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The Minimum Number of Problems to
Cover All Subproblems*

H. J. Greenberg**

(June 24, 1970)

The following problem is motivated and then solved, using the theory of systems of distinct repre-
sentatives. Let W= {1. 2, . . ., m}. and for each sequence o of distinct members of M, let (o) be
the associated subset. Suppose given a mathematical problem P(S) for each subset S of M, and an
algorithm A4 which when applied to o solves not only P({(o)) but also all P({r)) where 7 is an initial
segment of o. What is the smallest number of applications of 4 needed to solve the entire ensemble
of problems {P(S):S C M}?
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1. Introduction

This note is presented with the same intent as a note by A. J. Goldman [4],"' where the motive
is “to illustrate how mathematical disciplines that appear too abstruse to be useful to the operations
researcher can in fact provide exactly what is needed to answer some of his questions.” The particu-
lar mathematical discipline used in our analysis is the combinatorial theory of “‘distinct
representatives.”

Let M= {1, 2, . . ., m}, and suppose a mathematical problem P(S) is associated with each
subset S of M. We shall be concerned with a measure of the computational labor required to solve
the ensemble of problems {P(S):S C M}, under the especially favorable circumstances de-
scribed below. Obtaining the ensemble of solutions will be referred to as covering all subproblems.

For any sequence o of distinct members of M, let (o) denote the subset of M whose members
are the terms of . Suppose we have an algorithm 4, which when applied to o solves not only the
problem P( (o)) but also all the problems P((7)) where 7 is an initial segment of o. Our question
is: What is the minimum number N(m) of applications of 4 needed to cover all subproblems?
To which sequences should 4 be applied to achieve this minimum number?

The analysis of this question is deferred to the next section of the note. We first present
several examples to show how this question arises in mathematical operations-research settings.

Example 1. Consider a 0—1 integer linear program with m binary variables, and with objective
function ¢’x. There are 2™ binary m-vectors to consider. Methods of implicit enumeration [1, 3]
evaluate the objective function for some subfamily of these 2" arguments, and the efficiency of
such a method is typically measured by comparing the size of this subfamily with the number 27
of evaluations required in a brute-force approach.

We propose, however, that an appropriate basis for comparison may be not 2” but rather the
smaller value N(m) defined above. To see why, observe that the binary m-vectors x are in natural
correspondence with the subsets S of M: let x(S) be the vector associated with S, and let P(S) be
the task of evaluating ¢”x(S). This evaluation involves, for some arrangement of the members of
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S into a sequence o, the formation of the successive partial sums co1), Co(1)+ Co2), €tc. Thus we
have an instance of the general question under study. The same idea applies when P(S) is the eval-
uation of some function F(S) which would naturally be calculated using a recursion

F(TU{jH=FT)*f() (jeM —T)
where “*”” is a commutative operation and f is a function defined on M.

Example 2. As another example, suppose we have an m-stage dynamic program, the stages
being numbered by the members of M. Assume this program has the special property that its
solution is independent of the ordering of stages, and that the same is true of each of the subprob-
lems P(S) defined by using only some subset S of the stages. For certain sensitivity analyses, it is
desirable to solve the entire ensemble {P(S):S C M} of problems:; the recursive nature of the
standard dynamic algorithm makes this an instance of the general question. For example, if m=3,
it will follow from our analysis that the minimum number of dynamic programs which must be
solved is 3. One such trio is:

Program 1: Stage 1— Stage 2— Stage 3

Program 2: Stage 2— Stage 3

Program 3: Stage 3— Stage 1
Applying the dynamic programming algorithm to Program 1 yields the solutions of P({1}),
P({1, 2}),and P({1, 2, 3}); application to Program 2 solves P({2}) and P ({2, 3}); and application
to Program 3 yields the remaining nontrivial members P({3}) and P ({1, 3}) of the problem
ensemble.

