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Th e fo ll ow ing proble m is motiva te d and the n so lved, using the theo ry of sys tems of di s tinct re pre
sentatives . Le t 111 = {I . 2 . . , III}. a nd for each sequ e nce u of di s tinc t me mbers of 111, le t (u ) be 
th e assoc ia te d subse t. S uppose give n a mathe mati ca l probl e m 1' (5) for e ac h s ubset 5 of 111, and a n 
a lgo rithm A whi c h whe n a ppli ed to u so lves not on ly 1'( (u» b ut a lso all 1' ( (0») where T is an initi a l 
segme nt of u. What is the s malles t numbe r of a pplicat ions of A need ed to solve the e ntire e nse mble 
of prob le ms { p (S):S C ilf }? 

Key wo rds : Com bin a to ri cs : dyn a mic programmin g; uptimi zat io n : s ys te ms of di s tin c t re prese ntati ves : 
theo ry of co mput a ti o n. 

1. Introduction 

This note is presented with the same inte nt as a note by A. J. Goldm an [4],t wh ere the motive 
is " to illu s trate how mathe mati cal di sciplines th at appear too abs tru se to be useful to th e operations 
researc her can in fac t provid e exac tly what is needed to answer so me of hi s questions. " The parti c u
lar mathe mati cal di sc iplin e used in our analys is is th e co mbin atorial theo ry of " di s tin ct 
rep rese ntatives. " 

Let M = {I , 2, ... , m.} , and s uppose a math e mati cal proble m peS) is assoc iated with each 
subse t S of M. We s hall be concern ed with a meas ure of th e co mputati onal labor required to solve 
the e nse mbl e of proble ms {P(S):S eM} , under th e es peciall y favorable c irc um stan ces de· 
scribed below. Obtaining th e e nse mble of solutions will be referred to as covering aLL subproblem.s. 

For any sequ e nce CT of di s tin ct members of M , le t ( CT ) de note the subse t of M whose me mbe rs 
are the terms of CT. Suppose we have an algo rithm A, whi c h wh e n appli ed to CT solves not only th e 
proble m P( ( CT )) but al so all the problems P( (7)) wh ere 7 is an initi al segme nt of CT. Our qu es ti on 
is: What is the minimum number N( m) of appli cations of A needed to cover all subproble ms? 
To whi c h seque nces should A be appli ed to achie ve thi s minimum numbe r? 

The ana lysis of thi s ques tion is deferred to th e next section of the note. We first present 
several exam pIes to show how this ques tion arises in mathe matical operations· research settings. 

Example 1. Co nside r a 0- 1 integer linear program with m binary variables , and with obj ec tive 
function C 1~'(. There are 2m binary m-vectors to consider. Methods of implicit enumeration [1, 3] 
evalu ate th e objective function for some subfamily of these 2m arguments, and the efficiency of 
suc h a method is typi cally measured by comparing the size of this subfamily with th e numbe r 2m 

of e valuations required in a brute·force approach. 
We propose, however, that a n appropriate basis for comparison may be not 2111 but ra ther th e 

s maller valu e N(m) defin ed above. To see why, observe that the binary m·vectors x are in natural 

corres ponde nce with th e subse ts S of M; le t xeS) be the vec tor associated with 5, a nd le t peS) be 
th e task of e valuating cTx(S) . Thi s evalu ation involves, for some arrangement of the me mbe rs of 
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S into a sequence (T, the formation of the successive partial sums Ca-(l), Ca-( 1) + Ca-(2), etc. Thus we 
have an instance of the general question under study. The same idea applies when peS) is the eval
uation of some function F(S) which would naturally be calculated using a recursion 

F (T U {j}) = F ( T) * J (j) 

where "*,, is a commutative operation and J is a function defined on M. 
Example 2. As another example, suppose we have an m-stage dynamic program, the stages 

being numbered by the members of M. Assume this program has the special property that its 
solution is independent of the ordering of stages, and that the same is true of each of the subprob
lems peS) defined by using only some subset S of the stages. For certain sensitivity analyses, it is 
desirable to solve the entire ensemble {P(S):S eM} of problems; the recursive nature of the 
standard dynamic algorithm makes this an instance of the general question. For example, if m = 3, 
it will follow from our analysis that the minimum number of dynamic programs which must be 
solved is 3. One such trio is: 

Program 1: Stage 1 ~ Stage 2 ~ Stage 3 
Program 2: Stage 2~ Stage 3 
Program 3: Stage 3~ Stage 1 

Applying the dynamic programming algorithm to Program 1 yields the solutions of P( {l} ), 
P( {I, 2}), and P( {I, 2, 3}); application to Program 2 solves P( {2}) and P( {2, 3}); and application 
to Program 3 yields the remaining nontrivial members P( {3}) and P( {l, 3}) of the problem 
ensemble. 

