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Expressions (in closed form) are derived for the first five derivatives of the Griineisen and Einstein
functions. Recursion formulas for the successive derivatives of both functions are also given. Computa-
tions are made and tabular results are given for the first five derivatives of the Griineisen and Einstein

functions.
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1. Introduction

According to the solid state theory of matter, the mathematical expression for the electrical
resistivity p, of good conductors is (ref. [1]!)

o= (7)) 0

A = constant

where,

0 =Debye temperature

T'= absolute temperature

o (g)=4 (%) fuw (i = lgsfllg—e%)‘ @

The function G°(0/T) is frequently referred to as the Griineisen function. This function is
approximately unity for 7' > 60, which indicates that at high temperatures electrical resistivity in-
creases linearly with temperature. At very low temperatures where 7' < 6, the Griineisen function
can be expressed approximately by G°(6/T) = B(T/6)*, which indicates that at very low tempera-
tures electrical resistivity increases with the fifth power of temperature.

For various calculations, the successive derivatives of the electrical resistivity function may
be needed. This requires a knowledge of the derivatives of the Griineisen function. Also, it may
be possible to make further refinements in the electrical resistivity expression by expanding the
resistivity function in the derivatives of the Griineisen function. It was observed that the derivatives
of the Griineisen function contain the Einstein function and its successive derivatives. The objective
of this writing is to obtain expressions for the successive derivatives of the Griineisen and the
Einstein functions.

'Figures in brackets indicate the literature references at the end of this paper.
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2. Derivatives of the Griineisen Function

Defining x=0/T, eq (2) becomes

4 Ce g
0 @—DI—e) @)

Differentiating eq (3) and simplifying the result, one obtains

4 oo =Ci =22 [7. Ll ], 4[_x% ]
T [GO(x) ] =G (x) e l:x4 fo (et —1) (]—e_[)] [(1—6_'t)2] @

The Einstein function is defined as

x%e—*

Bl s 5)
Substitution of eqs (3) and (5) in eq (4) yields
. Aoy %
G'(x) = [ Go%(x) —E°(x) ]. (6)

For convenience, the variable x in the functions G°(x), E°(x), and in their derivatives G'(x),
E'(x), etc. will be omitted and will be written simply as G°, E°, G', E', etc., respectively. One may
note that the superscript numerals on both G and E indicate the order of differentiation.

The following is a list of the first five derivatives of the Griineisen function obtained by the suc-
cessive differentiation of eq (3) expressed in terms of the lower order derivatives of the Griineisen
and Einstein functions.

Gr=—2 o2 po ™
Gr=—2 G+ g ®)
Gr=-2 (;2+% E 9)
04:-—5 Go+2 B3 (10)
(;5:—2(;4+%E4 11
The recursion formula for the above is
(;,,:_<&;:5§) G142 pro (12)

Where, n is the order of differentiation. It may be seen that the nth derivative of the Griineisen
function is given in terms of its (n —1)th derivative. In order to be able to express the nth deriva-
tive of the Griineisen function in terms of the function itself, successive substitutions for the lower
order derivatives are made.
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The following is a list of the first five derivatives of the Griineisen function in terms of the
Griineisen function and the derivatives of the Einstein function.

(,'1:_5‘ ((,'o_h'n) (13)
X
S EA R T (14)
% x
.) D,
(;:;:_I;:) (("U_EO)_%Ex+i E? (15)
X" X X
=20y e 100 0 0 B s (16)
o X x X
(,'5:_6730 ((;()__EO) _1&:'4 El_}.% Ez_g E:‘-Fé E4 (17)
S X 2 x* 5%

The recursion formula for the above is

Suluw pyy SuCospy | +‘5"—”(ﬁF"'—'+. 4 S (18)
X

b <4 ) v
X"‘l Xn—fl xn i+1

(;:::‘_S"L:'_'l (("O_E()) A

x"

where, C,; and S,; indicate the absolute value and the sign of the coeflicients, respectively, and are
expressed by the following relations.

