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On the Spheroidal Functions *
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A number of new properties of the spheroidal functions of arbitrary real order a« > — 1 are estab-
lished, including double orthogonality over two separate intervals simultaneously and the existence
of a new kind of characteristic numers ya.,(c) that arise from it. Some computational formulas are
derived and a few numerical results are shown.
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1. Introduction

The spheroidal functions as defined and investigated by Stratton [1] ! and later by Chu and
Stratton [2] are those solutions of the differential equation

(1_772)1,[1/(;11(6', 7)) —2(0(+ 1)7)1111,71'1(0, 7}) + (bm,_C?‘nz)l!l(,,,(C, 7]) =0 (1)

that remain finite at the singular points == 1. The condition of finiteness restricts the admissible
values of the parameter b,,(c) to a discrete set of eigenvalues, indexed by n=0, 1,2, 3, . . ., that
depend upon the values chosen for the order a and the parameter ¢. The differential equation (1)
together with the condition of finiteness at y==1 is equivalent to the integral equation [1(27)]

ei(‘ﬂ!(l——tZ)"d;ml(c’ t)dl’ _lg'nSlv 2)
i

1
Van(¢) Yan(c, 77) :f
with eigenvalues v,,(c), valid for real « > —1.

For integral orders a=m =0, 1, 2,3, . . . the functions {4, (c, m) are related to the spheroidal
wave functions S, m+n(c, m) that arise from separation of the wave equation in spheroidal co-
ordinates. For half-integral orders a==7% they are related to the periodic Mathieu functions
Se,(c, m) and So,+1(c, m) that arise from separation of the wave equation in elliptic cylinder
coordinates. The purpose of the present paper is to derive some new properties of the spheroidal
functions of arbitrary real order @ > — 1, including a new kind of characteristic numbers y.,(c) that
arise from the property of double orthogonality shown here to be possessed by these functions, and
to present some numerical results illustrating them. It will be assumed throughout that the param-
eter c is real and positive, although many of the results are more general. A secondary purpose is
to emphasize the underlying unity of the properties associated with the spheroidal functions of
arbitrary real order o >—1. All properties of the spheroidal wave functions and of the periodic
Mathieu functions arise quite naturally from those of the general functions ian(c, 7). An extensive
and completely general treatment for all solutions of (1) for arbitrary complex values of a, b, and ¢

has been developed by Meixner and Schifke [3].
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Laboratories, Office of Aerospace Research, under Contract F19628-67-C—0255.

** Present address: Department of Electrical Engineering, North Carolina State University, Raleigh, North Carolina 27607.

' Figures in brackets indicate the literature references at the end of this paper.
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2. Elementary Properties

The following properties of the spheroidal functions ien(c, m) are evident directly from either
the differential equation (1) and its boundary condition of finiteness at y==1 or the equivalent
integral equation (2).

(a) The functions Yiax(c, m) are entire functions of . This follows from the fact that the param-
eter b,, was chosen in such a way that one of the two solutions of differential equation (1) remains
finite at the singular points ==1. With no singularities except for the one at infinity that solution
Yan(c, m) must be entire.

(b) As ¢ — 0 the functions Yun(c, n) become proportional to the Gegenbauer functions 7%(n),
and the eigenvalues b.,(c) approach

ban(c) = n(n+2a+1). 3)

This follows from the fact that the differential equation (1) approaches the Gegenbauer differential
equation [4, p. 783]

(1= Tg"(m) —2(a+ 7Ty (n) + n(n+2a+1) T (n) =0. (4)
The Gegenbauer functions for a=m=0, 1, 2, 3, . . . are related to the associated Legendre

functions P2, (n) by

Phiu(m)
T}{'(n)z%

_n2)m/2’ (5)

and for «=—% and +3% they are related to the Chebyshev polynomials of the first and second
kinds, respectively, by

nT" ¥ (n) :\/% cos [ncos 1], (6)
N @)

(c) For ¢ >0 and n— « such that ¢7 remains finite the function Y.n(c, ) becomes propor-
tional to Ju+a+y (em)/(em)®t . This follows from the integral representation (2) in which i (c,t)
in the interval — 1 < ¢ < 1 becomes proportional to 7%(n), from the fact [1(20) ] that

e’ (1 —¢2)oTe(t)dt=

1 n! (em)ett

J’l V27 "l (n+2a+1) Jurasrs (cm) 8)
P (

fora>—1.

(d) The functions Yan(c, n) are real for real v, have exactly n zeros in the interval (—1,1),
and are even or odd functions of 1 according as n is even or odd. This is implied (not proved) by
the limiting case ¢ — 0 in which the limiting functions, the Gegenbauer functions of (4), are known
from Sturm-Liouville theory to be real, to have exactly n zeros in (—1, 1), and to be even or odd
functions of n according as n is even or odd.

(e) The function ¥an(c, m) cannot have a zero at n==1. This follows from the differential
equation (1) and the entirety of ¥.n(c, m). For if it were to have a zero then, from (1), the first deriva-
tive also must be zero there. And after / successive differentiations of (1) every [+ 1th derivative
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must also be zero there, which would require that the function $an(c, 1) be identically zero every-
where in 7).

(f) The eigenvalues by (c) of (1) are real, positive, and ordered such that b0 < b1 < b2 < . . .,
provided that they are distinct. This is implied (again not proved) by the limiting case ¢ — 0, being
given in the limit by (3).