An example of a dynamic programming model having the stated commutivity property on its
its stages is an additive resource allocation problem of the form:

Max if,(x,)i gi(xj) <b

=il

xje{O, 1, 58 09 dj}, ]:1, 5 o oy o

The problem, P(S), is of the form
Max ' fi(x)):y &i(x;) <b

Jjes Jjes

xje{O, ], 5 o o9 dj}, ]€S

Example 3. The writer first encountered the general problem in the analysis of a parametric
min-cut problem for communications networks [5]. In that context we are given a finite network
with a set N of nodes and a set 4 of directed arcs; there is a distinguished source node s, and a
distinguished subset 7" of N—{s} consisting of m terminal nodes. A cut between s and a subset,
T', of T is a subset of 4 whose removal from the network would leave intact no path from the
source s to any node of 7".

In this application we are also given a nonnegative rational-valued cost function ¢ defined on
the set 4 of arcs, and a nonnegative rational-valued value function v defined on the set 7 of ter-
minals; ¢ is extended additively to the subsets of 4 (e.g., cuts), and v is extended additively to the
subsets 7" of T. The parametric analysis requires, for each number 7 in the interval [0, v(T)],
determining among those subsets 7" of 7' with v(7") = V, one which minimizes f(7") =min [c(C)]
where C ranges over all cuts between s and 7".

Such an analysis can be carried out in many ways [5]. The one which concerns us here in-
volves the determination, for each of the 2" subsets 7" of T, of the associated value f(T") (as well
as the relatively trivial calculation of v(7")). Evaluation of a given f(T") can be accomplished by
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applying the Ford-Fulkerson labelling algorithm [2]. This algorithm, however, has an inherent
ability to solve subproblems in a recursive manner. That is, the “labels’ determined in evaluating
f(T") can be used in solving for f(7" U {t}) where teT—T'. Thus, to determine the minimum
number of explicit applications of the min-cut algorithm needed to complete the analysis while
exploiting this recursive property, is again an instance of our general question.

2. Analysis

It is convenient to translate the general question into the setting of an abstract network, whose
nodes are the 2™ subsets of M, and whose arcs are the pairs (S, S’) such thatS'=S U {j} for some
jeM —S. In this setting, an arrangement of the members of S into a sequence o is equivalent to
selecting a specific path from node ¢ (corresponding to the null set) to node S; initial segments of &
correspond to initial subpaths of this path. Thus our general question takes the following form:

What is the minimum number, N(m) , of paths starting at ¢, which will cover all the nodes of
this abstract network?

Let [x] denote the greatest integer not exceeding x. It will be useful to have a special notation
for the largest binomial coefficient with “‘upper” argument m; let

_ [ m
g(m) = <[m/2] )

Our analysis will yield a constructive proof that

N(m)=g(m). (2.1)

There are g(m) nodes corresponding to [m/2]-tuples, and no two such nodes can be on a com-
mon path starting from ¢ (i.e., no [m/2]-tuple is contained in another). This shows that
N(m) =g(m). It only remains to show that there is a set of g(m) paths starting at ¢ which together
cover all nodes.

3

The abstract network has an obvious “mirror symmetry” associated with the one-to-one corre-
spondence between sets S and their complements M —S. Exploiting this, we see that it suffices to
confine attention to the subnetwork containing the nodes corresponding to sets of cardinality
< [m/2], and to show that all nodes of this subnetwork can be covered by a suitable set of g(m)

paths starting at ¢.

Let “level p” refer to those nodes which correspond to subsets with p members. The construc-
tion of the desired g(m) paths can be effected recursively, proceeding from level to level in the
network. It suffices to prove, by induction on p for p < [m/2], that there are paths from ¢ to the

(;’:) nodes at level p, one path per node at level p, which are special in the sense that these paths

together cover all nodes at levels =< p. What is required for the induction step is to show, for p < m/2,
that one element can be deleted from each (p+1) -tuple in such a way that the resultant set of
p-tuples includes all p-tuples. That is, there are one-arc extensions of the special paths for level p
(with each of these paths receiving at least one such extension) which together cover all nodes at
level p+1; these extended paths are then clearly a special family for level p+1.

This is established in the following theorem and subsequent corollary, thus completing the
proof of (2.1). The theorem will be demonstrated using the theory of distinct representatives, in
particular the basic theorem of Hall [7]; an alternative would be the approach adopted by Meyers
[8] in treating a combinatorial question somewhat related to that of the present note.
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THEOREM: Let {T\}! be a collection of sets which collectively contain q elements, say {e;}%. Let T;
contain t; elements, and assume e; occurs in tj of the sets. Define

p= Mjin {r}{
T= Miax {t;}1

If qp =n7 and p < 7, then the family {T;}" has a SDR (system of distinct representatives).

