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Selecting Nonlinear Transformations for the
Evaluation of Improper integrals™
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Recent literature concerning the use of nonlinear transformations to evaluate numerically certain
improper integrals of the first kind involves the determination of a transformation function g to im-
prove the approximation. By approximating a given integrand f by an integrable function f; and then
determining an associated g function for fi, a nonlinear transformation may be constructed which will
yield an improved approximation of the improper integral of f.
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1. Introduction

H. L. Gray and T. A. Atchison! introduced a class of nonlinear transformations to assist in
the numerical evaluation of improper integrals of the first kind. A transformation from this class
is completely determined by specifying the integrand of the improper integral and a transformation
function g satisfying certain mild restrictions. The purpose of this paper is to exhibit a scheme
for the selection of g which will yield a good approximation to the improper integral.

2. Selecting the Transformation
The Generalized G-transform of Atchison and Gray is as follows:

If fis continuous on [a, ©) and

F(t)if'f(x)dx—)S A [F = 63, (2.1)

then
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One of the basic theorems proved (see footnote 1) concerns the determination of a differenti-
able function g such that G[F'; g; t] = S for all t = ty = a for some class of functions f:
THEOREM: A necessary and sufficient condition that G[F; g; t]=S for all t = ty= a is that R(t)
s constant for t = ty,

In general, for a given integrand f, the determination of a function g for which R (¢) is constant
is difficult. However, suppose f; is an integrable function which approximates f. Requiring the
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corresponding R (¢) to be constant we get

S1(g(6))g" (t) =cifi(t) fort = to. (2.4)

If y=g(t), then (2.4) becomes

L) dy=cfi(t)de 2.5)
and integration yields
[ rortr=a [ rod+e, 256)
where c¢; and ¢, are constants. Thus, if
Ho) = [ )y, @)
then any differentiable function g which satisfies the functional equation
H(y)=cH(t) +c» for t = t,. (2.8)
will result in
GlFy; g t] =S, for t = ¢,. (2.9)
where
Fl(t):f:f;(x)dxes, as ¢ — . (2.10)

Since f; approximates f, then G[F,; g: t] will be an approximation of S.
To illustrate this procedure, consider

F(t) =\% ft e=** dx—> erfc (a) ast—> o, (2.11)

where 0 < a <. For y = 1, the integrand of (2.11) may be approximated by
fily) =ye-v? (2.12)

and f; possesses an integral
1 .
H(y)=——§e yzs (2.13)

One may determine a function y=g(t) which satisfies (2.8) by choosing ¢; =e~** and ¢,=0.
Such a function is

g(t)=Ve+k2, (2.14)

Applying (2.2) to (2.11) and utilizing (2.14) we get
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F(t)—ekz—”zfl62 F(VEFR)

ClF:g:t]= ViR
i

(2.15)

Theorem 1 (see footnote 1) may be applied to (2.15) to show that it converges to erfc (a) more
rapidly than either F(¢) on F( Vt2+k2). This is illustrated by the following numerical values in
the case a=1, k=1:

t F(t) Error G[F; g: t] Error
1.0 0.0 0.15729921 0.15023133 0.00706788
1.5 .12340436 .03389485 .15655151 .00074770
2.0 .15262147 .0046777 15745495 .00015574

If we apply Aitken’s A2-process to the F(¢) column 2 the resulting approximation is 0.16168462
which is in error by 0.00438541.

A general procedure for solving the functional equation (2.8) is not available. Also, for different
choices of ¢, and ¢z, other solutions of the functional equation may be determined.
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