(g) The functions Yian(c, ) behave asymptotically with real n — 4+« as

n+a+1
_ "2 (a+ 1) an(e, 1) &7 (”’_ 2 W) [ (l)]
d’all(c’ 77) - Va"(C) (Cn)a+1 1+O 7 : (9)

This follows from the known asymptotic behavior [5] of integrals of the form (2).
(h) The spheriodal wave functions Sy, m+a(c, 1) and the periodic Mathieu functions Se,(c, n) and
Son+1(c, m) are special cases related to Yan(c, 1) as follows 2:

S—’E‘i’fggg’nﬂ), a=m=0,1,2,3
1
llla,,(C, ”’))z Se"(ca 7’)7 a=_§ (10)
Sons1(c, m) _ _1_
A-nm)iz> Ty

This is evident from the integral equation for the spheroidal wave functions [6(4)] and for the
periodic Mathieu functions [6(11, 12)].
3. Construction of the Functions

On the interval (—1, 1) the Gegenbauer functions 7'¢(n) form a complete set with respect
to all functions that are square-integrable with weight factor (1—m2)®, and are orthogonal with
weight factor (1—m22[1(6)]:

! , 2I'(k+2a+1)
—m2 a’a [a —p—— ol

They are even or odd functions according as k is even or odd. Hence the spheroidal functions
Yan(c, m) can be expanded in Gegenbauer functions on (—1, 1) [1(8)],

’

Wran(c, ) 2 die(clan) Tg(), (12)

k=0, 1

where the prime denotes summation over only even or odd values of & according as n is even or
odd. The function Yian(c, ) becomes proportional to 7¢(n) as ¢ —> 0, hence

2 The connection between the notation of Meixner and Schifke [3] and that used here is as follows:

bun(c):)\ﬁp,,(cz) “(1((1+])+CZ, ll/un((‘- 77) es (1_7)2)7“ /zps;f,, (n~ Cz):

2 2 (;2
b-4. "(C):’\H<CZ)+CE, Y-1Ln(c,m) ‘xce,,<cos ' Z>
2 2 2
b3, ,,(c):)\,,,‘l<%>—1+%, Pinle, )= (1—=n?) se,,+,<c05"n: %)
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di(clan) = 0, k # n. (13)

Expansion (12) converges rapidly on the interval (—1, 1), but beyond that interval convergence
becomes slower and slower with increasing 7). An alternative expansion that represents the func-
tions uniformly on (—, ), by an argument used later for (40), can be obtained from (12) in the
integral equation (2) by integrating term by term and making use of (8),

® J '+a+% (C”"))
z ar(clan) —k———, (14)

V""(C )i (cm)atd

PYan(c, ) =

where the expansion coefficients aj are related to the di by

T(k+2a+1)
k!

ar(clan) =ik

di(c|an). (15)

The coefficients aj are all real because the dj are real (the factor i*~" is always real since k—n
is always even). As ¢ —0,

ar(clan) = 0, k #n, (16)

by (13). For the special cases of a=m=0, 1, 2, 3, . . . the coefficients a, will agree with those
tabulated by Stratton et al. [7] for the prolate spheroidal wave functions provided that the normaliza-
tion is chosen to be such that

i' i*ar(c|lan) =1. (17)

k=0, 1

With the right hand side of (17) replaced by Vr/2 the coefficients ax for the special cases of

a=—% and +3 are related to Blanch’s [8] Mathieu function coefficients De®) and Do@+D,

ar(c|— 3%, n) =ik \/'E;r De (c?)

ar(c|+3%, n) =ik \/g (k+1) Dofb (c?).

respectively, by

(18)

In addition to the increasingly poor convergence of (12) outside of (—1, 1) it requires special

consideration for the case of «=—3% because T;* (7)) is infinite for #=0. Hence the expansion
(14) will be used almost exclusively hereafter.

A recursion relationship [1(9)] for determining the a;’s in (14) and the eigenvalues b (c)
is obtained from the differential equation (1),

Agisariot (ban—Br)ar+ Cr_sar_2=0, 19)
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where
k(k—1) :
(2k+2a—1) (2k+2a+1) <

Ak:
2k*+2k2a+1)+2a—1 ,
(2k+2a—1) (2k+2a+3)

(k+2a+1)(k+2a+2)
(2k+2a+1) (2k+2a+3) ¢

Bir=k(k+2a+1)+

2

Ci=

It can be rewritten as a continued fraction for the ratio of two succeeding values of aj in two
different ways, one in terms of increasing subscript,

ag Ck_g
=— . (20)
Aj—» (l,]‘ 2
ban BA + AI. +2 =
and the other in terms of decreasing subscript,
k- Ay
ar " Ar—1 21)

[)(m - BI{*Z + (II\'74 T
Ak -2

Each must be the reciprocal of the other, which leads to an infinite set of eigenvalues for b4,. The
best method now available for computing these eigenvalues, and simultaneously the expansion
coeflicients ay, is an iterative procedure that was first used by Bouwkamp[9(48)] for the case
a=0 and later invented independently by Blanch [10] for the Mathieu functions. All of the co-
eflicients a; in (19) must vanish for negative £, according to a result of Gegenbauer’s [11, Sec 16.13]
in which he showed that any analytic function can be represented within its domain of analyticity
by a series of the form (14). And for £#=0 or 1 the A, By, Cj in (19) become indeterminate at
a==14. Therefore (19) should be supplemented by

ar=0 for k<O,

(22)
e 3¢ o _2a+2
Bo=5 53 Bi=2at2+5 +5’(‘“ 2a+3°

the latter of which resolves the indeterminacy. For the special case of the Mdthleu functions
(a==*3%) as computed by Chu and Stratton [2(100)], where 4, = (,;,-—~Z and B, = Al+§ the two

computational procedures are quite different although the numerical results have been found to
be exactly the same. The advantage of the new procedure here is that all orders & > —1 are treated
exactly alike.

Once the eigenvalues are known the ratio for all £ is also known, either from (20) or (21).

Af—2

The ai’s can then be computed from these ratios in terms of @ or a; for the even and odd spheroidal
functions, respectively. The particular value chosen for ay or a; determines the scale factor by
which the {.n(c, ) functions are normalized. But no common agreement exists among authors
on the choice of normalization factors. For this reason all formulas in this paper will be shown with
arbitrary normalization factors that can be chosen at will. For those numerical results shown whose
values depend upon a choice of scale factor the i.n(c, m) functions will be normalized to unity
over the interval (—o, «).

