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Time domain step response expansions with coefficient algorithms are developed from the system
function of a doubly terminated skin effect lossy coaxial transmission line. Three models of series
impedance valid for (a) high frequency, (b) high and intermediate frequency, (c) high and low frequency,
are incorporated into the system function. The system function is expanded via the method of polyno-
mial expansions of analytic functions through generating relations and inverted term by term into the
time domain through the inverse Laplace transform. Step responses for time domain reflectometry and
transmission are developed, computed, and compared with experimental results.
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1. Introduction

In the analysis of skin effect lossy transmission lines one encounters propagation, characteristic
impedance, and reflection functions which depend on V’s. For example, exp {—xy(s)}, Zo(s), and
p(s)=(Z—2Zy(s))/(Z+Zo(s)) depend on terms like KVs or R+ K V. Such functions appear
in the study of pulse transmission in coaxial cables and integrated circuit transmission line struc-
tures, etc., see references [1, 2, 3, 4, 5, 6].1

A method of solution in the class of problems for R # 0 is to affect rearrangements of the power
series representing y(s), Zo(s), and p(s). A series representation for exp (—xy(s)) is realized
through the technique of polynomial expansions via generating relations. Term by term Laplace
transform inversion is then possible and the resulting functional series with certain expansion
coeflicient algorithms is the time domain solution.

The time domain expansions which were obtained in this paper were specifically developed
for the study of the pulse response of coaxial cables [6]. The conclusions of that study demonstrated
that the planar skin effect transmission line series impedance models, the computational results,
and the experimental data correlated quite well.

We are now ready to pose the principal problem: determine the pulse distortion of a doubly
terminated coaxial cable with skin effect losses. A circuit model of the system appears in figure 1
for a transmission line of length / with

(a) Zs(s), the source impedance;

(b) Z,(s), the receiving end impedance;

(¢) Ei(s), the voltage step generator;

(d) Es(s, 0) and Es(s, [), step responses at input and output transmission line terminals
respectively.

*Electromagnetic Division, Pulse and Time Domain, NBS Boulder Laboratories, Boulder, Colorado 80302.
! Figures in brackets indicate the literature references at the end of this paper.
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FIGURE 1. Circuit model of system function.

Proceeding to the system function [6]

Es(s, x) i Zo(s) e 4 p,(5)e G- L)
Ei(s)  Zo(s)+Zso(s) 1—pso(s)pr(s)e") :
observe the voltage reflection function definitions
_Zso(s)_Z()(S) _Zr(s)—Z()(S)
pSO(s) _Zso(S) +Z()(S) and Pr(s) Zr(S) +Z()(S) (1-2)

Now 7y(s) and Z,(s), propagation and characteristic impedance functions respectively, define as
follows [6]:

y(s) =VZ(s)Y(s), (1.3)

G
L lENT

The functions Z(s) and Y(s) which are unit length transmission line parameters are known as
series impedance and shunt admittance respectively. They define via the relations [6]

: (1.4)

¥Y(s)==Cs (1.5)
and
Z(s)=Ls+Ks2+R (1.6)

where K denotes the planar skin effect parameter.

The purpose of this paper is to obtain time domain step response expansions and expansion
coefficient alogorithms from the system function (1.1) for three pairs of terminating impedances:
(@) Zow(s)=0 and Z,(s) =Zo(s), (b) Zsw(s)=VLIC and Z,(s) =+, (c) Zw(s)=Z.(s)= VL]C.
We are interested in step responses at x= 0 and/or x=1[ for small and large time arguments.

In conjunction with the last remark observe that form (1.6) contains three models for series
impedance [6] on selecting the proper value of R: (a) R =0, high frequency; (b) R= R'/4, high and
intermediate frequency; (¢) R=R’, high and low frequency. R’ is the direct current (dc) resistance
of the inner and outer conductors per unit length.

2. Properties and Expansions of y(s) and Z(s)

The following properties are important for extracting time domain expansions in later sections.

(a) Singularity property. Let L, be the defined s domain of the inverse Laplace transform i.e.,
— 7 <args <. In view of (1.3), (1.4), (1.5) select the positive branch of s'2. Now keeping in mind
that L>0, K= 0, R=0 observe Ls+ Ks>+ R =0 possesses roots si?> and s!/2 in the left hand
plane. Therefore, arg sx¢L;(k=0 or 1) and y(s) (or Zo(s)) has one branch point s=0.
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(b) Bound on |e'"®)|. We want to show that |e )| <1 for all interior points in the region
comprised of the right-half plane (rhp). According to Titchmarsh [7] the maximum-modulus theorem
is valid for either branch of exp {—/y(s)} provided |exp {—/y(s)}| is single valued at the origin.
To see this is true let

Y8+ jo)=|y(8+ jw) |e-Ie ),

Then clearly exp (— |y(8+ jw)| cos ¢ (8, w)) — exp (0) =1 independently of the path. Now on
the rhp boundary e ™¥| has a maximum equal to 1 and a mimimum equal to 0. Therefore,
[e=¥®)| <1 for Re s > 0.

