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The purpose of thi s note is to give necessary and suffi cient conditions for the s ingular values of a 
product of matrices to be equ al to ce rtain products of their singular values. We then analyze the case 
of eq ua li ty in a matr ix in equ ality of Ostrowski. 
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The purpose of this note is to give necessary and sufficient conditions for the singular values of 
a product of matrices to be equal to certain products of their singular values. We then analyze the 
case of equa]jty in a matrix inequality of Os trows ki . 

Th e s ingular values of an n·square co mplex matrix X are the positive square roots of the eigen· 
values of X*X, where X* is the conjugate tran spose of X. Denote the singular values of X by 
a t (X) , ... , an (X), arranged so that al (X) ~ ... ~ an(X) > 0 (all matrices are assumed to be 
nonsi ngular). Let A and B be n,·square complex matri ces and let A = UH, B = VK be the polar 
factorizations of A a nd B. In the factorization s U and V are unitary matrices and Hand K are 
positive·definit e hermitian matri ces. 

THEOREM 1: Let k be a positive integer less than n. Then 

ai (AB) = ai (A)ai (B), for (1) 

if and only if there exists a unitary matrix W such that 

W *Y* HYW =diag (a l (A), (2) 
and 

whereT I and T2 are (n - k)·square matrices. 
PROOF: Since the singular values of AB are the same as the singular values of (V*HV)K, it 

suffices to prove this theorem for the case where A and B are positive-definite hermitian matrices. 

If there is a unitary matrix W satisfying 

and 

then 
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W*A W=diag (al(A), 

W*BW=diag (al(B), 

ai(AB) =ai(A)ai(B) 
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., adB)) -tT2 (3) 

1 ~ i ~ k. 



We use an induction argument on the size of A and B, n, to show that condition (1) implies 
there is a unitary matrix Wsatisfying (3). Let Ivl= (kllvm~ denote the length of the n-tuple 
v= (VI, .. . , Vn) . 

If n = 1, then W= [1] will satisfy (3). 
If n ;?; 2, let y be an n-tuple of unit length such that 

~I (AB) = IABy l = IByl ·1 A ( I~~I )1· (4) 

But IByl :;;; ~I (B) and 1 A ( I~~I )1 :;;; ~l (A). By hypothesis, ~l (AB) = ~l (A)~I (B), so IByl = ~dB). 
Since B is positive-definite hermitian. By= ~l (B)y. Also Ay= ~l (A)y. 

Let 5 be a unitary matrix whose first column is y. Since 5 * AS is hermitian, 5* AS = ~I (A) + A ' , 
where A' is an (n-I)-square, positive-definite hermitian matrix. Similarly, 5*B5=~I(A) +B' 
where B ' is an (n -1)· square positive-definite hermitian matrix. Clearly, 

and 

So equality (1) implies that 

~i(A ') =~i + I(A) 

~i(B') =~i+I (B) 

~i(A'B') =CXi+I(AB) 

~i(A 'B') = ~i(A')~i(B') 

I :;;;i:;;;n-I, 

I :;;;i:;;;n-I, 

1:;;; i:;;;n-l. 

I:;;;i :;;;k-l. 

By the induction hypothesis applied to the (n -1) -square matrices A' and B' , there exists an 
(n - 1) -square unitary matrix 5' such that 

5'*A'5'= diag (~2(A), 

and 
5'*B' 5' = diag (~2(A), 

where T I and T2 are (n - k) -square matrices. 
Finally let W=5(I + 5') , then 

W*AW= (1 +5' *)5*A5(I +5') 

= (1 + 5' *) ( ~l (A) + A ') (1 + 5' ) 

= cxI(A) +- 5'*A'5' 

=diag(~I(A), ... , ~k(A»+-TI ' 

Similary W*BW = diag (~dB), ... , ~k(B» + T 2 • Q.E.D. 
We need the following definition in order to state Ostrowski's inequality. 

D EFINITION: Let cP(xr, . . . , Xk) be a real valued function of k real variables. cp is convex in a 
region R if 

cP (ex + (1- e) y) :;;; ecP(x) + (1- e) cP(y) (5) 

whenever 0 < e < 1, x= (Xl, . . . , xk)ER, y= (Yh ... , Yk)ER. If equality holds m (5) only when 
Xi = Yh 1 :;;; i :;;; k, we say cP is strictly convex. 

Now we state two theorems by Ostrowski [3, Thm. XVI]. 

312 



THEOREM 2 (Ostrowski): Let f(xl,. ., Xk) be a symmetric function ofk real variables such that 

is increasing in each variable Xi and convex in the region Xi ~ O. Then, 

(6) 

THEOREM 3 (Ostrowski): Suppose CP(Xl, ... , Xk) is a symmetric function which is convex and 
increasing in each variable. Let {Xi> Yj} be 2n positive numbers satisfying 

Xl ~ ... ~ Xn, Yl ~ .. ~ Yn 
(7) 

Xl + . . . + Xl' .;; YI + . +Yr; l';;r';;n, 

with equality in (7) for r= n. Then 

(8) 

In addition, if cP is strictly convex and strictly increasing in each variable, then equality holds in 
(8) if and only if Xi = Yi> 1 .;; i .;; k. 

If the inequalities in (7) hold, x is said to majorize y, [1, pg. 45]. A proof of Theorem 3 different 
than Ostrowski's is given in [2]. Theorem 2 follows from Theorem 3 by choosing XI = log at(AB) 
and YI = log (a; (A )a; (B)). It is known that 

r r n ai(AB) .;; n at(A)al(B), 1 .;; r .;; n. 
1=1 i=1 

N ow using Theorem 1, it is easy to show that if cf> is strictly convex and strictly increasing in each 
variable, then equality holds in Theorem 2, (6) if and only if there exists a unitary matrix W such 
that (2) holds. 
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