Cii=4

Chi=0 [i >n]

Cu= (n+3) Cp-1,: [n=2]

Cri= (N=0RG = i Gy [n=i=2] (19)

Sul: (_])"

Sni:(_l)nﬂ' [Il?l?Z]

The numerical values of the product S,;C,; required for the first seven derivatives of the
Griineisen function are given in table 1.

It can be seen from eq (18) that the relation for the derivative of the Griineisen function con-
tains the derivatives of the Einstein function. The latter are obtained in the next section.

3. Derivatives of the Einstein Function

The Einstein function is defined by eq (5). For mathematical convenience, it may be written as

oS ( —= ) ¥ (20)

I==e

177



TABLE 1. List of the coefficients Sy,;C,; that appear in eq (18)

P d
SuiCni 1 2 3 4 5 6 7
1 —4 0 0 0 0 0 0
2 20 4 0 0 0 0 0
n 3 —120 —24 4 0 0 0 0
l 4 840 168 —28 4 0 0 0
5 —6,720 —1,344 224 -32 4 0 0
6 60,480 12,096 —2,016 288 —-36 4 0
7 —604.,800 —120,960 20,160 —2.,880 360 —40 4
where,
D ersarl )
Yoo cex—i e
Differentiation of eq (20) and simplification yields
dE°
—d;-—EIZQDOEO (22)
where,
1l
i u o 23)
The second derivative of E° becomes
dE! 5
—=FE2=2D°1+4 2D'E° (24)
dx
where,
dD® 1
l=——=——+y+4y2
dx x2 YTy (29)

It should be noted that the superscript numeral of D indicates the order of differentiation
similar to those used for G and E. It may be seen that the derivatives of the Einstein function con-
tain the derivatives of the quantity y™ for various values of m, where m indicates the power of y.
The recursion formula for the derivatives of y™ is

% G == Grar i) (26)

The following is a list of the first five derivatives of the Einstein function obtained by the
successive differentiation of eq (20).

BE—2 1SS 27)
E?=2D°E*+ 2D'E° (28)
E3=2D°E*+4D'E*'+2D*E° (29)
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E4=2D°E3+ 6D'E*+ 6D?E' + 2D3E°
E5=2D°E4+ 8D'E?+ 12D*E2+ 8D3E' + 2D4E°
The recursion formula for the above is
BrSK DO K DA B2 Ko D2l =8 =t D KgDmsi =t K DELE

where, n indicates the order of differentiation.
K, are constants and can be obtained from the following relations

Kn=2

K,i=0 [L = n]
K= anl,i+Kn—l,i—1 [n == 2]

(30)

31)

(32)

(33)

D™ are coefficients which are functions of x. The superscript m indicates the order of differen-

tiation. They are expressed by the following equations.

1,1
po=—241_
D
m! , )
Dm= (—— 1)"”’1 [— porr +Kmly+ Kn12y2+ Km:iy3+ 5 s o T ijyf+ SR +Km,m+1ymirl'
[m=1]
where,
Kmi = K2 = 1
ijZO []>(m+1)]

K"’.i:j(Km—l,j) ar (]_ 1)(Km—1,j—l) [] = 2, m = 27] = (m ot 1)]

(34)

(35)

(36)

The coefhicients K,; and k,; can be represented as matrix elements. Their numerical values,
required for the first seven derivatives of the Einstein function, are given in tables 2 and 3,

