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Time domain step res ponse expansions with coe fficient algorithms are de veloped from the system 
fun ction of a doubly termina ted skin effect lossy coaxial transmission line. Three models of series 
impedance valid for (a) high frequency, (b) high and intermediate frequency, (c) high and low frequency , 
are incorporated into the system function. The system function is expanded via the method of polyno· 
mial expansions of analytic fun ctions through generating relations and inve rted term by term into the 
time domain through the inverse Laplace transform. Step responses for time domain reflectometry and 
transm iss ion are developed, computed, and compared with experimental res ults. 
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1. Introduction 

In the analysis of skin effect lossy transmission lines one encounters propagation, characteristic 
impedance, and refl ec tion functions which depend on Ys. For example, exp {-x-y(s)}, Zo(s), and 
p(s) = (Z-Zo(s» /( Z + Zo(s)) depend on terms like KYs or R + KYs. Such functions appear 
in the study of pulse transmission in coaxial cables and integrated circuit transmission line struc­
tures, etc., see references [1, 2,3,4,5,6).1 

A method of solution in the class of problems for R ¥= 0 is to affect rearrangements of the power 
series representing yes), Zo(s), and pes). A series representation for exp (-xy(s» is realized 
through the technique of polynomial expansions via generating relations. Term by term Laplace 
transform inversion is then possible and the resulting functional series with certain expansion 
coefficient algorithms is the time domain solution. 

The time domain expansions which were obtained in this paper were specifically developed 
for the study of the pulse response of coaxial cables [6]. The conclusions of that study demonstrated 
that the planar skin effect transmission line series impedance models, the computational results, 
and the experimental data correlated quite well. 

We are now ready to pose the principal problem: determine the pulse distortion of a doubly 
terminated coaxial cable with skin effect losses. A circuit model of the system appears in figure 1 
for a transmission line of length l with 

(a) Z so(s), the source impedance; 
(b) Zr(S), the receiving end impedance; 
(c) E,(s), the voltage step generator; 
(d) E2 (s, 0) and E2 (s , l), step responses at input and output transmission line terminals 

respectively. 

"'Electromagnetic Divis ion, Pulse and Time Domain, NBS Boulder ~aboratories, Boulder, Colorado 80302. 
1 Figures in brackets indicate the literature references at the end of this paper. 
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FIGURE 1. Circuit model of system function. 

Proceeding to the system function [6] 

Z o(s) E-x'Y(s) + pr (S )E - (21 - X))'(S) 

ZO(S) +Zso(s) 1- psO(S)Pr(S)E- 21)'(S) 
(1.1) 

observe the voltage reflection function definitions 

() Zso(s) -Zo(s) 
PsO S = 

Zso(s) +Zo(s) 
and (1.2) 

Now y(s) and Zo(s), propagation and characteristic impedance functions respectively, define as 
follows [6]: 

yes) = v'Z(s)Y(s) , (1.3) 

~Z(s) 
Zo(s) = Y(s)' (1.4) 

The functions Z (s) and Y (s) which are unit length transmission line parameters are known as 
series impedance and shunt admittance respectively. They define via the relations [6] 

Y(s) = Cs (1.5) 
and 

Z(s) =Ls+ KSl /2+ R (1.6) 

where K denotes the planar skin effect parameter. 
The purpose of this paper is to obtain time domain step response expansions and expansion 

coefficient alogorithms from the system function (1.1) for three pairs of terminating impedances: 
(a) Zso(s) =0 and Zr(S) =Zo(s) , (b) Zso(s) = vLIC and Zr(S) =+co, (c) Zso(s) =Zr(S) = y'l;[r. 
Weare interested in step responses at x = 0 and/ or x = l for small and large time arguments. 

In conjunction with the last remark observe that form (1.6) contains three models for series 
impedance [6] on selecting the proper value of R: (a) R = 0, high frequency; (b) R = R'/4 , high and 
intermediate frequency; (c) R = R', high and low frequency. R' is the direct current (dc) resistance 
of the inner and outer conductors per unit length. 

2. Properties and Expansions of y(5) and Zo(5) 

The following properties are important for extracting time domain expansions in later sections. 
(a) Singularity property. Let LI be the defined s domain of the inverse Laplace transform i.e., 

-1T' < args :;;; 1T'. In view of Ci.3), (i.4), (1.5) select the positive branch of s1 /2. Now keeping in mind 
that L > 0, K ~ 0, R ~ 0 observe Ls + KSl/2 + R = 0 possesses roots S~/2 and S~ / 2 in the left hand 
plane. Therefore, arg skfL1 (k= 0 or 1) and y(s) (or Zo (s) ) has one branch point s = o. 
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(b) Bound on I E - l ..,, ( s ) I. We want to show that I E - l ,),( s) I < 1 for all interior points in the region 
comprised of the right·half plane (rhp). According to Titchmarsh [7] the maximum· modulus theorem 
is valid for either bran ch of exp {- ly(s)} provided lexp {- ly(s)} I is single valued at the origin. 
To see thi s is tru e let 

y(o + jw) = I y (o + jw ) I Ci<l,(6,w ). 