(¢) Lower bound on ReZy(s). Let Zy(s)=|Zo(s) |€/%® and observe from (1.3), (1.4) and (b)
above that —7/2 < ¢ (8, w) < /2 implies ——17/2 < ¢y(8, w) < 7/2. Hence, Re Zo(8+ jw) =|Zo(8
+ jw) | cos ¢y (8, w) =0.

(d) Expansions. It is convenient to set sIVLC=0 in obtaining a binomial expansion of y(s).
Then

. ) + Bog /2 n+1
bs) =5(@) =0 {1+ 3 (=1, { BIBTZET, @1
n=0
EI s
“~12\72) 27 ")|G+r)r
(2.2)
ﬁ():lBI\/ZC, BZIIEZI/Z(LC)]H.
Implementing the binomial theorem in (2.1) produces
Y(o)=0 {] -+ cm)'“‘;{)dﬂ},-k d}f}o'/z(})—cl(r“z({)dé“(’, + d{t) o1
1
+(l§5302/2i+ Sk +(-l)'”’"*‘cn,»m_,(r"z(;fz“) d®) 10 K2
k=0
n+m n+m+1
(—])"“"anno' = H) 2 dn+m+1 AUA/2+ 2Ae } (2-3)
k=0 1
where
dn i )‘k' B(')l kBl
K, [K2 R\,
This series converges absolutely when © < [s| < 82={§E+ m—!——[‘-} i.e., a proof of the bound

appears in appendix A. Hence, rearrangement of the series (2.3) is realized by recognizing that
n+1 terms contribute o = (O’A)SH ) We require that integral value of £ in (2.3) which cancels

o™ (o~™m-12) and obtain the rearranged series

y (o) = {1+201 w10~ %}’ (2.4)
n=0
with coefficient algorithms

n

ag}%n e (_ 1)"*1 2 (_ 1)"'Cn+ m~1d511+)m,2m’ (253)
m=0

al £n+1 ( 1)" 2 1)mcn+m 511+)m+1 2m+1+ (25b)

m=0
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1R, IRZ)

Similarly an expansion of the positive branch of y(s) for 0 <|s| <So < minimum <2L ik

i.e., valid for small |s|, yields the series

y(s)=(RC)1/Zsl/2{1+ $ =1, {gsuu%s}"“}. 2.6)

Proceeding as in (2.3) we find the rearrangement

n+1

V(S)= ﬁs”z{l -+ 2 i a8 } (2.7)

with coefficients algorithms?

agz,)Zn = (_- l)n—l E (_ l)mC"‘*’m—ldgLZlm,n—m, (283)
m=0
a&%)2n+1 = (=~ 1)n 2 = 1)m6"+md(nz+)m+1, n—m, (2.8b)
m=0
n! : K /L,
o= =Rk g g, M=g "=g (2.8¢)

3. General Method for Time Domain Solutions of the System Function

The following two inverse Laplace transforms are well known [8]:

G_klol/z

f“{ = }z (4r)n2[" exrfc <%T_1/2> (n=0,1, . ..), (3.1

o +1
o2

_k
e 2

k
s 2 ekagl/2 T Hn< L ) (n=0,1, .. .).

2¢1/2 (3.2)
Note k; and ks are positive; I" erfc u(u= k/2t'?) is the nth repeated integral of erfc x and possesses
the recursion relation [9]

1" erfc u:fxl”"‘ erfc x dx

u

where I° erfc x=erfc x. The notation H,(u) denotes Hermite polynomials of degree n.