respectively.
TABLE 2. List of the coefficients K,; that appear in eq (32)
i —

Kni l 2 3 4 5 6 7

1 2 0 0 0 0 0 0

2 2 2 0 0 0 0 0

TS 2 4 2 0 0 0 0

| 2 6 6 2 0 0 0

5 9 8 12 8 2 0 0

6 2 10 20 20 10 2 0

7 2 12 30 40 30 12 2

TABLE 3. List of the coefficients ky; that appear in eq (35)
j —

Kmj 1 2 3 4 5 6 il 8
1 1 1 0 0 0 0 0 0
2 1 3 2 0 0 0 0 0
m 3 1 7 2 6 0 0 0 0
J 4 1 15 50 60 24 0 0 0
5 1 31 180 390 360 120 0 0
6 1 63 602 2,100 3,360 2,520 720 0
7t 1 127 1,932 10,206 25,200 31,920 20,160 5,040
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Calculating the derivatives of the Einstein function using eq (32) and substituting these in
either eq (12) or eq (18) one can obtain the derivatives of the Griineisen function. Since the nth
derivative of the Griineisen function contains all lower derivatives (up to n — 1) of the Einstein
function, it is sufficient to derive a recursion formula for the derivatives of the Einstein function
in terms of its lower derivatives. However, in the case of the Griineisen function, a recursion
formula for its derivatives was obtained both in terms of lower derivatives of G and in terms of G
itself.

4. Computation of the Derivatives of the Einstein and Gruneisen Functions

Based on the formulas developed in the previous sections, the first five derivatives of the
Einstein and Griineisen functions are computed for the range 1 < x < 30 using a computer. The
selection of the limits is that of a practical one. Above the Debye temperature (x = 1) both functions
are relatively insensitive to temperature variations and approach unity as temperature increases.
Below T =6/30(x = 30) the values of the functions become small and also the integral in the
Griineisen function attains a constant value.

The Einstein function and its first five derivatives are computed using eqs (20), (27), (28). (29),
(30), and (31), respectively in conjunction with eqs (34), (35), and (36). The results are given in
table 4. The values obtained for the Einstein function are in exact agreement with those reported by
Hilsenrath and Ziegler [3].

TABLE 4. The Einstein function and its first five derivatives™

E° E? E? E3 E* 152
X
Coef Exp Coef Exp Coef Exp Coef Exp Coef Exp Coef Exp
1 9.20674 —1 — LGer =l = 125@) - =l el =2 493166 —2 —8.53277 —2
2 7.24062 —1 S 2000 (| —2.89466 —2 8.94460 —2 —2.89868 —2 —5.50503 —2
3 496269 —1 =l =l S07080M== 4433714 —2 —5.06061 —2 7.34212 -3
4 3.04087 —1 —ALERBEAL = 6.13399 —: 2.48308- —3 = —3.00279"  —2 216231 AENE=tD
5 P07dRa =1 R0/ 62 =] 529 5] 2 e A R0 S DS O O 1.66883  — 2
6 SIOTIL DR 6 (23] SE = 3591185 Se— 2 R 682021 =2 ox PAAL 5 5.38369 —3
74 447638 —: — Y = 2012103 = & 220018t 5.20388  —3 — 1.14766: < —4
8 2SR ST G N A=) 1.14494 —2 = RA55(15F == 4.15200 —3 —1.55181 —3
9 Ol e e S T R PR e 518080088 —4.08606 —3 2.61503 —3 —1.39754 —3
10 b A0d e e R 6B 2 A 3 2816128 =3 S VGRS 1.45695 —3 —9.15259 —4
11 20200 S IR G5 350 e IES1966===13 — LRIy e 7.52291  —4. —5:19021 - —4
12 SISATTE S = AT =3 305, 6:02169" = —4 = — 479315 —d 3.68772 —4 —2.70560 —4
13 3819975 — A4 —3.23230= = =4 2.68985 = — 4y e =01 92638 =i, 1.74065 —4 —1.33395 —4
14 1620 B0 S P 3069 (e, 1rka{nfed S et S A e 1,98290 58 — 58 — 61320208 —15
15 625828 10 R 580651 RS 5.10858 —5 =4:31325: =5 3.57911 —5 —2.90616 —5
16 DAL =1 =5 =5 281 831 SIS 5 S R B0 S (0N 1257550 —i5 — 1.30542° " —5
17 151964458 =6 T 105568 =15 9.23206 —6 —7.99009 —6 6.83091 —6 —5.75454 —6
18 493451 —6 —4.38623 —6 3.86842 —6 DO OGS 2.92416 —6 —2.49772 —6
19 2.02261 = — LB e 1.60800 —6 =L =3 1.23822 —6 —1.07013 —6
20 8.24461 —7 = Ted201688 S =27 6.63691 =57 =55 80400) = 5.19411 —7 —4.53454 -1
21 3B430 i (254 e = 22l A It AT (M) =T 2.16103 —7 —1.90322 —7
22 IES B0 S S PR TR T U HopaE = = ORI =0 892630 —8 —7.92209 -—38
23 542853 —8 —4.95649 —8 4150497018 07397 =18 3.66349 —8 —3.27354  —8
24 217448 - — 8 : " —1.99327" = —8 Iy = = L ERREIL 1.49495 —8 —1.34395 —8
25 T RS s e ) 2318958 == ORI GI68 0108 =10 6.06903 —9 —5.48574 —9
26 BidbBTdna=—19c —81@R0TE 850 2003262 = U SRa == 6378 8 S0 2.45236° —9 —2.22756 —9
27 S ] SR e RO BGE M=t 1700 =0 S =S 07697 19 9.86753 — 10 —9.00294 -—10
28 5.42089 — 10 —5.03368 — 10 436603158 ==01 == 300765 =="10 3.95504 —10 —3.62315 —10
29 23139228 =1 ) SR = RO0 ] 6 OS] () 1.84925 —10 =i == 110 1:57962° — 10° " —1.45243 — 10
30 8.42186 —11 —17.86040 —11 12317667 — 1l — (7R il 6.28832— 14— 5380173 — 11