Then clearly exp (- I y (0 + jw) I cos cp (0 , w)) ~ exp (0) = 1 independently of the path. Now on 
the rhp boundary le - I')'('<)I has a maximum equal to 1 and a mimimum equal to O. Th erefore, 
I e - I ..,, (s) 1< 1 for Re s > O. 

(c) Lower bound on R eZo(s). Let Zo(s) = IZo(s) k~ ' (s) and observe from (1.3), (1.4) and (b) 
above that - 7T/2 ~ cp (0 , w) ~ 7T/2 implies - 7T/2 ~ CPo(o , w) ~ 7T/2. Hence, Re Zo(o + jw) = I Zo (0 
+ jw) I cos CPo (o, w) "" O. 

(d) Expansions. It is convenient to set slVLC = (J' in obtaining a binomial expansion of y(s). 
Then 

{ 
00 {{3 + {3 (J'1 /2 }n+l} 

ly(s) = y((J')=(J' 1+ 2: (_l)nc" 0 (J'2 , 

n= O 

R 
/3o=y;lvrr; , /32= Z ll /2(LC) 1/4. 

Implementing the binomial theorem in (2.1) produces 

y( (J') = (J' {I + CO(J' - I {d\~b + d1~ 1 (J'1 /2} - CI(J' - 2{ dt~ + dt 1 (J'1 /2 
o 0 0 

I 

n +nl + dO l(J'2/2} + + (- 1) n+ m - I C . (J' - 2 ~30 ~ dO) (J' k /2 
2,2 0 . . . n+ m - I - L.J n + 1n , k 

k =O 

( ) 11. + 111 + 1 
+ (- 1)"+111 _2 n + 11I + 1 ~ d(l) . k /2 + 

Cn + mCT 2 L.J n + m+ l , kCT 
k =O 

} 
where 

1 d( I 1 - n. /3,, - k{3k 
n,k- (n-k)!k! 0 2' 

(2.1) 

(2.2) 

(2.3) 

This series converges absolutely when 00 < lsi < S2 = {~ + .J 4~22 + ~ r i.e., a proof of the bound 

appears in appendix A. Hence, rearrangement of the series (2.3) is realized by recognizing that 

n + 1 term s contribute (J' -~ " ((J' -2~+ 1 ). We require that integral value of k in (2.3) which cancels 

(J'- m ((J'- m- I/2) and obtain the rearranged series 

' ( )- {l+~ (I ) _ n+l} y (J' - (J',72o al ,n+ l(J' 2 , (2.4) 

with coefficient algorithms 

n 

al~~n = (-l)n- l 2: (- l)"'CIl +III - ldl,t( rn ,2 /1" (2.5a) 
m = O 

n 
a ll) -(-l)n ~ (- l)"'-c d(J) 1,21L + 1 - L..J n+ m n+ m+ l , 211l + 1' (2.5b) 

m = O 
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Similarly an expansion of the positive branch of yes) for 0 < lsi ~ So < minimum G~' !~:) 
i.e., valid for small lsi , yields the series 

(2.6) 

Proceeding as in (2.3) we find the rearrangement 

(2.7) 

with coefficients algorithms2 

n 

a~:)2n=(_l)n-l L (_l)mCn+m-,d~lm,n_m, (2.8a) 
m=O 

n 

a~~)2n+1 = (_1)n L (_l)mcn+mif,Um+', n-m, (2.8b) 
m=O 

(2.8c) 

3. General Method for Time Domain Solutions of the System Function 

The following two inverse Laplace transforms are well known [8]: 

(n=O , I, ... ) , (3.1) 

(n=O,I, . .. ). 
(3.2) 

Note k, and k2 are positive; In erfc u(u= k/2t l /2 ) is the nth repeated integral of erfc x and possesses 
the recursion relation [9] 

In erfc u = Ju'" In - , erfc x dx 

where ]0 erfc x = erfc x. The notation H n (u) denotes Hermite polynomials of degree n . 
With (1.1), (3.1), (3.2) in mind we require a method of expanding A (w) exp (ag(w» such that 

a=a(x), and g(w) yields a Taylor expansion in (J' - 1/2 (or SI /2). From Boas and Buck [10] the 
technique of polynomial expansions of analytic functions through generating relations suffices in 
view of the following definition: 

A set of polynomials has a Sheffer representation if it is generated by the formal relation 

