$$T_t(S(x,\,\delta)) \subseteq S(T_t(x),\,\eta) \qquad (\text{all } t \ge 0), \tag{3.10}$$

and establishing the existence (for any x and η) of a δ with this last property completes the current step of the proof.

That (3.10) holds for $0 \le t \le t(0) + t(1)$ follows from (3.9). Suppose then that t > t(0) + t(1). By (3.7) with s = t(0), (3.6) with t = t(0), and (3.5), we have

$$T_{t(0)}(S(x, \delta)) \subseteq S(\xi, \eta) \subseteq U,$$

and since t - t(0) > t(1), (3.8) yields

$$T_t(S(x, \delta)) = T_{t-t(0)}T_{t(0)}(S(x, \delta)) \subseteq T_{t-t(0)}(U) \subseteq S(\xi, \eta/2),$$

implying (3.10).

For the second step in constructing the desired metric ρ_{λ} , we begin by observing that the properties (2.3) and (2.4) of U imply

$$T_t(\bar{U}) \subseteq \bar{U}; \qquad \overline{T_t(U)} \to \{\xi\} \qquad \text{as } t \to \infty.$$

We now define

$$\nu(x) = \sup \{t : x \in \overline{T_t(U)}\}$$
 for $x \in \overline{U}$,

so that $\nu(\xi) = \infty$ and $0 \le \nu(x) < \infty$ for $x \in \overline{U} - \{\xi\}$, and also set

$$\nu(x) = -\inf \{t : x \in T_t^{-1}(\bar{U})\} \qquad \text{for } x \in X - \bar{U},$$

so that $(-\infty) < \nu(x) < 0$ in this case.³ Using the continuity of the semigroup, it is readily shown that the extrema in these definitions of $\nu(x)$ are actually attained. For our purposes, the critical property of $\nu(x)$ is

$$\nu(T_t(x)) \ge \nu(x) + t, \tag{3.11}$$

³ The finiteness of $\nu(x)$ is an easy consequence of (3.4).

with verification straightforward.⁴ With the further definition

$$c(x, y) = \min \{\nu(x), \nu(y)\}$$
(3.12)

it follows from (3.11) that

$$c(T_t(x), T_t(y)) \ge c(x, y) + t.$$
 (3.13)

Now define

$$d_{\lambda}(x, y) = \lambda^{c(x, y)} \rho_m(x, y), \qquad (3.14)$$

which has the correct limiting form $d_{\lambda}(\xi, \xi) = 0$. Then d_{λ} is positive definite and symmetric, and by (3.13) also has the property

$$d_{\lambda}(T_t(x), T_t(y)) \le \lambda^t d_{\lambda}(x, y) \tag{3.15}$$

desired for ρ_{λ} . However, d_{λ} may not satisfy the triangle inequality.

This is rectified in the *third* and last step of the construction. Denote by Σ_{xy} the set of chains

$$\sigma_{xy} = [x = x_0, x_1, \dots, x_m = y]$$

from x to y, with associated *lengths*

$$L_{\lambda}(\sigma_{xy}) = \sum_{1}^{m} d_{\lambda}(x_{i}, x_{i-1}),$$

$$\rho_{\lambda}(x, y) = \inf \left\{ L_{\lambda}(\sigma_{xy}) : \sigma_{xy} \epsilon \Sigma_{xy} \right\}$$

We shall show that ρ_{λ} is the desired metric.

The contraction property

$$\rho_{\lambda}(T_t(x), T_t(y)) \leq \lambda^t \rho_{\lambda}(x, y)$$

follows by applying (3.15) to the links $[x_{i-1}, x_i]$ of any chain σ_{xy} . Clearly ρ_{λ} is symmetric and $\rho_{\lambda}(x, x) = 0$; the triangle law holds since following a σ_{xy} with a σ_{yz} yields a σ_{xz} .

It remains to show that ρ_{λ} is positive definite. For $(-\infty) < \nu \leq \infty$, define the closed set

$$K_{\nu} = \{ x \in X : \nu(x) \ge \nu \}; \tag{3.16}$$

the sets $\{K_{\nu}\}$ are a nonascending family, with limit $\{\xi\}$.