The eigenvalues vqn(c) can be computed by equating the two expressions (12) and (14), or
their derivatives, at n=0. As 7 approaches zero the Bessel functions in (14) cause all terms to
vanish except for £=0. Hence for even n=2r,
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)" Va ay(cla, 2r)
2T (a+2)Pa, 2(c, 0)

Va, 21‘(C) =

23)

For odd n=2r+1 the Yan(c.m) vanish at n=0, so (14) must be differentiated with respect to 7
before letting n approach zero. All terms vanish except for £ =1, hence

. (—1)"\/;(t.(c|a. 2r+1)

Va,2r+1(€) =1ic 2<r+l]‘(a+%)d]¢’n ar+1(c, 0) 2
The Yran(c, m) functions and their derivatives at n=0 are found from (12) to be
_E)r s UH+3) ;
ba2r(e =00 3 Tl ot 1) @1les 20, (25)
' _(=D)ra _Ti+d) :
Pe, 2re1(c, 0)_2a—'\/; 2 Fitat]) asii(cle, 2r+1). (26)
Also,
Vall(C):i'IIVa,,(C)|. (27)

4. Double Orthogonality

An important property that will be established here is that the spheroidal functions Yan(c, 1)
for any order a > —1 are orthogonal with weight factor |1 —n2|* on two different intervals (—1, 1)
and (—, ) simultaneously. This double orthogonality property was first recognized for the case
of the prolate spheroidal wave functions of order zero by Slepian and Pollak [12]. A later investiga-
tion by the author [6] revealed that this property was possessed by all of the prolate spheroidal
wave functions of order m=0, 1,2, 3,. . . and by the periodic Mathieu functions.

The differential equation for the functions Sa. a+n(c, 1) defined by

S(l.l!+ll(cs 7))
dl""(c, 7)) = (]W (28)

is found from (1) to be of the singular Sturm-Liouville form

2
(=228 arale, M) ]+ [ banta(at+l) — 62712—1—3;2]8(1. atn(c, m) =0. (29)

%
a, at+p

Multiplication by S (¢, m) and subtraction of the product equation obtained when S. asu(c,m)

and ST ,.,(c, m) are interchanged gives

d - " . o . .
7'7’ [( Il = 712) (b a, u+lts ><kx (x+p—5u. u—#nsﬁ. u+p)] = (bup - ban)~S a, u+n~S >(kr a+p- (30)

Integrating with respect to n over a real interval and changing from S._ o+ (¢, n) back to Yan(c, m),
(1 i nz) |1 - 7’2|a[ll’(lm(c9 n)lllap(c, 7’) - ll’orll (Ca 'T))l[l,’,,,(C, T’) ] I':;Z=TI|

N2
= (bap— ben) fn e Rt MY Simtledi: > @)

The functions Y (c, m) will be orthogonal over any real interval (7, 1:) for which the left hand
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side of (31) is zero, provided that the b,, are distinct. Distinctness of the by, can usually be deter-
mined numerically.

(a) Orthogonality on (—1, 1)
When my=—1 and m.=1 the left hand side of (31) vanishes for all «>—1 because

(1—=m2)|1 —m?|« vanishes at both end points and .. (c, m) and its derivative are finite. Hence,
if the by, are distincet,

fﬁll Yan(c, M)Pap(c, m) (1—n*)%dn=0, n#p; (32)

i.e., the Yuu(c, m) functions are orthogonal on (—1, 1) with weight factor (1—n?)<.
(b) Orthogonality on (— %, x)
From the asymptotic behavior (9) of Yun(c, m) a simple calculation shows that

(1—n2) 11 =n2|[,, (cs M) e (s ) = an(c2 M) i, )]
:L[J,,,,(c, 1) (€, 1)4H 12 (a+1) [ . p—n 1
sin 3 7r+()<n):|, (33)

|le ((') | |V(,,,((‘) |C2u+l

as m— +oo, ) real. When p —n is even the first term is zero for all n, leaving

(1 _772) Il _7)2|"[l/1('m(07 7))‘1‘(1/1(6'9 7)) _lll(,,,(C, n)dltlzp (C, 7))] =O(1/’T})

The left hand side of (31) then vanishes for 7, =1 and m>=0, hence

fx Yan (€, M) Pap(c, M) |1 —m%|2dn=0, p—n even and # 0. (34)
1

Similarly on the interval (—o, —1), because of symmetry of the functions. Combining the three
intervals (—o, —1), (—1, 1), and (1, »),

f_x Yan(c, MPap(c, M) [1 —n2|®dn=0, p#n, (35)

including p —n odd because Yun(c, M) Yo, (c, ) is then an odd function on (— o, ©). Thus the func-
tions Pun(c, m) are orthogonal with weight factor |1 —m2|* on the interval (— %, =), provided only
that the b,, are distinct.

5. Completeness
(a) Completeness on (—1, 1)

The functions Su «+u(c, m) are complete on the interval (—1, 1) with respect to all square-
integrable functions. This is a property [13] of all Sturm-Liouville systems of the form

(pu') + (AMw—q)u=0, puu'|e= puu'ly =0, (36)
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and hence applies to the differential equation (29) and the boundary condition that S a+n(c, 1)
must remain finite at the singular points 7 == 1. Completeness of the Su .+n(c, ) functions
implies completeness of the ¥ (¢, ) functions.

(b) Completeness on (— ©, ©)

The fact that the functions Yian(c, n) are complete on (— 1, 1) with respect to the class of
functions that are square-integrable with weight factor (1 — 5n?)¢ will now be used to show that
they are also complete on (— %, ®) with respect to all functions of the form

Falem) = [ et = ) or (e 67

for « > — 1. The only restriction on f(¢) is that it be square-integrable on (— 1, 1) with weight
factor (1 —¢2)« It can be expanded in a series that converges in the mean with weight factor
(I =12,

ﬂnggmﬁﬁwu n., —1<i<l, 38)
where )
hale)= ”‘:;((? f F(O)dhan(e, 1) (1 — 2)adh. (39)

Hence for all real values of 1 the absolute value

Fa(en) = 3% bubin(e: ) )| = [ e = [r0 = $ 2 yue. 0 | a

T

< f_ll (Il = Z)e

is exactly zero. It is concluded, therefore, that

Yan(c, t)|dt (40)

Dy

n=o Pan

Fa(cm) = z bu(C)Yanl(c, m), —w<m<o, (41)

where the series converges to Fo(cn) not just in the mean but uniformly on (— «, ). Thus the
functions Yan(c, n) are complete on (— %, ) with respect to all functions F, (¢n) of the form (37).

6. Normalization Factors

The double orthogonality property of the spheroidal functions results in two different sets of
normalization factors, one on (— 1, 1) and another on (— o, ©). Both will be developed here.

(a) Normalization factors on (—1,1).