A (w) exp (ag(w» = f p,,(a)w n (3.3) 

n=O 

2 Superscript values of 1 and k ~ 2 correspond to high and low frequency expansions respectively on all coefficients. 
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where 

A(w) = f AI/WII , 
11 = 0 

00 

g(W) = ~ gl/W", 

AO=l= O'j 

g l =l= 0 

(3.4) 

n=O 

If gl =0 and gil =l= 0(n=2, 3, ... ) we define PI/(a) to be a modified Sheffer polynomial. This 
definition clearly indicates Sheffer polynomials are rather general since they are functions of the 
expansion coefficients in A(w), g(w), exp (u) . The mechanics of obtaining PIl(a) are taken up 
in section 4. 

The application of (3.3) to (1.1) requires a hierarchy of coefficient algorithms such that recursive 
properties hold within and between algorithms. To clarify this point note the d coefficients of (2.5) 
require recursivity within (2.5) to determine the "a" coefficients while application of (3.3) to exp 
(-.y(u» yields at least recursivity between a new algorithm and (2.5). 

4. Ideal Step Response 

A very simple pair of impedance values for (1.1), Z r(S ) = Z o(s) and Z so (s) = 0, leads to the 
u domain ideal step response 

E=ElVLC. (4.1) 

By virtue of (3.3) this expression becomes 

EA. ( l) =EA - a( l) exp {-(u+a\:~ul /2 } TA ( l) 
2 0", € 1,2 1 0-, , 

U 
(4.2) 

A { OO (n +I) } T, (CT, l) = exp + 1~0 g},')u - - 2- , (4.3) 

whereg~113=-a\U, (n ~ 3) and (4.3) is a member of (3.3). According to Knopp[llJthe mam 
rearrangement theorem applies to (4.3) since 

00 (n + I) 
~ I g~I)CT - - 2- I ~ M < 00 

n =O 

i.e., (2.4) is absolutely convergent. Hence, proceeding to a tractable expansion of (4.3) obtains the 
rearrangement 

{ 
00 (n + I) }k 00 

" gUlcr - ~ =U- k/2 " G(l) CT - n/2 L.J n L.J k . n , l 
n= O n = O 

(4.4) 

where all G coefficients 3 define [12] through the recursion 

G ( I ) - _ 1_ ~ { (k + 1) - } (I)G( I ) 
. k,Il, 1 - ng~1) p7:

1 
p n gp k,ll - p,1 (4.5a) 

3 The third subscr ipt of C means its integer va lue is a multiplier of each g coefficient on the right -hand side of the definition equation (4.5a). It corresponds to the 
number of re flections (or transmiss ions) which the input ste p voltage experiences. 
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with initial values 4 

(4.5b) 

From (4.3), (4.4), and (4.5) we obtain a double power series which convolutes with respect to 
subscripts and yields 

YO 

Tl (a, l) = L b~ll,\a -" /2, (4.6) 
11 = 0 

n G(l) 
b(1) = ~ k,n - k.l 

n,l L. k! ' 
k=l 

such that all coefficients bIt? 1 are Sheffer polynomials with argument x = L. 
Now following Doetsch [13] term by term inversion of (4.2) is permissible. Hence, in view of 

(3.1), (4.2), and (4.6) the time domain expression becomes 

00 {a(J)} 
e2(7,l)=EE - a~I,)2 L b~l,\{4(7 - 1)}n/21nerfc _ 1,_1 (7 - 1) - 1/2 . 

n = O 2 
(4.8) 

To determine the 7 interval of uniform convergence observe that i: I bll~ )1 154 "/ 2 (54 ) 52 l VLC) 
n = O 

is a convergent series. If we require term by term dominance of the expansion in (4.8) the inequality 

{
aU) } {4(7 - 1)}1l/2fn erfc --r (7 _ 1) - 1/2 ~ 5~/2 (4.9) 

determines the interval 1 ~ 7 ~ 70 where 70 is that value of 7 which makes (4.9) an equality. 
To compute the step response for large time arguments revert to (2.7) and consider the s 

domain expansion with coefficientsg\~) = - lVRCa\~llll + l(m = 0, 1 ... ). Then 

-I VRCs '" 
E -1Y(s) E { 00 m + 2 } 

E2(s, l) = E -- = E exp L g\?,lS - 2- . 
S S m = O 

For 0 < lsi ~ 50 we use the argument supporting (4.6) to obtain 

- tvRCs'" 
E 2(s, l)=E~ 

s 

[n/2] G (2) 
b(2) = ~ Ii , ,, - k, 1 

n,l k~ k! ' 

~ b(2) sn/2 L.J n, I , 
n= O 

b\~\ =0, 

(4.10) 

(4.11) 

(4.12) 

where [n/2] denotes the integer function. The coeffi cients b\~,) 1 are modified Sheffer polynomials 
with argument x = l. 