An example of a dynamic programming model having the stated commutivity property on its 
its stages is an additive resource allocation problem of the form: 

m m 
Max 2: Jj(Xj): 2: gj(Xj) ~ b 

j = 1 j = 1 

j= 1, . .. , n. 

The proble m, peS), is of the form 

Max 2: Jj(Xj):2: gj(Xj) ~ b 
j<S j<S 

Example 3. The writer first encountered the general problem in the analysis of a parametric 
min-cut problem for communications networks [5]. In that context we are given a finite network 
with a set N of nodes and a set A of directed arcs; there is a distinguished source node s, and a 
distinguished subset T of N - {s} consisting of m terminal nodes. A cut between s and a subset, 
T' , of T is a subset of A whose removal from the network would leave intact no path from the 
source s to any node of T' . 

In this application we are also given a nonnegative rational-valued cost function c defined on 
the set A of arcs, and a nonnegative rational-valued value function v defined on the set T of ter
minals; c is extended additively to the subsets of A (e.g., cuts), and v is extended additively to the 
subsets T' of T. The parametric analysis requires, for each number V in the interval [0, v(T)], 
determining among those subsets T' of T with veT') :;;: V, one which minimizes J(T') = min [c(C)] 
where C ranges over all cuts between sand T'. 

Such an analysis can be carried out in many ways [5]. The one which concerns us here in
volves the determination, for each of the 2'" subsets T' of T, of the associated valu e J(T') (as well 
as the relatively trivial calculation of veT')). Evaluation of a given J(T') can be accomplished by 
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applying the Ford-Fulkerson labelling algorithm [2]. This algorithm, however, has an inherent 
ability to solve subproblems in a recursive manner. That is, the " labels" determined in evaluating 
f(T') can be used in solving for f(T' U {t}) where tET-T'_ Thus, to determine the minimum 
number of explicit appli cations of the min-cul algorithm needed to complete the analysis while 
exploiting this recursive prope rty, is again an instan ce of our general question_ 

2. Analysis 

It is convenient to translate th e general question into the setting of an abstract network, whose 
nodes are the 2m subsets of M , and whose arcs are the pairs (5,5') such that5' = 5 U {j} for some 
jEM - 5 _ In thi s se tting, an arrangement of the members of 5 into a sequence (J" is equivalent to 
selecting a specific path from node ¢ (correspondi ng to the null set) to node 5; initial segments of (J" 

correspond to initial subpath s of this path. Thus our general question takes the following form: 

What is th e minimum number , N(m) , of paths starting at ¢ , which will cover all the nodes of 
thi s abs tract network? 

Let [x J denote the greates t in teger not exceeding x. It will be useful to have a special notation 
for th e larges t binomial coe ffi cie nt with " upper" argum ent m; le t 

Our analysis will yield a co nstructive proof that 

N( m) =g( m). (2 .1 ) 

Th ere are g( m ) nodes correspondin g to [m/2J -tuples, and no two such nodes can be on a com
mon path s tartin g from ¢ (i.e., no [m/2J -tuple is contained in another). This shows that 
N (m) ;;,: g( m) . It only remain s to show that there is a set of g( m) paths starting at cp which together 
cover all nodes. 

Th e abstract network has a n obvious " mirror symmetry" associated with the one-to -one corre
spo nde nce between se ts 5 and th eir complements M - 5. Exploiting thi s , we see that it sufflCes to 
confine attention to th e subne twork containing the nodes corresponding to sets of cardinality 
<S; [m/2 J , and to show that all nodes of thi s subnetwork can be covered by a suitable set of g(m) 
path s s tarting at cp. 