The orthonormality relation on (— 1, 1) will be designated by

[ dontes mypn(es m) (L= 0%y = Aan(c)o, 42)

where Aun(c) denotes the normalization factor for the spheroidal function of order « and index n.
These normalization factors can be computed directly from the integral (42) for each p=n by
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expanding Yan(c, m) in Gegenbauer functions as in (12) and making use of their orthogonality
relation (11), obtaining

2, k!
2 hTatDr(it2atD)

k=0,1

Aun(C) =

ai(clan), (43)

where the a;’s are the expansion coefficients (15).
(b) Normalization factors on (—®, ©).
Each of the normalization factors on (—, ©) can be derived in terms of the corresponding

normalization factor Ay, (c) on (—1, 1) by making use of the double orthogonality property already
established. The orthogonality integral (35) can be written

J_x Goles D)0 (| —nl=de

:fl [ 1 f_x ei|1 —n?| %Y (c, ”fl)dn] (1= 12) %oy (e, t)dt, “4)

-1 Vap(c)

by replacing s, (c, m) by its integral representation (2) and interchanging the order of integration.
From the orthogonality property (35) on (—, ®) it is clear that this must be zero for all p # n.
And from the other orthogonality property (32) on (—1, 1) it follows that the bracketed expression
in (44) must be orthogonal to every Yo, (¢, t) except Yan(c, t). Then, from completeness on (—1,1),
it is concluded that the bracketed expression for p=n must be proportional to .(c, t) everywhere
on(—1, 1):
1
Van(c)

J' ei"ﬂll] _712|"lllan(0s n)d"l = 'ya,,(C)lllm,(C, t)’ - 1 <t< 1’ (45)
where ya (¢) is the proportionality constant.? Thus the orthogonality relation on (—o, ®) is

f:c Yan(c, N)Pap(c, M) “ _n2|ad77='Yan(c)Aan(C)Srw; (46)

that is, each normalization factor on (—, ®) is proportional to the corresponding normalization
factor on (—1, 1), the proportionality factor being the real positive number yax(c) defined by (45).

The new numbers ya(c) representing the ratio of the two normalization factors are charac-
teristic of the functions an (¢, m), much like the eigenvalues bay(c) and va,(c), even though their
defining equation (45) is not an integral equation in any ordinary sense. However they are by far
the most difficult of the three to evaluate numerically for arbitrary « > — 1. In a few special cases,
notably « =— 3, 0, 3, and 1, it becomes practical to evaluate them by evaluating the normalization
integral (46). Such a method was actually used to obtain the first published values for the case of
the prolate spheroidal wave functions of order zero [12, p. 59] (they were not recognized there as
being a new kind of characteristic numbers because for &« = 0 they are not, being related simply
to the eigenvalues of integral equation (2)) and the Mathieu functions [6 (60, 61)]. But for arbitrary
« the only practical method to evaluate them appears to be from their definition (45),

f e[l — m*|%Yan(c, m)dn
err:((«')lll(xrl((7q [) ’

'}’un((r') = =l <= i = L (47)

3 An early draft of the present paper was communicated privately to J. Meixner, who became sufficiently concerned about the lack of convergence of the integral
in (45) for & = 1 that he looked into the possibility of an alternative derivation. From some unpublished notes that he kindly sent me after this paper was submitted
for publication it appears that he has succeeded in deriving the relationship (45) by an entirely different approach. He has given the integral from — % to—1 and
from 1 to ® a meaning by assuming that ¢ has a negative or positive imaginary part, respectively, and then approaching the limit of real ¢, thereby avoiding the difficult
problem of proving summability.
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at some convenient value of ¢ in the interval (— 1, 1). In particular, at ¢ = 0 this reduces to

2 [7 2 = D)Wz e, mln
Vu,::r(c)d/a,zr((,’, O)

Yoor(€) = 1= 48)

for even n=2r. For odd n=2r+ 1 the ratio (47) becomes indeterminate at t =0 because
Ya,2r+1(c, m) is an odd function of 7. It can be made determinate by applying L’Hospital’s rule
at t=0,
2¢ [ " m(n = 1) (e, )
a,2r —1= ’
L ’+I(C) V(Y»27'+1(C)dllx.2l'+l(C7 0)

49

for n=2r + 1. The problem of evaluating y..(c) thus reduces to evaluation of the integrals in (48)
and (49).

The above method for determining yan(c) was introduced originally by the author [6(42)] for
the special case of the spheroidal wave functions of integral order a=m. It has been confirmed
and generalized recently in an elegant and quite different way by Meixner [14], who showed
that for integral «=m an expression equivalent to (45) holds for the most general solutions of
the differential equation (1) for arbitrary complex values of ¢, of b, and of the characteristic exponent
v in place of the integer n.

The integral in (48) does not converge at infinity for « = 1, nor does the one in (49) for « =0,
but they both appear to be Cesaro summable (C, m + 1) for all =1 < a = m because of the
sinusoidal asymptotic behavior (9) of Yian(c, m). They can be evaluated by expanding Yian(c, m) in
Bessel functions by (14) and integrating term by term,

Ya,ar(c) — 1= 2V2r i asp(cla, 2r)1a,2p(c) 50
Iy%x,zr(c)l!/a,zr(C, 0)| p=0

2Vom 2
Vo (©Waara(e, 0)] 2, v+ (el 2 DRz 0). 6

Ya, 2r+1 (e) 1=

where the integrals /.:(c) and Ku(c) are defined by

T f it 1)"(”’)4*(‘;” i 52)
Konle) = fl (77 .]AJr(zC:)u)” 4(C")) d") (53)

For /£ = 0 the integral /,0(c¢) in the range — 1 < o < 0 can be evaluated by replacing the Bessel
function in (52) by its representation [11, p. 48(2)| as an integral on (0, 1) and interchanging the
order of integration,

L(c) = —;UITF D f (1l =)= [f (n*>—1)%cos cnt(ln] dt. (54)

The inner integral on (1, ®) is an integral representation for the Neumann function [11, p. 170(4)],
hence

196



Lo (c) =—fl (e U e [sin cmf ( —t?)a————(“”’ (ct) g

(ct)xtt cos Gh)ic

f (1— J“”(C‘) dt], (55)