Now inversion of (4.11) through use of (4.3) and (4.4) carries lsi beyond 50. Hence, according 
to Doetsch [14], we can expect the time domain expansion to be asymptotic. Indeed, this turns 
out to be true under rearrangement of (4.11) into odd and even numbered terms from a proof in 
appendix B. Hence, the conclusion contains the form 

4 Initial values of G coeffic ients assume the same form as (4.5b) when superscripts are changed. 
5 We define b~~~ ;;;: I , independent of nand k. 

160 



(LYRe) E J - L2RCj 
e2( t, 1) - E erfc ~ + 7T 1/2 exp l- 4-t- ( 

00 HII_I(LY:)) 
X b(2) L II , I 2"- 1t n /2 

1I= 1 

(4.13) 

where the operator ( ) denotes rearrange me nt with res pec t to n. 

5. Open Circuit Step Response 

To handle the open circ uit case revert to (1.1), set Zso(s) = V LIC and Z,.(s) =+ co, and observe 
the input terminal step response 

1 + E - 211'(s) 

(5.1) 

At this point it is worthwhile to investigate the possibility of expressing the T time domain solution 
of (5.1) as a sequence of reflections. This corresponds to expressing 0- pso (s) E- 21y(S» - I as a 
geometric series. The condition IP sO(S)C 211'(s)1 < 1 is satisfied in view of 3b and 3c. We remark 
that it is also quite easy to calculate an upper bound for Ipso (s) I by Stannard's method [15]. 

Applying the geometric expansion to (5.1) yields 

(5 .2) 

Following the expansion technique for yeO') obtains the "unreflected term" representation 

II 

(I) - (- I)n- 1 "'" (-1) h' d(1) a2 , 2 It - .LJ en + k n + 11. , 2 Ii: , 
k = O 

11 

( I ) - ( _ 1 ) n "'" (- 1) h" d( 1 ) a 2 ,2n + t- L..J Cn + k + t n + k + I , 2k + l· 
k =O 

Integral powers of voltage reflection functions expand into the form 

00 (m+n) 'II - _ n (I) - -Pso(O') - ( 2) L Am+l , n_ IO' 2 (n= 1,2 , ... ) 
m= O 

which defines itself according to the alternate recursion relations 6 

In 

A;/:L , o == a~J, l, II + 1 and A\/! ~ I , /I - I = L a(~~m + l _ kA~121, n - 2. 
k =O 

W e expand the exponent fun ctions of (5.2) into the form 

E - 2/Jy( lf) = E- 2pa\",exp {-2P{O' +a( l) O'I /2}} ~ b(l ) O' - m/2 
, 1 ,1.L Ul ,2 p 

111 = 0 

6 Of course re lations (4.5) and (5.S) give the same answer. Howe ver. their implementa tion poi nts out one diffe rence which we sha ll me ntion in section 7. 

161 

-- -- -------

(5.3a) 

(5.3b) 

(5.3c) 

(5.4) 

(5.5) 

(5.6) 



such that p = n , n + 1. Hence, from (5.3), (5.4), and (5.6) the nth term becomes 

, {"+l p{-2p{ + ( I) 1/2}} 
E (~ 0)-E'(-2)n "'E _2pa,oex (j a l,l(j 

2,1t v, - .L..,; 1,2 1 0 01 

2P= " (j 

x {~ '%0 {~o b~;~k, 2pA~'~I , n-I I (j _(m;n) 

+ { ~ b~: ~k, 2pA~I~I, n} (j _(m+;+l) }} 
k-O 0 I 

( n=O , 1, .. . ). (5.7) 

The prime notation on sigma indicates the series (5.3a) replaces (5.7) at p = ° and, at p = 1, b\), ~ 2 reo 
m 

places the sum L bi,l ~k, 2AV21, -J. 

k = O 

Hence, the time domain response yields 

X {4(T-2p)}"';" Jm +,,+ ~ {~b(J) A(I) }f4(T_2P}"' +~I+1 
L.J .L,.; m-k,2p k+l,n ... 

o 0 ", = 0 0 k=O 0 0 0 

X Jm +n+l} erfc }pa\~ )I(T-2p)-1 / 2: } (5.8) 

and the term for p = ° inverts to the series 

(5.9) 

This series converges uniformly when 

( +1) "' + 1 
(T lII + 1/2) /r T "" S~-2- (5.10) 

Clearly inequality (4.9) (n replaced by m + n) extends to cover (5.8). 
To determine the time domain asymptotic expansion let 

ZO(s) 
{ 1+'Yl OSl /2+Tl?S-'Yl.l /2S1 /2{ 1+ ".'" a(2) S(I/ +ll/2} } 1 . 