* The superscript numerals indicate the order of differentiation.

The Griineisen function and its first five derivatives are computed using eqs (3), (13), (14),
(15), (16), and (17), respectively. The results are given in table 5. The Griineisen function expressed
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TABLE 5. The Griineisen function and its first five derivatives™

e Go G! G2 G3 G* (&2
X
Coef Exp Coef Exp Coef Exp Coef Exp Coef Exp Coef Exp Coef Exp
1l 2.36616 —1 9.46463 —1 =ILRIGED =l —8.80120 —2 4.27961 —2 2.83281 —2 —2.93585 —
2 3.22929 0 B1073 218! —1.66518 —1 —3.70190 —2 D3 1638 =7 0GP =8 —2.92485 =2
3 IR27 05 ]! 6.30643 —1 =1L =1l 8.70489 —3 395534200 283106 TR —4.01706 =3
4 2.94882 +1 4.60754 —1 —1.56667 —1 3.24428 —2 1.26758 —2 —1.96995 —2 9.37115 =3
5 5.02629 +1 3.21682 —1 SOIS207 52! 3.69424 —2 SR O699 2 016335503 9.34080 =3
6 7.08729 +1 2.18744 —1 —8.60433 —2 3.15482 —2 2602520 —2.34386 —3 5.14457 5
7 8.83248 +1 1.47147 —1 —5.85047 —2 2.34714 —2 —7.99817 —3 9.98689 —4 1.83229 =3
8 1.01477 +2 9.90984 —2 =GR, =% 1.61908 —2 —6.41840 —3 1.88858 —3 1.87425 —4
9 1.10546 +2 6.73958 —2 —2.55098 —2 1.07147 -2 —4.56180 —3 1.73204 —3 ==357(359 =1
10 1.16379 +2 4.65517 —2 —1.68045 — 6.94916 —3 —3.04305 -3 1.20383 —3 —4.52284 —4
11 1.19927 +2 3.27647 —2 =ILINERE =) 4.48030 —3 —1.96393 —3 8.79152 —4 3106823 !
12 1.21988 +2 2oy =2 —7.54897 —3 2.89963 —3 —1.24909 —3 5.68866 —4 —2.56320 —4
13 1.23141 +2 1.72460 —2 ==55188028 =3 1.89628 —3 —7.52444 —4 3.59235 —4 —1.67509 —4
14 1.23765 +2 1.28868 —2 —3.63538 —3 1.25844 —3 —5.05593 —4 2.24762 —4 —1.05627 —4
15 1.24093 +2 9.80489 —3 —2.59628 —3 8.49521 —4 —3.26185 —4 1.40718 —4 —6.55052 =5
16 1.24262 +2 7.58434 —3 —1.88888 —3 5.83974 —4 2213537 MEd 8.87501 =5 —4.04363 =5
17 1.24347 +2 5505523 M3 —1.39842 —3 4.08815 —4 —1.42115 —4 5.66380 —5 —2.50459 =5
18 1.24388 +2 4.73969 —3 =I5y =8 291294 —4 —9.62384 —5 3.66747 —5 —1.56501 ==5)
19 1.24409 +2 3.81853 —3 —8.03475 —4 2.11060 —4 =B =5 2.41323 —5 —9.90029 —0
20 1.24418 +2 3.11045 —3 —6.21925 —4 1.55333 —4 —4.64671 —5 1.61456 —5 —6.35436 0]
21 1.24422 +2 2.55907 —3 —4.87378 —4 1.15985 —4 —3.30867 —5 1.09825 —5 —4.14266 =
22 1.24424 +2 2.12459 —3 —3.86265 —4 8.77651 —5 223015798 =15 7.59140 —6 —2.74428 =6
23 1.24425 +2 1.77851 —3 —3.09297 —4 6.72298 —5 —1.75304 —5 5.32824 —6 —1.84693 =0
24 1.24425 +2 1.50011 —3 == 22000158, 512083105 =Ly =5 3.79408 —6 —1.26220 =)
25 1.24425 +2 1.27411 =8} —2.03856 —4 4.07700 —5 —9.78362 —6 2.73834 —6 —8.75299 bl |
26 1.24425 +2 1.08912 —3 —1.67556 —4 382221 9N —7.43537 —6 2.00142 —6 —6.15443 =1
27 1.24425 +2 9.36511 —4 S #3 8747 B 2.56928 —5 —5.70934 —6 1.48004 —6 —4.38384 = 07f
28 1.24425 +2 8.09722 —4 —1.15674 —4 2.06561 —5 —4.42624 —6 1.10650 —6 —3.16086 ==
29 1.24425 +2 7.03681 —4 —9.70594 —5 1.67344 —5 —3.46225 —6 8.35693 —7 —2.30514 =/
30 1.24425 +2 6.14445 —4 e OS10260 RS 1.36543 —5 —2.73085 —6 6.37190 —7 —1.69909 =

