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The purpose of this note is to give necessary and sufhicient conditions for the singular values of a
product of matrices to be equal to certain products of their singular values. We then analyze the case
of equality in a matrix inequality of Ostrowski.

Key words: Matrices; singular values.

The purpose of this note is to give necessary and sufficient conditions for the singular values of
a product of matrices to be equal to certain products of their singular values. We then analyze the
case of equality in a matrix inequality of Ostrowski.

The singular values of an n-square complex matrix X are the positive square roots of the eigen-
values of X*X, where X* is the conjugate transpose of X. Denote the singular values of X by
a(X), . . ., ay(X), arranged so that a; (X) = . . . = a,(X) >0 (all matrices are assumed to be
nonsingular). Let 4 and B be n-square complex matrices and let A=UH, B=VK be the polar
factorizations of 4 and B. In the factorizations U and V are unitary matrices and H and K are
positive-definite hermitian matrices.

THEOREM 1: Let k be a positive integer less than n. Then

ai(AB)=a;(A)a;(B),  for 1
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=

if and only if there exists a unitary matrix W such that

W*V*HVW =diag (a:(A), . . ., a(A))+Th. (2)
and
W*KW=diag (e;(B), . . ., ay(B)+ T,

where Ty and T are (n— k)-square matrices.
PROOF: Since the singular values of AB are the same as the singular values of (V*HV)K, it
suffices to prove this theorem for the case where 4 and B are positive-definite hermitian matrices.

If there is a unitary matrix W satisfying

W*AW = diag (e, (4), . . ., ax(4))+T:

and

W*BW =diag (a1 (B), . . ., ax(B))+T- 3)

then ai(AB) =ai(A)ai(B) 1<i<k.
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We use an induction argument on the size of 4 and B, n, to show that condition (1) implies
there is a unitary matrix W satisfying (3). Let |v|= (2:]v?|); denote the length of the n-tuple
v="(v1, . . -, Un).

If n=1, then W=[1] will satisfy (3).

If n =2, let y be an n-tuple of unit length such that

B
e (4B) = |4By| = 1By - 4 (25 )| - @

. _B_y_>
But |By| < a;(B) and ‘ A < IBy]
Since B is positive-definite hermitian. By=a;(B)y. Also Ay=«;(A)y.

Let S be a unitary matrix whose first column is y. Since S*4S is hermitian, S¥*4AS =, (4) +A4’,
where 4’ is an (n—1)-square, positive-definite hermitian matrix. Similarly, S*BS=a,(4) +B"
where B’ is an (n—1)-square positive-definite hermitian matrix. Clearly,

< a;(4). By hypothesis, a; (4B) = a; (4) a1 (B), so |By| = a1 (B).

ai(d") =ai1(4) Isisn—1,

ai(B") =ai1(B) lsisn-—1,
and
ai(A'B") =a;i.1(AB) l<sisn—1.

So equality (1) implies that
ai(A'B"Y=a;(A")a;(B") 1<is<k—1.

By the induction hypothesis applied to the (n—1)-square matrices A" and B', there exists an
(n—1) -square unitary matrix S’ such that

S'*4'S' = diag (au(A4), . . ., ow(A))+ T,
and ‘
S™*B'S"'=diag (ae(4), . . ., ar(4))+T,

where 7'y and 75 are (n—k)-square matrices.
Finally let #=S(1+S’"), then

WAW = (1+S'*)S*4S(1+S")
=(1+S"(a(d)+4)1+S)
=0y (A)+ S'*4’S’

= diag (au(4), . . ., ax(A4))+ T
Similary W*BW = diag (a4 (B), . . ., ox(B))+Ts. Q.E.D.
We need the following definition in order to state Ostrowski’s inequality.
DEFINITION: Let ¢(xi, . . ., Xx) be a real valued function of k real variables. ¢ is convex in a
region R if
d(Ox+ (1—0)y) < 0p(x)+ (1—6)d(y) )

whenever 0 <0 <1, x= (X1, . . ., Xx)R, y=(v1, . . ., yx)eR. If equality holds in (5) only when
Xi =Yy, | 1<Kk, we say ¢ is strictly convex.
Now we state two theorems by Ostrowski [3, Thm. XVI].
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THEOREM 2 (Ostrowski): Let f(xi, . . ., x¢) be a symmetric function of k real variables such that
d(x1, . . ., x)=1f(exp x1, . . ., exp xi)
is increasing in each variable x; and convex in the region x; = 0. Then,
fea(AB), . . ., ax(AB)) < f(aa(A)au(B), . . ., x(A)oy(B)). (6)

THEOREM 3 (Ostrowski): Suppose ¢(x1, . . ., Xx) is a symmetric function which is convex and
increasing in each variable. Let {x;, y;} be 2n positive numbers satisfying

X1= . .. = Xp, Yi=Z ... =¥
()
SHAF 0 o o TEYGEE SHAR o o o TV l1<r=<n,
with equality in (7) for r=n. Then
dx1, . .o Xk) S Dy1, - - o, V) @)

In addition, if ¢ is strictly convex and strictly increasing in each variable, then equality holds in
8) if and only if x;i=y;, 1<i<k.

If the inequalities in (7) hold, x is said to majorize v, [1, pg. 45]. A proof of Theorem 3 different
than Ostrowski’s is given in [2]. Theorem 2 follows from Theorem 3 by choosing x, = log «j(4B)
and y;=log (a;(A4)«i(B)). It is known that

r

[J(4B) < [[a(ai(B), 1<r=n.

i= i=1

Now using Theorem 1, it is easy to show that if ¢ is strictly convex and strictly increasing in each
variable, then equality holds in Theorem 2, (6) if and only if there exists a unitary matrix ' such
that (2) holds.
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