. / ./ - '/2 L.J I, ,, + 1 1 + Tl sI /2 
n =O ·,0 

(5.11) 

I 0 0 I 

Now define a set of coefficients such that 

A~2) = YJo - YJ 1/2 , (n=3,4, .. . ). 
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Then (5.11) assumes the form 

ZO (S) 
(5. 12) 

ZO(S) +.JF; 
In a very similar manner we obtain the expansion 

(5.13) 

with coefficient definitions 

(n=3,4 . . . ). 

For convenience redefining the coefficients of (2.7) yields 

( - 2 3 ) (3) - "<3) n- , , .. . , a l , 11 + I -O'h (n = O, 1, ... ). 

The exponential function of (5.1) has the expansion 

OJ S .. / 2 OJ 00 

E - 2 /y(s)= '" 2k - X '" 0 3 ) SIII /2 = '" b(,,3,)_.,S " / 2, L... k! L... k , In , I L..., 
k = O 111 = 0 ,, = 0 

(5.14) 

with the coefficient algorithm 

(n ~ 2). 

Combining expansions (5.13) and (5.14) obtains 

1 00 

I - p .0(S) E - 21y(s)= '" M (2) SII. / 2 
s 1 + S 1/ 2 L... " , 'Y/O n = O 

(5. 15) 

subject to coefficient algorithms 

" M (2) - '" A (3) b(3) 
n - L,.; n - k,O k , 2 (n=2,3, ... ). 

k = O 

Expansions (5.12) through (5.15) constitute a scheme for the series solution of (5.1) by means of the 
two quotien ts 

r t A~)S"/2 
E2 (s, 0) =El(S)j ": 0 +E - 2/VRCs'" 

'" M2)S"/2 L... n 
I n= O 

(5 .16) 
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Since the power series above are analytic for 0 < Is I ~ So we may pe rform division term wise 
to obtain 

(5 .17) 

such that recursion form ulas 

II - I 

A(2) -"" M-2 ) 10 2) 
n L.J n+ k II 

r0/~) = _ _ --".:...·=...::0 _ __ _ 

2 

and 

(n=1,2, ... ), 

with initial values Wb2 ) = Wb3 ) = ~ enable all coefficient determinations. For a time domain expansion 

of (5. 17) invoke the gamma function equation r(z)f(l-z) = rrcscrrz (z complex and nonintegral 
real) and observe 

e2 (t, 0) - ~ + ~ f (-1) II - I W~~/ _I f ( 2n; 1 ) t - (211; I ) 
11. = 1 

(LYRe) 
E (lYRe) _12/l C \ '" • H" _I 2t l / 2 ) +-erfc --- +EE 4/ "" W(3)----'----'-2 2t l / 2 LJ n 2" - 1' r--:rrt" n = l V7Tt " 

(5 .18) 

as t ~ 00 is a complete asymptotic expansion. 

The short circ uit step response with impedance values Z ,.(s) = 0 and Z sO (s) = .)"f is ob tained 

from the basic IJ and s domain expansions of this section. 

6. Time Domain Reflectometry and Transmission 

W e select the impedance values Z so(s) = Z,.(s) =.)"f and require a solution of (1.1) for 

o ~ x ~ Land 0 ~ t ~ T < 00. Let p,.(IJ) = Pso(lJ) == p(IJ) and define three relations 

a2,,(x) =2Ln +x, 

a2/H I (x) =2L(n + 1) -x, (6.1) 

a,,(x) =~ a,,(x) , (n=O, 1,2 ... ) 

which include two integer functions 

&" (0) = 2 [ n; 1 ] an d & /I (L) = 2 [ ~ ] + 1 

at input and output terminals respectively. 
Invoking the geometric expansion in (4.2) via (6.1) yields 
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I 
L 

(6.2) 

To imple ment the rearranged series se t 

{ "" (m + I)} T,, (a, x) = exp a,,(x) ,,~o gl,: la - - 2- (6.3) 

Let the definition equation 

(6.4) 

analogous to (4.4) apply such that a ll J coeffi cients obey the relations (4.5). Then as in (5.5) we have 
the ex pansio n 

T,,(a , x) = f B\,~ ~ ,,(x)a- 1I1/ 2 (6.5a) 
111 = 0 

contingent on the definiti on 

m 
B\,~~ ,,(x) = L a~~( X )J~.I'>"' _k . (6.5b) 

,,= I 
The converge nce of (6.5a) is uniform over 0 ",; x ",; La nd 00 ~ lal ~ 5.1• Sin ce the inverse Laplace 

transform of (6.2) is ze ro when T = [T/ I VLC] + 1 (integer fun ction) we do not inquire about the 
converge nce of (6.2) with res pec t to n. 