With (1.1), (3.1), (3.2) in mind we require a method of expanding A (w) exp (ag(w)) such that
a=a(x), and g(w) yields a Taylor expansion in o~2 (or s¥/2). From Boas and Buck [10] the
technique of polynomial expansions of analytic functions through generating relations suffices in
view of the following definition:

A set of polynomials has a Sheffer representation if it is generated by the formal relation

A(w) exp (ag(w)) = 3, Pu(@)w (3.3)

2 Superscript values of 1 and k=2 correspond to high and low frequency expansions respectively on all coefficients.
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where

w)= i Aaon, Ao+ 0,

n=0

w)=7y guw", g1 +0
n=0
If g3=0 and g, *+0(rn=2, 3, . . .) we define P,(a) to be a modified Sheffer polynomial. This
definition clearly indicates Sheffer polynomials are rather general since they are functions of the
expansion coefficients in A(w), g(w), exp (z). The mechanics of obtaining P,(«) are taken up
in section 4.

The application of (3.3) to (1.1) requires a hierarchy of coefficient algorithms such that recursive
properties hold within and between algorithms. To clarify this point note the d coefhicients of (2.5)
require recursivity within (2.5) to determine the “a” coefhicients while application of (3.3) to exp
(—7y(o)) yields at least recursivity between a new algorithm and (2.5).

4. ldeal Step Response

A very simple pair of impedance values for (1.1), Z,(s) =Zu(s) and Z(s) =0, leads to the
o domain ideal step response

Euo, ) =EE22  E=EIVIC. .1)
o

By virtue of (3.3) this expression becomes

o o) exp {—(o+afliol} 4
1,2

Exo,1)=E . Ti(o, 1), (4.2)
Ti(o, [) =exp {+ i Bl (e }, (4.3)
n=0
where g{Vs=—af!) (n=3) and (4.3) is a member of (3.3). According to Knopp [11] the main

rearrangement theorem applies to (4.3) since

S Jepo (<M<

n=0

i.e., (2.4) is absolutely convergent. Hence, proceeding to a tractable expansion of (4.3) obtains the
rearrangement

{E g(l)o-— _zu)} =g-ki2 i G(I}g)n,ﬂ""/z (4_4)

n=0 n=0

where all G coefhicients ? define [12] through the recursion

G = ng(‘) E {p(k+1) —n}gPGY,_, | 4.5a)
p=1

3 The third subscript of G means its integer value is a multiplier of each g coefficient on the right-hand side of the definition equation (4.5a). It corresponds to the
number of reflections (or transmissions) which the input step voltage experiences.
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with initial values #
e e (4 AR U U LR £ o s (4.5b)

From (4.3), (4.4), and (4.5) we obtain a double power series which convolutes with respect to
subscripts and yields

Tie, ) = 3 b, 4.6)

n=0

by, = 2 _Lﬂ:E_._

b, =1

o)

such that all coefficients 4(!), are Sheffer polynomials with argument x = /.
Now following Doetsch [13] term by term inversion of (4.2) is permissible. Hence, in view of
(3.1), (4.2), and (4.6) the time domain expression becomes

o a(l)
&y(7, ) =Ee=)>» 3 bW {4(r — 1) }2I" erfe {7 (1— 1)*‘“} (4.8)

n=0

S;M2(Sy > Sol VIC)

To determine the 7 interval of uniform convergence observe that 2 | bEY,
n=0
is a convergent series. If we require term by term dominance of the expansion in (4.8) the inequality

{4 (7 — 1) }2[" erfc { Lz —1)- ‘/2} S (4.9)

determines the interval 1 < 7 < 7, where 7 is that value of 7 which makes (4.9) an equality.
To compute the step response for large time arguments revert to (2.7) and consider the s

domain expansion with coefficients g2 = — [VRCa®,,, (m=0,1 . . .). Then
r e R S & e
2(s, I) = PR exp {mgo Em'S } (4.10)

For 0 < |s| < Sy we use the argument supporting (4.6) to obtain
—IVRCs'2 o

Eo(s, ) =E < 3 6P, s, (4.11)

n/2] ng)rkk 1
Mhs D we s

k=1

P, =0, (4.12)

where [n/2] denotes the integer function. The coefficients 5{), are modified Sheffer polynomials
with argument x= .

Now inversion of (4.11) through use of (4.3) and (4.4) carries |s| beyond So. Hence, according
to Doetsch [14], we can expect the time domain expansion to be asymptotic. Indeed, this turns
out to be true under rearrangement of (4.11) into odd and even numbered terms from a proof in
appendix B. Hence, the conclusion contains the form

4Initial values of G coefficients assume the same form as (4.5bh) when superscripts are changed.
> We define b(") = 1, independent of n and .
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H ( IVRC
IVRC\ , E —*RC C R SR T
ex(t, 1) ~ E erfc (_étlT>+ﬁ exp | — X 2 b®, T T (4.13)

n=1

where the operator () denotes rearrangement with respect to n.