)Oz+§

the latter expression coming from the definition of the Neumann function [11, p. 64(1)]. Expanding
the Bessel functions in power series about the origin and integrating term by term gives

v T(a+l) & (1) sinawl‘(/—a)(s)’z"" I'(l+1%) ]<£)2’
[""(()_2"*3*(305a'n2 [! [/!l‘(/—a—f—%) 2 +I‘z(l-f-a-i—%) 2) B

=0

The integrals Io:(c) and Kux(c) for all £ can now be obtained from I,(c) by recursion in k. By
use of the recursion relationships among Bessel functions [11, p. 45(1,2)] the following recursion
relationships among I, (¢) and Ku:(c) can be established, valid for all « >—1:

Ko i—2(¢) + Kax(c) = (2k+2a+ 1) Lk (c), (57)

Ko, k-2(¢) = Kar(c) = Qa+1) Lu(c) + 2¢liy(c), (58)

Kai () = klax(c) — clly(c), (59)

(k+2a+3) o r+2(c)+clly ra(c) =klu(c) —cly(c). (60)

The last relation (60) is a differential equation for I x2(c) in terms of I (c). Its solution is

2k+2a+3

CI.+Za+i

I ki2(c) = f) thehzat2f L (t)dt — Lo (c). (61)
(

Repeated application of (61) to I.o(c) in (56) suggests the appropriate form of the power series
expansion for 4,2, (c) , which is then easily shown by induction to hold for all nonnegative integers p.
Its jth derivative, obtained by differentiating term by term with respect to c, is

19}, (c) = I'a+1) e (—1)’“[sin aml'(l—a) (—=l+a+3), (2[—2a—j)j(§)*“*‘

2 itatt cos am & ! (U+p)T(l—a+3)

T+ (—Dp+1—j); T ()2
F(l+a+%)r(pl+a+%+pj):|<2> )

where (z),=z(z+1)(z+2) . . . (z+p—1), (z)o=1, is Pochhammer’s symbol. /,,5,(c) and
Ka, 2p(c) for —1 < a < 0 can thus be computed by (62) and (59), respectively.

To obtain I4,2,(c) and K, »p(c) for orders beyond the region of integrability —1 < a < 0 of
(55) the following recursion relations are valid for all a > 0,

k 1 1 1.,
1“"(6):<§_2k+2a+1)1“*"“(c)_2k+2a+11"“’““(6)_2 a-1.4(¢), ()
k(k+2 2
Kar() =29E2 1 o)1 wees(@ =2 L @)+ I (o), (64)

the first being obtained from the definition (52) and the Bessel function recursion relations and the
second from (59). It has been found by direct substitution that the series (62) satisfies the recursion
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relation (63). From this it is concluded that (62) is valid for all « > —1, even though the integral (55)
from which it was derived contains a nonintegrable singularity at t=0 for all nonintegral values
of a greater than zero. As an indication of the rapidity of convergence of (62) and of (50) and (51),
and hence of the practicality of the formulas developed here, the series (62) always was found to
converge to 16 significant figures in less than 23 terms for the computations shown later, and the
series (50) and (51) to converge to 16 figures in less than 19 terms.

The series (62) becomes indeterminate when « is an integer or a half-integer. The indetermi-
nancy at any of the integers a«=m can be resolved by taking the limit as « approaches m. For
a=0, for example, the limiting value Iopy(c) is

1 m_ 2& c?
I°°(C)_c\/; \/;g)( N C TS YIRS IR (65)

in agreement with the power series expansion of

1 \/2 T_g;
e\ 7 (2 Si c)
obtained by direct evaluation of the integral (52). At «=—% the indeterminancy again can be

resolved by taking the limit, obtaining

1 = r{+3) : cl/c\%
ERCE [3s0+ D —v+b 23 )(5) (66)

in terms of the Digamma function {s(z), which is identical to the power series expansion [11,
p. 150 (1)] of
T c c
-3 5(3)%(3)

obtained by direct evaluation of the integral (52). But in the special cases of integral and half-
integral orders, and these cases only, there are more direct means available for evaluating yeau(c)
than by the series (50) and (51). For all integral orders the numbers y..(c) are found to be express-
ible quite simply in terms of the spheroidal eigenvalues ban(c) of the differential equation and
van(c) of the integral equation [6(23)]. For the half-integral orders a==1% the numbers yu/(c)
have been found [6(31)] in terms of Blanch’s joining factors fe, n(c?) and fo,,+1 (c2) to be simply

=+

[T T

LRl
‘ya,,(C) =5 {l—f—ﬁ,, n+l(C2) ”

a
: (67)
From Blanch’s expansion of fe,.(c*) and fy,»+1(c?) in terms of Bessel functions it can be shown
that (67) is identical to that obtained from (50) and (51). The integrals I.:(c) and K. (c) can be

expressed in closed form for half-integral values of «, starting from I_; 2,(c) [15(6.552.6)]

T [c c
I Gl D) Jp(i)yp<§)’ (68)
from which K_% ,2p(c) is obtained by recursion relation (59),
G G c c G
Ko ©==T |0{3)ton(5) + s (3 )6(3) | (69)
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and from which 7, s,(c) and K, »,(c) are obtained by recursion relations (63) and (59),
respectively,

e
el
e [/,,() (g)w,(g)y,(g)

2p+2 ( ,,( ) W( >+J,,+1< )Y,G))] (11)

7. An Extremal Property

An important property of the prolate spheroidal wave functions of order zero was established
by Landau and Pollak [16, Th. 1], namely, that the first N+ 1 of them are the N+ 1 linearly inde-
pendent functions of the form Fy(cn) that are most concentrated in the interval (—1, 1). By the
term ‘“‘concentration” of a function of the form F,(c¢n) defined by (37) will be meant the value
of the ratio R.(c),

f |[Fa(em) 2(1—m 2)"d’r)

|7 1Fatem 5 —mepean

Ro(c)= (72)

It will now be shown, by quite a different and much more simple argument, that for any order
a>—1 the first N+1 of the spheroidal functions {an(c, m) are the N+ 1 linearly independent
functions of the form F,(cn) that are most concentrated in the interval (—1, 1).