Consider any $x \neq \xi$ and any $y \neq x$; assume $\nu(x) \leq \nu(y)$ without loss of generality. Choose any s > 0. First suppose $y \neq \xi$; then $y \in X - K_{\nu(y)+s}$. Thus any chain σ_{xy} either has all its points in $X - K_{\nu(y)+s}$, implying

$$L_{\lambda}(\sigma_{xy}) \geq \lambda^{\nu(y)+s} \rho_m(x, y),$$

or else has a last among its links which leaves $K_{\nu(y)+s}$ (and possibly is followed by other links), implying

$$L_{\lambda}(\sigma_{xy}) \geq \lambda^{\nu(y)+s} \rho_m(y, K_{\nu(y)+s}).$$

It follows that

$$\rho_{\lambda}(x, y) \ge \lambda^{\nu(y)+s} \min \{\rho_m(x, y), \rho_m(y, K_{\nu(y)+s})\} > 0.$$
(3.17)

 $^{^{4} \}text{ E.g., for } \nu(x) \ge 0 \text{ we have } x \overline{\epsilon T_{\nu(x)}(U)}, \text{ implying } T_{t}(x) \epsilon T_{t}(\overline{T_{\nu(x)}(U)}) \text{ and thus } T_{t}(x) \epsilon \overline{T_{t}(T_{\nu(x)}(U)} = \overline{T_{\nu(x)+t}(U)}, \text{ from which (3.11) follows.}$

The remaining case, $y = \xi$, is covered by applying analogous reasoning to yield

$$\rho_{\lambda}(x,\xi) \geq \lambda^{\nu(x)+s} \rho_m(x, K_{\nu(x)+s}) > 0.$$
(3.18)

By (3.17) and (3.18), ρ_{λ} is positive definite and hence indeed a metric, which must still be proved equivalent to ρ_m .

Now define

$$\mu(x) = \inf \left\{ \mu \ge 0 : T_{\mu}(x) \epsilon U \right\} < \infty; \tag{3.19}$$

it follows from the definition of $\nu(x)$ that

$$\nu(x) \ge -\mu(x). \tag{3.20}$$

With the further definition

$$B_{\mu} = X - T_{\mu}^{-1}(U) \tag{3.21}$$

we have $\rho_m(x, B_{\mu(x)+s}) > 0$ for all s > 0.

Consider any $x \in X$; we will show that

 $\rho_m(x_n, x) \to 0 \quad \text{implies} \quad \rho_\lambda(x_n, x) \to 0.$ (3.22)

First suppose $x \neq \xi$; choose any s > 0. Consider any $y \in X$ with

$$\rho_m(x, y) < \rho_m(x, B_{\mu(x)+s}). \tag{3.23}$$

Then $y \in X - B_{\mu(x)+s}$, implying $T_{\mu(x)+s}(y) \in U$ and hence that $\mu(x) + s \ge \mu(y)$. By (3.20), this implies $\nu(y) \ge -\mu(x) - s$. Since (3.20) also implies $\nu(x) \ge -\mu(x) - s$, we have $c(x, y) \ge -\mu(x) - s$, so that (3.23) implies the second inequality in

$$\rho_{\lambda}(x, y) \leq d_{\lambda}(x, y) \leq \lambda^{-\mu(x)-s} \rho_m(x, y).$$
(3.24)

Since (3.23) implies the indicated inequality between the first and third terms of (3.24), (3.22) has been established for all $x \neq \xi$. As for the case $x = \xi$, note that if $\rho_m(y, \xi) < \rho_m(\xi, B_0)$, then $\nu(y) \ge 0$, and so $c(\xi, y) \ge 0$ and

$$\rho_{\lambda}(\xi, y) \leq d_{\lambda}(\xi, y) \leq \rho_m(\xi, y), \qquad (3.25)$$

showing that (3.22) holds in this case also.