5. Open Circuit Step Response
To handle the open circuit case revert to (1.1), set Zg(s) = \V/L]C and Z(s) =+ %, and observe

the input terminal step response

Zo(s) 1+ e2v(s) '
Zo(s)+ VLIC1  —pso(s)e2tr®

Ex(s, 0) =Ei(s) (5.1)

At this point it is worthwhile to investigate the possibility of expressing the 7 time domain solution

of (5.1) as a sequence of reflections. This corresponds to expressing (1—ps(s)e27$))-1 as a

geometric series. The condition |ps(s)e2¥$)| <1 is satisfied in view of 3b and 3c. We remark

that it is also quite easy to calculate an upper bound for | ps(s) | by Stannard’s method [15].
Applying the geometric expansion to (5.1) yields

Z"( € Zny( o) +e 2(n+ I);’( lr)} o

Z T \/— E Pso(o'){ (5.2)

n=0

E:(o,0)=E (o) ———7——

Following the expansion technique for 9(o) obtains the “unreflected term” representation

Z()(O’) l = ("_,Ll
E 0) ==t (D o (5.3a)
20(0' ) Zo( )+\/L_/_ 9 ”230 Jn+1
a‘f!l,)‘znz(—l)"ﬂl E (—=1)* C"*’\dnﬂ\ 2k, (5.3b)
k=0
n
ale,)gn*.]:('—]-)" Z ( 1) C"*’\+|dn+l\+l 2k+1. (5-3C)
k=0
Integral powers of voltage reflection functions expand into the form
(m+n \
pro(o)=(—2)" ZA,,,H OR 7\ et €1 i (5.4)
which defines itself according to the alternate recursion relations ¢
m
A(n}ll 0 H(’ )m+l and Am+l n—1 2 (l(éz nHl—kAgcl-i-)l,nAz- (55)
k=0
We expand the exponent functions of (5.2) into the form
€ ~27(0) = g2ra{); exp {_ 2p{o+af!), 0!/} } 2 b o i (5.6)
m=0

5 Of course relations (4.5) and (5.5) give the same answer. However, their implementation points out one difference which we shall mention in section 7.
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such that p=n, n+1. Hence, from (5.3), (5.4), and (5.6) the nth term becomes

LAY —_ (i) it
Ez n(U' 0)—E( 2) {E —2pa{?, xPi 2pg(J-_+—‘ll,1('J- ?(fl:l}
2” n P

m

E{Ebgnklp }\1—1)11

|

MI»—I

{E b3y ap n}o:(—m;;ﬂ)}] (n=0,1, . ..).

(M )
|

A

N

N\ﬁ.

=

L

(5.7)

The prime notation on sigma indicates the series (5.3a) replaces (5.7) at p=0 and, at p=1, b{}, re-

) m
places the sum » bii), ALY,

k=0

Hence, the time domain response yields

n= > p=n 5 m=04k=

(r,0)=E 2 (—=2)n {"“'e—zfmasz{— i {i LR L e 1}

m+n m+n+1

X{4‘ T—ZP) A L i {E E)})k ZpASH-l n} T_2p} &

- 0

XI'"*”“} erfc {Pa(” (7—2p) -1/2} } (5.8)
1

1 2
and the term for p =0 inverts to the series

7.(m-» 1)/2

2= “HW.

CgoT,O)—

Nl'—‘

2

This series converges uniformly when

m+1
( m+1/2 )/I (m;}_l)SS: 2+

Clearly inequality (4.9) (n replaced by m -+ n) extends to cover (5.8).
To determine the time domain asymptotic expansion let

Z()(S) — " : 1 n+ ——1—'
R /0/(S) SRS 1‘*‘7)051’2'*'772‘5" /231 1+ 2 (11 15( 1) 1+71051/2

Z()(S)'i“\/% 1 0 01

Now define a set of coefficients such that

AP=1, AP=mo—n'2,  AP=m—nitaP,, AD=—nl2a?, (n=3, 4,
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Then (5.11) assumes the form

Zo(s) 1
, 1+ mes!
Zo(s) + \/Z

In a very similar manner we obtain the expansion

2 1()) n/2

: /2
p.\'l)(é) 1+7)61/2 2 AH) sh

with coeflicient definitions

AD=1, AV =mo—2mif’, AP,=2(me—nial}, AD,=—2niad),

For convenience redefining the coefficients of (2.7) yields

a9, =—IVRC. o®,=—1VRC aP, , —

I, n

(n=2,3, ...), &P,

The exponential function of (5.1) has the expansion

1\/ 00
o= 3 94 e 3 69, o= 3 b,

m=0 n=0
with the coefficient algorithm

3
< G}c )n k

-k,2
b= 2 T

k=1

(n=2).