After expanding F.(cm) in spheroidal functions as in (41) and making use of the two orthog-
onality relations (42) and (46) the concentration ratio (72) becomes

0

2 Ilb Aan

R(,—;:—- @3)
z n 70171 Aan

It is determined entirely by the expansion coefficients b, of the function F, (cn). Hence a neces-
sary condition for it to attain its largest value is that it be an extremum with respect to the real
and the imaginary parts of each and every one of the b,’s; i.e., since b, and b, are linearly related
to the real and imaginary parts of b,,

0Ry_ dR, o
ab,, ab;’,‘ =0, p=0,1,2,3, .. .. (74)
Rewriting (73) in the form
2 bnb" aYan — )Aan:()a (75)

n=0
then differentiating through with respect to b, or b, and imposing condition (74),

b;‘:(Ra‘)’au l)AUtlﬁ b]ﬂ(RaYap 1)/\(11;:0, ]):O, 1, 2, 3, T (76)
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The normalization factors A,,(c) are never zero, hence either

by=bF=0, (77)
or

Ra'}’ap —1=0. (78)

The second condition (78) can be true for at most only one value of p, in which case condition (74)
for all other values of p requires that (77) be true. It is clear, then, that an extremum of R,(c) can
occur when, and only when, F.(cn) is proportional to one of the spheroidal functions fia(c, n).
The value of R.(c) at each of these extrema is, from (78),

1 0
Ry () —m)-, n=0,1,2,3, . . .. (79)

The largest possible value of R.(c) is that for which yw(c) is least, which is yao(c). Hence the
spheroidal function for n = 0 is the single most concentrated function of the form F.(cn).

By the term “‘linear independence” of a set of functions is meant that they are mutually orthog-
onal. Thus to find the second most concentrated function of the form F.(cn) that is linearly
independent of Y,0(c, m) on (—o, ©) means to find the most concentrated function of the form
F.(cm) that is orthogonal to .0 (c, n) on (—, ©). From the orthogonality of the functions Y (c, 1)
on (—o, ©) and from their completeness with respect to functions of the form F,(cn) it follows
that all functions of the form F,(cn) that are linearly independent of 40 (¢, ) can be expanded in
the set of Yran (¢, m) functions that remain after $i.0 (¢, n) has been removed; i.e., after setting by =0
n (41). Repeating the maximization process above leads again to conditions (77) and (78) but
restricted now to p=1, 2, 3 . . . . The largest possible value for R,(c) is again that for which
van(c) is least, which now is ya(c). Hence the spheroidal functions for =0 and 1 are the most
concentrated pair of linearly independent functions of the form F.(cn). By this process of sys-
tematically depleting the set of functions yian(c, 1) it is concluded that the first N+ 1 of them are
indeed the N+ 1 linearly independent functions of the form F.(cn) that are most concentrated
in the interval (—1, 1).

8. Spheroidal Identities

All of the identities to be derived here will be obtained from the integral equation (2) and the
following property of completeness of the functions Yan(c, m) on (— 1, 1):

8(t—1¢t') = (1 —1¢2)e i a'l(cﬁ/\[jnd(’zn)(ca t’)’ (80)

for —1 <t<1land —1 <t <1, obtained by expanding the delta function §(¢ —t") in the ortho-
normal functions Yan(c, t')/VAau(c) with expansion coefficients (1 — ¢2)%Jan(c, t)/ VA (c).
Although such an expansion is open to question on grounds that the delta function is not square-
integrable it does appear to be valid as the limiting case of some square-integrable function that
approaches the delta function.

The principal identity from which the others will be derived is obtained by multiplying the
integral equation (2) for argument 7 by its complex conjugate for some other argument vy, then
dividing by the normalization factor A..(c), and finally summing over all n,

| Van C) |

=) ﬂ'l( ) dl‘m(c n)l,bun(c y)

] f pictni—u) (] — 172y [1_;2 i e Mo ”]d;dt'. 81)

= an C)
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The bracketed expression is 8(t — t"). by (80), which reduces the right hand side to an integral
representation of a Bessel function [11, p. 48(4)]. Hence one obtains the identity

/ ati (C[”fl‘}’])

|Vun ]

v an y) = —PJCRE AR = 1l 1 ¢
~ /\””( ll" c,m dj (( (a )F(Z) (C[n e y]) “*é (82)
for—e<n <o, —0 <y <,
An important special case of (82) occurs when y=m, giving
IumA( Tla+1I'(Z)
“Eo /\‘“' un(c ) F(a+%) (83)

for —oo <n <. At n=0 the product va.(c)Yan(c, 0) for odd n is zero and for even n is propor-
tional to ag, by (23), hence

= cla, 2r)
> R“f“ =1T(2a+2). (84)

r=0

This identity provides a means for an overall numerical check on computed values of the normaliza-
tion factors A (c) alone for even n. To obtain the corresponding identity for odd n construct a
new identity like (83),

|le rz . 2 IV((X+])I‘(§;)
5, et viste m = ST =

n=0

for —o0 < m < . At n=0 this reduces, by (24), to

|, 21+])

2 ’l+l )

= (a+$H)T'(2a+2), (86)

which provides a means for checking numerical values of the A, (¢)’s alone for odd n.
An identity for the eigenvalues vy, (c) alone can be obtained by multiplying (83) by (1 —»n*)*
and integrating over (— 1, 1),

$ ltoe- (N LW, @

An identity for checking the new numbers yu (c) for even n can be obtained from (82) by
letting y=0, multiplying by (n?—1)¢, and integrating over (1, ®),

2 a, 2r 2 é or\Cy 0 3 1 .
S (- L@ 0 f) 11— 200 Tt PG o). (88)

where [.0(c) is as defined by (52). For odd n differentiate (82) before letting y= 0 and then multiply
by m(n?—1)* and integrate over (1, %),

» e ,0)
3 (cpyrn Lo ORbernnlo D) ) o) 1] = 204 Pt DT Hioe). (89)
=0 /\u 7I+I(C)
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Another identity can be constructed by multiplying integral equation (2) by Yan(c, )/ V Au(c)

and summing,

i %&(—Z‘% l,Uom(C, n)lllan(c, y) = eicny, (90)
n=0 ‘yan

for —o < m < ®, —1<y<1. For y=0 this becomes, from (23) and (24),

> 2 (a+%)
> (=Dr —T))llla ar(c, n)—T)z, 91)
r=0
2 cla, 2r+1 2e+ 10 (a+3
3 (-1 r“—‘—ﬁ\%l—r(—c—)—)wa,wﬂ(c,n)= —-—r—-((%—z—)n, 92)
r=0 Qa, or
for —o0 < m < o,
In the limiting case where ¢ — 0 and 7 is such that cn=1{,
n! "
dla"(cv 7’) s F(n+2a+l) a"Tn(T’)» (93)
Aall@) = I a 94
o (nta+z)I'(n+2a+1) " ©4)
Jn a+s
on() Mo, m) = VE 0 LS )
Then (82) for c— 0 with cn={ and cy=z reduces to
5 (nta+HT(n+20+1) Jorart(8) Jorars(z) _ 27T (a+DIE) Jori (L—2) o
"20 ! ot Zath o (=2 (96)

which is one of Gegenbauer’s addition theorems [11, p. 363(2)], and (90) for ¢— 0 with ecn=¢
reduces to

\/_2 "(n+a+3) i ((9) T (y) = eity, (97)

n=0 gwh

which is another [11, p. 368(2)].