ror 0 ~ x ",; La nd 0 ",; n ",; 00, the a domain s te p response of (6.2) with s upport from (5.3), (5.4) 
and (6.5) becomes 

_ (" +II ) '" { k } _~} 
X a 2 + L L A)'~ ' _ III , ,,BI,:;,,(x) a 2 

/; = 0 0 m = O 0 I 

X exp {-a ,,(x ) (a+ a\: ll(TI /2) } (6.6) 

where th e polynomials of degree k are Sheffer and the prime on sigma indicates two exceptions: 
k 

(a) Replace L AV21_m,1I _1BI,:;,, (x) with BV,l" (x ) at n=O, 
m= O 

(b) Replace (6.6) at n = O and x=O with (5.3a). 
He nce, the time domain response yields 

I T] { x {I " } " _ . , _ II - all(x)a\ ~ ~ _ t ) (I) e2(T, x) - E L I( 2) E L 2L A~'+ I _ m , II _ IBm , ll(x) 
II = 0 1 II = 0 0 U/. = 0 0 

X ~4(T -a,,(x ))l" ; "I k+ "+ i { ± AV21_1II ,,,BI,!;n (x)} 
k = OOIll = O 0 
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where (5.10) replaces (6.7) at n=O and x=o. 
To determine the 7 interval of uniform convergence invoke the inequality 

h'+p. } k+p 

{4(7 - an(X))} 2[k+P erfc { IXn(x) alI) (7 - an(X)) - 1/2 :;;; S~-2-
2 1,1 

(6.8) 

for p = n , n + 1. 
For large time intervals we first note that (5.13) and (5.14) furnish a starting point for the 

expansion 

(6.9) 

such that M~~) coefficients define according to the rules: 

n+l 
M(3) - ')')2 - {A(3) + b(3) + A(3) b(3)} 

1 '10 2,1 2,2 1,1 1,2 , M(3) = - '" A(3) b(3) 
n L.t n+l - k,l k , 2' 

n 
where A(3) = '" A(3) A(3) n , 1 L.J n - k , O h. , O. 

k =O 

From (5·12) and (6.9) we have the product 

~ 

ZO(s) 1 
(1 + YJoSI /2) L A\~)SI//2 

/L 1 - p 2(S)C 21Y(s) 

Zo(s) + Yc 

Following the methods of (6.3) and (6.4) produces 

n =O 
~ 

SI /2 L M~~)sn/2 

n= O 

_ 00 (a (X)S)1c { 00 }k 
E -IX,,(x)y(s) = E - Ctp (x) V llCs ' /2 L P k! L g~)sm/2 , 

k = O m =O 

contingent on the following definitions and properties: 

[n/2) ak(x) 
B(2) ( ) - '" - p- J( 2) 

n,p x - L" k! k , n -2k 
k = 1 

(n ~ 2), 

We defin e the equations 

n 
qf,)o(x) = L A~:~n,B\~~o(x) (x > 0), 

m= O 
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k =O 

(6.10) 

(6.11a) 

(6.11b) 

(6.11c) 

(6.12a) 

(6.12b) 



n k 

C~~\ (x) = 2: 2: A\~~,~ ~3~ lIl , oB\~~J (x), (6.12c) 
k = O m = O 

11 - 1 

C\d·(X) - 2: NlIl , dx)M~/~ lIl 

N",..(x) = m;V) ( n ~ l). 
X ~ O 

(6.12d) 

From (6.11) and (6.12) three s pecial cases condense into the forms 

No,o(x) =No,1 (X) = l/M~3), 

(6.13) 
x ~ O. 

A( 2) + A( 3) - M ( 3)/M ( 3) 
N () J 1, 0 I 0 

1,1 X = M (3) . 
o 

In the s domain we have the re presentation 

J _ x 

£2(S, x) = 2: (-1)'fE - a ,l X) v'ncsl/22: N",,,.{X)S(n- 3)/2 (6.14) 
" =0 ,, =0 

whic h converges uniformly in x and s over 0 ~ x ~ l and 0 < Eo ~ I s I ~ So. It is necessary to consider 
three positions on the line: (a) x = 0, (b) x = l, (c) 0 < x < l . At x = 0 the terms corresponding to 
n = 0 on Laplace transform inversion contribute tl /2, a term which cancels on using the series 
expansion of [I erfc ( ) . Hence, observe the complete asymptoti c expansion for time domain 
reflectometry (TDR). 