It only remains to prove that

$$\rho_{\lambda}(x_n, x) \to 0 \quad \text{implies} \quad \rho_m(x_n, x) \to 0.$$
(3.26)

As above, first assume $x \neq \xi$, and choose any s > 0. Since $K_{\nu} \rightarrow \{\xi\}$, the argument culminating in (3.25) shows that there exists $k(x) > \max\{0, \nu(x) + s\}$ such that $z \in K_{k(x)}$ implies $\rho_{\lambda}(\xi, z) < \rho_{\lambda}(x, \xi)/2$. Then

$$\rho_{\lambda}(x, K_{k(x)}) \ge \rho_{\lambda}(x, \xi)/2. \tag{3.27}$$

Consider any $y \in X$ for which

$$\rho_{\lambda}(x, y) < \rho_{\lambda}(x, \xi)/2. \tag{3.28}$$

It follows from (3.27) that in forming $\rho_{\lambda}(x, y)$ as an infimum, only chains disjoint from $K_{k(x)}$ need be considered, implying

$$\rho_{\lambda}(x, y) \ge \lambda^{k(x)} \rho_m(x, y). \tag{3.29}$$

Now suppose that y, besides obeying (3.28), also satisfies

$$\rho_{\lambda}(x, y) < \lambda^{k(x)} \rho_m(x, K_{\nu(x)+s}).$$
(3.30)

Then (3.29–30) imply

$$\rho_m(x, y) < \rho_m(x, K_{\nu(x)+s}). \tag{3.31}$$

We will show that

$$\rho_m(x, y) \leq \lambda^{-\nu(x)-s} \rho_\lambda(x, y); \tag{3.32}$$

that this is implied by (3.28) and (3.30), shows that (3.26) indeed holds for $x \neq \xi$.

In case $\nu(y) \leq \nu(x)$, (3.32) is obtained by applying (3.17) with x and y reversed, and then taking account of (3.31). In the contrary case, (3.31) implies $y \in X - K_{\nu(x)+s}$; thus any chain σ_{xy} either lies in $X - K_{\nu(x)+s}$, implying

$$L_{\lambda}(\sigma_{xy}) \geq \lambda^{\nu(x)+s} \rho_m(x, y),$$

or else has a first among its links which enters $K_{\nu(x)+s}$, implying

$$L_{\lambda}(\sigma_{xy}) \geq \lambda^{\nu(x)+s} \rho_m(x, K_{\nu(x)+s}).$$

Taking (3.31) into account, it follows that

$$\rho_{\lambda}(x, y) \geq \lambda^{\nu(x)+s} \rho_m(x, y),$$

which is equivalent to the desired result (3.32).

Finally, (3.26) must be verified in the case $x = \xi$. Note that for any $\eta > 0$, there is a $\nu > 0$ such that $\rho_m(\xi, z) < \eta/2$ for all $z \in K_{\nu}$. Consider any $y \in X$ such that

$$\rho_m(\xi, y) > \eta; \tag{3.33}$$

it follows that $\nu(y) < \nu$ and $\rho_m(y, K_\nu) \ge \eta/2$. Choose s > 0 so that $\nu(y) + s = \nu$; then (3.18) yields the first inequality in

$$\rho_{\lambda}(\xi, y) \ge \lambda^{\nu} \rho_{m}(y, K_{\nu(y)+s})$$

= $\lambda^{\nu} \rho_{m}(y, K_{\nu}) \ge \lambda^{\nu} \eta/2 \equiv \delta > 0.$ (3.34)

The contrapositive, of the implication of (3.34) by (3.33), is that $\rho_{\lambda}(\xi, y) < \delta$ implies $\rho_m(\xi, y) \leq \eta$. Since for each $\eta > 0$ there is a $\delta > 0$ with this property, (3.26) has indeed been verified for $x = \xi$.

4. References

- Meyers, P. R., Some extensions of Banach's Contraction Theorem, J. Res. Nat. Bur. Stand. (U.S.), 69B (Math. Phys.), No. 3, 179-184 (July-Sept. 1965).
- [2] Meyers, P. R., A converse to Banach's Contraction Theorem, J. Res. Nat. Bur. Stand. (U.S.), 71B (Math. Phys.), Nos. 2 & 3, 73-76 (April-Sept. 1967).
- [3] Goldman, A. J., and Meyers, P. R., Simultaneous contractification, J. Res. Nat. Bur. Stand. (U.S.), 73B (Math. Sci.), No. 4, 301-305 (Oct.-Dec. 1969).
- [4] Meyers, P. R., On contractive semigroups and uniform asymptotic stability, J. Res. Nat. Bur. Stand. (U.S.), 74B (Math. Sci.), No. 2, 115-120 (Apr.-June 1970).

(Paper 74B4-338)