9. A Special Case

For the special case in which cz%, a=1, and n=qg—1, with ¢=1, 2, 3, . . ., an exact

closed-form representation can be obtained for the spheroidal function and each of its associated
numbers. Its importance lies in the fact that it provides an independent means for an exact numeri-
cal check.

The spheroidal function sought can be obtained from the differential equation (1) and the
condition of finiteness at n==1 by letting

Uan(c, 77)

l\ba"(ca 7’) = 1_7’2

) (98)
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which leads to

4(a—1)n?
(1 _nz)ugn K 2(a T 1)"7”;:1 ar (bml TR — 627’2 _"(%) Uan=0. (99)
When aa=1 this reduces to
(1 —m2)ufn+ (bin+2—c*n?)uin=0. (100)
For c=% and assuming for the moment that
2
S (323’—)=<%> 5, (101)
(100) becomes, for n=q—1,
u’l,.q—l+<%>- U, g-1 =0 (102)
whose solution is
qm _, cosgqm
Uy, g—1 (2 ) 77) Aq Sin 2 n, (103)
hence
cos qm .
qm _, sin 2 odd
wlvllfl ( 9 ) 7’) kq l_nz ) q e 5 (]04)

where £, is a normalizing constant. Expression (104) satisfies the differential equation (1) and is
finite at n==1, so it is clearly a spheroidal function. Furthermore it has exactly ¢ —1 zeros in the
interval (—1, 1), so the index of the spheroidal function must be g —1. Thus the validity of (101)
is established. The spheroidal function (104) and its eigenvalue (101) were obtained earlier by
Flammer [17].

The spheroidal function (104) satisfies also the integral equation (2), which can be verified
by direct calculation of the integral,

cosqT cos qm
1 gm . sin 2 4 sin 2
Loyt — 7 e ] e e S
f_; € et Il = L gm 1—n? (L)

This is the integral equation in question, from which it is evident that its eigenvalue is

T\ . 4
Vi, q-1 (q?):l"ﬂq-ﬂ_‘ (106)

The normalization factor on (—1, 1) in terms of the constant %, is found by direct calculation
of the integral (42) to be

w\ ki ..
Ry ("7>=5’ Cin 2qm. (107)
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And by direct calculation of the integral (46) one finds

Vi, -1 (%);2. (108)

The above results provide an interesting indication of the way in which the integral in the
definition (45) of 'y (c) can behave outside of the open interval —1 < ¢ < 1. For g odd, for example,
the left-hand side of (45) can be evaluated in closed form,

o T Cosqgn
[ e g
qTr
cos ¢ q—1
2 TR

=G =l g[a(,_1)+a(z+1)], (109)

which agrees exactly with the right-hand side of (45) within the open interval —1 <t < 1. It does
not agree at the endpoints t==1, however, as evidenced by the delta function singularities that
appear there.

10. Numerical Results

The formulas developed above have been used to compute and check the spheroidal functions
and their associated numbers for values of ¢ up to 5. Representative numerical results for c=6
are shown below, all of which were computed on the Triangle Universities IBM 360/75 computer
by Guy A. Myers at the North Carolina State University.

The first nine of the spheroidal functions ., (c, ) are shown in figure 1 for a=—3%, 0,4, 1, 2,
and 3. They were normalized on the interval (—o, ») by choosing A..(c) to be 1/yan(c). The
corresponding functions for a=0 with ¢=0.5, 1, 2, and 4 were shown earlier by Slepian and
Pollak [12]. The characteristic numbers ban(c), van(c), and yan(c) as a function of a are shown
in figures 2, 3, and 4, respectively.

Numerical results for a few representative cases are shown in tables 1 and 2. Table 1 shows
computed values of ban(c), [van(c)|, and Yan(c, 0) for even n and ¢s, (¢, 0) for odd n, for a=—1,
0, and +% at ¢c=6., n=0 to 13. Table 2 shows computed values for the reciprocal of y..(c) for
a=—%,—4%,—1.0,4,3,%, 1, and 3, at c=6, n=0 to 13. The reciprocal of yan(c), rather than y.,(c)
itself, is shown in order to illustrate the relative concentration (79) of the functions.
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V;n(c.n)
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qu(c.n)
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alen)
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0 to 8, with Aan(c)=1/yan (c).

,2,3,c=6,n=

1/2,1

The spheroidal functions for a=—142, 0,

FIGURE 1.
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FIGURE 2. The eigenvalues bu,(c) of the differential equation (1) for —0.92 <a <1, c=6.

sl
“ 10+
&
5 OS5t
2
| I
n=0 — G

FIGURE 3. The eigenvalues vuy(c) of the integral equation (2) for —0.92 < o<1, c=6.

log (7gn(€)-1)