00 

e2( t , 0) - E 2NolVRC 2: 
( _) Ill - I {2lVRC}"' -1 

tl /2 
+ N1,o(0)U(t) 

m = 1 

(6.15) 

as t ~ 00. In view of (6.12) and the coefficient definitions of section 5 (6.15) at t = 00 reduces to 

.J1i + lR 
e2(00, 0) = , 

2 .J1i + lR 

(6.16) 

the doc voltage divider equation. 
Over 0 < x < l we use the expansion of J1 erfc ( ) again to cancel the term associated with 

t J/2 and extract the complete asymptotic expansion 
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a E- t ~ 00. In the case of time domain transmission (TDT) note x = l m eans (Xo(/) = (XI (l) and , 
consequen Lly the coefficient of No vanishes. Also at t = 00 and x = l we obtain the d-c voltage divider 
expression 

(6.18) 

7. Realization of TOR and TOT Data 

7.1. Theoretical and Experimental Results 

A transmission line with the following parameter values is illustrated: L == 1.184 X 10- 11 Him, 
C == 2.46 X 10- 7 Flm , L == 137.2 m (450 ft) , R' == 1.466 X 10 - 2 Dim, K Ys == 3 .35 X 10 - 5 Ys Dim. 
Three curves of each fi gure correspond to three models of Z (s) (sec_ 1). Each theore tical c urve 
approximates experimental data bes t over a certain time interval and the relative error between 
the two sets of data (taking either set as correct) over that time interval is realized through the 
followin g example : 

t (microseconds) 
% error 

1 
2 

TDT Data 

2 
1 

3 
1 

4} R 2 Z(s) =4+ KYs + Ls. 

In view of a 3 perce nt uncertainty of the experimental syste m [6], a maximal 2 percent error for 
the appropriate Z (s) in the data of the figure s below is optimal. Experimental data point s for t less 
than 10 ns are not reliable [6]. 

7.2. Computational Observations 

Computer programs were written on a CDC 3800 digital computer in Fortran language to 
realize theoretical TDR and TDT data. We mention certain consideration s of the computational 
procedure for (6.7) by starting with c and d(I) coefficients of (2.5a). Their product possesses 
recurSIOns 

wh ere 

1 
n-2 

F(I ) --- (3 F ( I ) 
11 + 1, 0 - n + 1 0 n , O' 

( n + k - .!.) (n-k) ., 
F ( I ) = 2 (32 F(I) 

n,hl (2k + l)(2k + 2) (30 n , k (7.2.1) 

(0 ~ k ~ nandn = I , 2, .. . ) . 
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040 

0.35 

0.30 

0.25 -

" 
-N 

0.20 -
Q) 

0.1 5 
------·K ./S 

0.10 R' --- 4" + K.JS 

0.05 --- R' + K.JS 

00 10 20 30 40 50 60 70 80 90 100 
t (n sec ) 

F IGURE 2. Step reSI'onse at receiving end with. one lInit of time delay (I v'CC) 
removed. 

0.5 

0.4 

0.3 

i ! I 
0 - 0 - 0 

- N 
0.2 

-------- K./S 
R' Q) 

0.1 
--_. 4 + K./S 
--R'+ K./S 

0 
o Expe riment 

0 40 

F IGURE 3. S tep response at receiving end wilh. one IIllil of time delay (I LC) 
removed . 

',', 1 I 
0 - 0 - 0 

0.4 

Q)N 0.3 

0.2 

0.1 -

-------- K./S 
R' ---4" + K./S 

--R' + K./S 
o Expe r iment 

O ~~--~~--~~--~~--~~--~\~--~~ 
o 40 

F IGURE 4. Step response at sending end (no lime delay). 
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Similarly from (2.5b) 

where 

1 
n +-

2 
D(I) = f3o--D (I) 

n + I,O n+1 n,O' 

( n + k + ~) (n-k) f32 
D(I) = -'£D(I) 

n , /r+ 1 (2k +2)(2k+3 ) f3u n,k (7.2.2) 

(O,,;;k";;nandn=O, 1, ... ) . 

In computing El,!:n (x) (at x = 0 , L) it makes no difference whether (4.5) or (5.5) is implemented 
to realize J kJ';n _k sin ce indexing occurs over k. However, suppose inquiring only about the magnitude 
of r efl ection n occurs. Then coefficients Al,:;n compute via (4.5) by recurring over the mth now of 
the nth column 7 whereas (5.5) requires recursion between columns nand n - 1. 