Let " le vel p " refer to those nodes which correspond to subsets with p members. The construc
tion of the des ired g (m ) paths can be effected recursively, proceeding from level to level in the 
network. It suffices to prove, by induction on p for p <s; [m/2J, that there are paths from ¢ to the 

(;) nodes at level p, one path per node at level p, which are special in the sense that these paths 

together cover all nodes at levels <s; p . What is required for the induction step is to show, for p < m/2, 
that one eleme nt can be dele ted from each (p + 1) -tuple in such a way that the resultant set of 
p-tuples includes all p -tuples. That is, there are one-arc extensions of the special paths for level p 
(with each of these paths receiving at least one such extension) which together cover all nodes at 
level p + 1 ; these extended path s are the n clearly a special family for level p + 1. 

Thi s is es tablished in the followin g theorem and subsequent corollary, thus completing the 
proof of (2. 1). Th e theorem will be demonstrated usi ng the theory of distinct representatives, in 
parti c ular the basic theorem of Hall [7J; an alternative would be the approach adopted by Meyers 
[8J in treating a combinatorial ques tion so mewhat related to that of the present note . 
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THEOREM: Let {TjH be a collection of sets which collectively contain q elements, say {ejn Let Tj 1 

contain tj elements, and assume ej occurs in rj of the sets . Define . 

T= Max {tY ill 

If qp ~ liT and p ~ T, then the family {Tj}r has a SDR (system of distinct representatives). 

PROOF: Let I be any index set from {l, ... , n}, with k members. Suppose U Ti contains a 
if! 

elements, say {ejh.J (J is an index set from {I, .. . , q} with a members). Then, for each jEjC 

(complement of J) none of the rj repetitions of ej are in any of {Ti: id} . Therefore, the number of 
appearances of elements in {Ti: iEIc} is at least L rj. This yields the inequality: 

JOC 

L rj ~ L ti. 
JOC i.IC 

Therefore, 
(q-a)p ~ (n-k)T. 

Since qp ~ nT and p ~ T, it follows that a ~ k. Our conclusion then follows from Hall's Theorem. 
Observe that the counting process reveals L rj = L ti. Therefore, if all rj are equal and all 

jUC i.I C 

ti are equal (so rj = p and ti = T), and if p ~ T, then the theorem must apply with qp = nT. This says 
that in the corollary below we rely upon the fact that 

(; + 1) (p + 1) = (;) (m - p ) 

instead of merely 

COROLLARY: For the set M = {I, . . ., m}, let {Pi H be the collection of all p-tuples where k = (; ) 

and p < m/2. Then there exists a sequence of elements {siH, with repetitions allowed, 
such that {Pi U Sin are distinct (p + I)-tuples. 

PROOF: Let Ti be the collection of m - p (p + 1) -tuples formed by adjoining to Pi any member 
of its complement, M - Pi. Regard Pi as "representable" by any (p + I)-tuple in Ti ; then what is 
to be shown is that {TiH admits a system of distinct representatives. 

In the notation of our theorem we have 

( m ) 
q=\P + I' n= (;) , 

/J= p+I for allj=I, ... , q, 

ti = m - p for all i = 1, . . ., n . 

Therefore, p = p + 1 and T= m - p. Observe that 

qp= nT and p ~ T for p < m/2. 

Hence, our proof is complete. 
The computation of the g(m) paths is performed level by level by solving for the completions 

(or deletions) indicated by the corollary. It suffices to consider p < m/2 and describe a method to 
proceed from level p to level p + 1. In terms of our abstract network our problem is to fined a maxi-
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mal matching in the bi partite ne twork consis ti ng of th e (;) vertices of level p, the ~ ~ 1) ve rtices 

of le vel p + 1 and the edges that connect a node in level p with a node in level p + 1. 
Equivalently , we can cas t our problem as a n assignment problem with a cos t matrix , C , having 

only 0 - 1 e le ments. We se t Cij = 0 if node i (in le vel p ) is connected with node j (in level p + 1); 
otherwi se Cij = 1. W e the n as k for a n ass ignment of each row to a di stinct column to minimize the 
s um total cos t. We know t.here is a so lution with zero cos t , and the assignment provides the desired 
matc hing. 

The aut hor wishes to th ank A. ]. Goldm an for hi s many helpful comments . 
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