FIGURE 4. The new numbers y.(c) defined by (45) for —0.92<a <1, c=6.
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TABLE 1

ban(c)

|V11II(C) |

Wan(c, 0)
Yenle, 0)

a=—1/2, c=6

0 0.5737585781 +01 0.1074447786 + 01 0.1155255760 401
1 .1661329843 + 02 1212324184+ 01 3686243582 + 01
2 .2598284316 + 02 1469587054 + 01 —.6927129388 + 00
3 3290367966 + 02 1770806514 + 01 —.2666895609+ 01
4 .3816092638 + 02 1311549557 + 01 .3176164384 + 00
5 4509186607 + 02 4656092304 + 00 .1273298762 + 01
6 5521934384 + 02 1117504031 + 00 —.6410649522 —01
7 6785668990 + 02 .2310300898 — 01 —.1308328538 + 00
8 8264753135 + 02 .4243576673 — 02 .3284620306 — 02
9 19950842599 + 02 .6981239327 — 03 .5920679880 — 02
10 1184102166 + 03 .1037825612 — 03 —.9512187852 — 04
11 1393381242 + 03 1405973769 — 04 —.1623325826 — 03
12 1622835823 + 03 1748761994 — 05 1808459022 — 05
115 1872412953 + 03 .2010009631 — 06 .2990162450 — 05
a=0, c=6
0 0.5208269159 +01 0.1023276503 + 01 0.1153430212+ 01
1 .1600044275 + 02 1021309607 +01 .3662488818 + 01
2 .2535647864 + 02 9922435547 + 00 —.7045705538 + 00
5 .3320419949 + 02 .8229938914 + 00 —.2977793219+01
4 4072019426 + 02 4659781026 + 00 .2864309440 + 00
5 14977371212+ 02 1693510360 + 00 7958373899 + 00
6 6118075689 + 02 .4524678973 — 01 —.3152431639 — 01
i .7485286652 + 02 9966212672 — 02 —.6222320400 — 01
8 19065115936 + 02 1897100693 — 02 1388242306 — 02
9 .1085154453 + 03 .3192404741 —03 .2472548565 — 02
10 1284188799 + 02 .4820488557 — 04 —.3606307265 — 04
11 1503474434+ 03 6605196410 — 05 —.6113574747 — 04
12 1742930029 + 03 8286721621 — 06 16275570287 — 06
13 .2002505133 +03 9588946460 — 07 .1033409530 — 05
a=+3/4, c=6
0 0.4524868470 + 01 0.9514693801 + 00 0.1157683567 + 01
1 1554416968 + 02 7960998515 + 00 3741186029 + 01
2 .2556039130 + 02 6000021716 + 00 —.7319049126 + 00
&) .3502025958 + 02 .3687113331 +00 —.2915597899 + 01
4 .4493678220 + 02 .1690739803 + 00 1800330864 + 00
5 .5631678092 + 02 5762489345 — 01 3736554493 + 00
6 6963816767 + 02 1546055800 — 01 —.1125847285 — 01
7 .8500027646 + 02 .3450023959 — 02 —.2071854851 —01
8 .1024006606 + 03 6633536963 — 03 .3879838010— 03
9 1218275965 + 03 1124131264 —03 .6700408720 — 03
10 1432726639 + 03 1705749626 — 04 —.8491880927 — 05
11 .1667303958 + 03 .2345366168 — 05 —.1414240391 — 04
12 .1921972059 + 03 .2949700757 — 06 1289490027 — 06
13 .2196706817 + 03 .3419275479 — 07 .2099163320 — 06
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TABLE 2

Reciprocal of yan(c) forc=6

a=—3/4

a=—1/2

a=—1/4

—
WN—OORXNUNEBWN~O

0.9998903116 + 00
9953591572 + 00
.9251077487 + 00
6617807432 + 00
.4329978267 + 00
1631458857 + 00
1812019930 — 01
.1085823478 — 02
.4704479809 — 04
1566525909 — 05
.4138876101 — 07
.8891403564 — 09
1584025115 — 10
.2378498905 — 12

0.9998968961 + 00
9957735784 + 00
9361280337 + 00
.6867880908 + 00
.3559391049 + 00
8787799051 — 01
.8375304321 — 02
4742740153 — 03
1948721509 — 04
6167222470 — 06
1554061438 — 07
.3195449002 — 09
.5466463632 — 11
7904581458 — 13

0.9999006633 + 00
9959984111 + 00
9403541758 + 00
6773573623 + 00
.2783892137+ 00
.4890053549 — 01
.4009596286 — 02
.2109141235—03
.8155744837—05
.2444286528 — 06
.5862729444 — 08
1152410426 — 09
1891529381 — 11
.2632527573 —13

S

a=+1/4

a=-+1/2

=
WN=OOXXNAUNEWN -~O

0.9999018826 + 00
9960616432 + 00
9401733901 + 00
6467919491 + 00
.2073492168 + 00
.2738716624 — 01
1955000733 — 02
.9484876556 — 04
.3436783286 — 05
9732115988 — 07
.2218980545 — 08
.4166226283 — 10
.6557478591 — 12
.8780377122 — 14

0.99990064:39 + 00
9959753979 + 00
9363969465 + 00
.5993323516 + 00
.1474458621 + 00
1530259540 — 01
9617772918 — 03
.4292801980 — 04
1454316917 — 05
.3886092897 — 07
.8416064934 — 09
1508525403 — 10
.2276034041 — 12
.2931302844 — 14

0.9998968665 + 00
9957367356 + 00
9290353072 + 00
5374082010+ 00
1005292486 + 00
.8498117614 — 02
.4747110329 — 03
.1948802000 — 04
6167231119 — 06
1554061496 — 07
3195449004 — 09
.5466463632 — 11
7904581458 — 13
9790506399 — 15

a=+3/4

a—=-11

a=++5/4

bt
WNOORXNAUE WN -~O

0.9998902878 + 00
9953272353 + 00
9175535778 + 00
.4640663909 + 00
.6605749034 — 01
.4681647613 — 02
.2342324766 — 03
.8852297954 — 05
.2616675768 — 06
.6217024284 — 08
1213549245 — 09
1981169523 — 11
.2745434078 — 13
.3270100000 — 15

0.9998804332 + 00
9947106203 + 00
9009322432 + 00
.3839718982 + 00
.4205022091 — 01
.2555876781 — 02
1152638318 — 03
.4016362284 — 05
1109412441 — 06
.2485740919 — 08
.4606583810 — 10
7177204946 — 12
9531862327 — 14
1091853480 — 15

0.9998665602 + 00
19938277694 + 00
.8776555430 + 00
.3032540474+ 00
.2605099768 — 01
1381915965 — 02
.5647610537 — 04
1817713005 —05
4695584821 — 07
19925660313 — 09
1746778699 — 10
2597757239 — 12
.3306789087 — 14
.3643090846 — 16
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