For the time interval 8 0 ,,;; t:;;; 10 fJ.s it is necessary to set k = 1 (1) 25 and n = 1 (1) 10 to compute 
the Sheffer polynomials 

k 

L AVll_m,nB~~n(x). 
m=O 

Their ranges of magnitude at x = 0 and x = l appear below: 

k=1 k=25 

n=O /0 X 10- 2 
1 < IJiI < 6(i=O, ... ,3). 

n=lO j2XlO- 16 /3 X 10- 23 

Now determining numerical values of erfc u 

through its power series and using the recursion formula [16]. 

u 1 
/ p erfc u= __ / p - l erfc u+-/ p - 2 erfc u 

p 2p 
(7.2.5) 

enables term by term computation of (6.7). In reference to (6.7) let 

and 

Then a pair of practical terminating conditions for computing (6.7) can be stipulated: 

(a) I e2 ,m,q(m)(7, x) 1='= 10- 5 , m+q(m) ,,;; 25, m=l(l)p; 
(b) I e2,p(7, x) 1='= 10 -4, p ";; 10. 

To clarify these conditions suppose that e2(T, 0) is wanted for T= 14.1 (t= 10 fJ.s). Reference to 
(6.7) shows that n= 1(1)14 while numerical computation reveals e2 ,m, q(m)(7, 0) satisfies condition 
(a) for m= 1 (1)4. At p = 4 conditions (a) and (b) are met and all computations on (6.7) are terminated. 

A practical value for the interval of convergence may be determined by invoking the inequality 

7 Note the subscript position reversal of A:,:.'n in com paring (;:i,~" of (4.5). 

II Setting k = I (l )50 and II = 1 (]) 10 jumps eomputing time on the CDC 3800 from 30 5 to 3 min . Thi s happens because ~o Illany convolutions occur. However, 

it is nOl necessary to go beyond k = 25 for this particular l ransmiss io~ line. 
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f' 
I 

1 

k 

.:;; 2kT 2 1 

r (~+ 1) (7.2.6) 

Substituting the asymptotic expression r(z) - 27TCz Z Z - I / 2 , k = 25, and computing that value 
of T which satisfies the equation 

(7.2.7) 

produces t = 7.4 X I0 - 6 seconds. Now e2, I ,q(I)(T,x) lx=o, / does not satisfy condition (a) at 
t = 2.1 X 10- 5 s. Hence, (7.2.7) gives a pessimistic (but useful) guideline for the interval of conver· 
gence. 

In asymptotic calculations terms corresponding to No , k (x) and N1, k (x) are dominant and no 
more then three terms of each series (odd and even) are needed for this combination of parameter 
values. Asymptotic re sults are used for t = 20, 30, 40 /-LS. 

8. Appendix A. Bound for 10-1 1/ 2 

We have as a condition from the binomial series (2.1) 

Let lerl = v2 and invoke the triangular inequality to obtain 9 

Calculating the positive zero of I(v) yields 

(AI) 

(A2) 

(A3) 

It remains to show that I(v) :;", 0 for v:;'" Vo. Noting I(v) has one extremum, a minimum, at 

v = if and I' (v) :;", 0 for v :;", f3 2/2 completes the argument. 

This bound is sharp since the selection er1/ 2 = Vo is an admissible value. Transforming from 
er to s produces the result 

9. Appendix B. Asymptotic Expansion Discussion 

The problem is to show that 

9 The author is indebted to o. N. Stra nd fo r this argument. 
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is completely asymptotic (o=~ VRC). 
Let cpn(t) == H n- I (ot - I!2) !t n!2 and define a sequence {t/Jn(t)}11 such that 

lim t/Jn + 1 (t) = 0 
/ --> x t/J1l (t) for every n. (B2) 

Then (B2) forms an asymptotic sequence [17] uniformly in n. Using the definition of Hermite 
polynomials [18] observe the limit quotient 

211 + 1 

cpzn+ I (t ) 2 2 2 
lim = lim - - (B3) 
/ -->00 CPZ Il (t) / --> 00 _211+1 0 15 

2 

as t -'? 00. Hence, a rearrangement is necessary to satisfy (B2). 
It is quite easy to see th~t odd ·irid even subsequences satisfy respectively 

lim I cp2n+3(t) I= lim I CPZll+Z(t) I=lim 0 (l)=o. 
/--> x cpZn+1 (t) 1--> x CP211 (t) /--> x t (B4) 

A complete asymptotic expansion with respect to {t/Jk(t)}k obeys the relation [19] 

1/ - 1 

f(t) - L t/J,..(t) = 0 (t/Jn(t)), t -'? ex;. (BS) 
1."= 0 

By definition of {CP2n(t)}z", ICP2N(t) I ? ICP21l(t)I(n=N, N + 1, ... ) as t-'?oo. Also b~~l+ "l origi· 

originates from a convergent series, i.e. , bh~I+ J , I ~ M < 00. We have 

(B6) 

as t ~ 00 , a relation which satisfies (BS). Clearly (6) also holds for the odd numbered terms. This 
argument extends to (6.15) and (6.17) in view of the fact Nn , k (x) is uniformly bounded. 

The author is sincerely grateful to Prof. N. S. Nahman for his guidance and inspiration through­
out the course of this project. 
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