PRrROOF: Let I be any index set from {1, . . ., n}, with £ members. Suppose U T; contains a
iel
elements, say {ej}js (J is an index set from {1, . . ., ¢} with ¢ members). Then, for each jeJ¢

(complement of J) none of the r; repetitions of e; are in any of {T;:iel}. Therefore, the number of
appearances of elements in {T;:ie/°} is at least » r;. This yields the inequality:

jeJc
S <3
JjeJc ielC

Therefore,
(g—a)p < (n—k)r.

Since gp = nr and p <, it follows that a = k. Our conclusion then follows from Hall’s Theorem.
Observe that the counting process reveals 2 ri= 2 ti. Therefore, if all rj are equal and all

jeJ€ iel€
t; are equal (so rj=p and t;=1), and if p <7, then the theorem must apply with gp =nr. This says
that in the corollary below we rely upon the fact that

(711} =)

(p1) 0 +0= () .

instead of merely

COROLLARY: For the set M={1, . . ., m}, let {P;}¥ be the collection of all p-tuples where k= (II:I:)

and p < m/2. Then there exists a sequence of elements {s;}5, with repetitions allowed,
such that {P; U s;}% are distinct (p+ 1)-tuples.

Proor: Let T; be the collection of m—p (p+1)-tuples formed by adjoining to P; any member
of its complement, M — P;. Regard P; as ‘“‘representable’” by any (p+1)-tuple in T;; then what is
to be shown is that {7} admits a system of distinct representatives.

In the notation of our theorem we have

_( m ) _(m)
= \p£1) " p)’

ri=p+1forallj=1, ... ¢,

ti=m—pforali=1, .. . n.
Therefore, p=p-+1 and 7=m —p. Observe that
gp=nt and p < 7 for p < m/2.

Hence, our proof is complete.

The computation of the g(m) paths is performed level by level by solving for the completions
(or deletions) indicated by the corollary. It suffices to consider p < m/2 and describe a method to
proceed from level p to level p+ 1. In terms of our abstract network our problem is to fined a maxi-

248



m .
)+ 1) vertices
of level p+1 and the edges that connect a node in level p with a node in level p+1.
Equivalently, we can cast our problem as an assignment problem with a cost matrix, C, having
only 0—1 elements. We set ¢;;=0 if node i (in level p) is connected with node j (in level p+1);
otherwise ¢;;=1. We then ask for an assignment of each row to a distinct column to minimize the
sum total cost. We know there is a solution with zero cost, and the assignment provides the desired

mal matching in the bipartite network consisting of the < ) vertices of level p, the (1
p

matching.

The author wishes to thank A. J. Goldman for his many helpful comments.

3. References

[1] Balas, E., An additive algorithm for solving linear programs with zero-one variables, Oper. Res. 13, 517-546 (1965).
[2] Ford, L. R., Jr.. and Fulkerson, D. R., Flows in Networks (Princeton Univ. Press, Princeton. N.J., 1962).
[3] Glover. F., A multiphase-dual algorithm for the zero-one integer programming problem, Oper. Res. 13, 879-919 (1965).
[4] Goldman. A. J., Fractional container-loads and topological groups. J. Oper. Res. 16, 1218-1221 (1968).
[5] Greenberg, H. J., Optimal attack of a communications network, Ph. D. Thesis, The Johns Hopkins University (Baltimore,
Md., 1968).
[6] Greenberg, H. J., The use of branching in dynamic programming for parametric analysis. Oper. Res. 15, 976977 (1967).
[7] Hall. P.. On representatives of subsets. J. London Math. Soc. 10, 26-30 (1935).
[8] Meyers. P. R., Minimum number of subsets to distinguish individual elements, J. Res. Nat. Bur. Stand. (U.S.). 71B
(Math. and Math. Phys.). 21-22 (1967).
(Paper No. 74B4-335)

249



	jresv74Bn4p_245
	jresv74Bn4p_246
	jresv74Bn4p_247
	jresv74Bn4p_248
	jresv74Bn4p_249
	jresv74Bn4p_250