*The superscript numerals indicate the order of differentiation.

** For x=00, J;=124.4313 [2].



by eq (3) may be written as

GO (x) = (%) Js 37)

where

(e pdl
J""L @—1D(1—e9 G

There is no known closed form for the above integration, therefore numerical integration techniques
are employed. Various values for the increment in numerical integration are tried to determine
the convergence of the results. Values 0.002 and 0.0002 yielded a difference of 0.00042 percent
for x = 1, and 0.0048 percent for x = 30 in /5. In the literature, Rogers and Powell [4] have computed
the integral /5 utilizing series expansion approximation. Their results correspond exactly to those
obtained using a value of 0.002 for the increment. Since the accuracy of the approximation of nu-
merical integration increases with decreasing increment size, a value of 0.0002 is used in the
final computations. Thus, it is expected that the present results of /5 and hence the Griineisen
function are more accurate than those given by Rogers and Powell.

It may be noted that the only numerical method employed in the present computations is
that for the evaluation of J5, the integral appearing in the Griineisen function. All other computa-
tions including those for the first five derivatives of the Griineisen and Einstein functions represent
mathematically closed forms and thus are not subject to errors common to numerical differentiation.

5. Summary

The Griineisen and Einstein functions appear in the mathematical expressions describing a
number of thermodynamic and transport properties of matter. In order to improve the interpreta-
tion of experimental results and extend the application of the theories regarding these properties,
a knowledge of the temperature derivatives of the above functions are nceded. In the present
study, mathematical expressions in closed form are derived for the derivatives of the Griineisen
and Einstein functions. Also, the first five derivatives of both functions are computed and presented
in tabular form. Since all the derivatives are obtained from mathematical relations of closed
form, no errors inherent to numerical differentiation are introduced.

The author extends his appreciation to C. W. Beckett for suggesting the undertaking of this
study.
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