Combining expansions (5.13) and (5.14) obtains

l_ps()(s)eﬁzww)— l+7}031/~ 2 M(Uyz/’

n=0
subject to coeflicient algorithms
MP=2,  MP=mo+ 4D+ b9,

n
M= 2 ARy, 0B,

k=0

(n=2,3,:.4.).

(5.12)
(5.13)
(n=3,4...).
(n=0,1, .. .).
(5.14)
(5.15)

Expansions (5.12) through (5.15) constitute a scheme for the series solution of (5.1) by means of the

two quotients

S A 3 { S AR B2,

n=00" k=0

} Sn/‘z
0

+ € —2VRCs'

Ex(s, 0) =Ei(s)| =—n

Z M :1/..

n=0 n=0
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Since the power series above are analytic for 0 < |s| < S, we may perform division termwise
to obtain

Bk W2 gni2 + =2 VRCs: 53 W‘,j*’s""z} (5.17)

n=0 n=0

E:>(s, 0)=E(s) {

such that recursion formulas

n—1
(2) = (2) 2)
An 2 MN+I\' W(k
9 k=0
W) = A
2

and
n—1 n—1
2 (©) — 2 3
S AD, 62— M,
(3) — _k=0 k=0
W) =

n=1,2,...),

5 ( )

with initial values W (?)= W(3)=— enable all coefficient determinations. For a time domain expansion
0 0 2

of (5.17) invoke the gamma function equation I'(z)['(1 —z) = wesemz (z complex and nonintegral
real) and observe

a(t,0) ~2+2 3 (—nrwg 1 (22) ()
n=1

IVRC
s (e
E (/\/R i o :

o5 0 2[1/2 )
b Dt ‘—,_,)+Ee i < W ———> (5.18)
2 i "21 Qn—=1\/ g0

as t — © is a complete asymptotic expansion.
S STr L. 2
The short circuit step response with impedance values Z,(s) =0 and Z(s) = \/g is obtained

from the basic o and s domain expansions of this section.

6. Time Domain Reflectometry and Transmission

We select the impedance values Z,s-o(s)ZZ,A(s)-——\/% and require a solution of (1.1) for

O0sx=</land 0st<T<x Let pr(0) =pse(0) =p(co) and define three relations

asn(x) =2In+x,

arns1(x) =2l(n+1)—x, (6.1)
él,,(,\'):%an(x), (n=0, 1,2 I )
which include two integer functions

T
2

~

&,1(0)22[ ]and &,,(l)=2[ ]+l

o |

at input and output terminals respectively.
Invoking the geometric expansion in (4.2) via (6.1) yields
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~ 20( ) >
Ey(o, x)=E\(0) ———F= T pr(a)e-4t1io), 6.2)

70(()-)—'—J( n=0

To implement the rearranged series set

%

Tw(o, x) = exp {&,.(.r) Z g Vo~ (!";])} (6.3)

m=0

Let the definition equation

() S n‘.’(’_(m‘i)}k: & (x) o2} 3 g, iz
{a,m 3 (P = (a3 o s

analogous to (4.4) apply such that all J coefficients obey the relations (4.5). Then as in (5.5) we have
the expansion

Tw(o, x)= E B () o2 (6.5a)
m=0
contingent on the definition
m %
B = - k() Bl e (6.5b)
k=1

The convergence of (6.5a) is uniform over 0 < x < [ and © = || = S,. Since the inverse Laplace
transform of (6.2) is zero when 7= [T/[VLC]+ 1 (integer function) we do not inquire about the
convergence of (6.2) with respect to n.

For 0 <x<=/and 0 = n = %, the o domain step response of (6.2) with support from (5.3), (5.4)
and (6.5) becomes

Ba(, x) =Ei (o) 3'/(=2)re ot {z{ S A B ]

n=0 k=0 0 m= 0 0

k+n _k+n+1
XU_( £ +2{2 A/+l m, uB(n: "(x)}O' 2 }

k=0 ym= 0 0 f

X exp {—&,,(x)(o--l—a‘l‘_’l(r‘”)} (6.6)

where the polynomials of degree £ are Sheffer and the prime on sigma indicates two exceptions:

i
(a) Replace Y Af,_,, ,_BW,(x) with B{),(x) at n=0,

m,n
m=0

(b) Replace (6.6) at n=0 and x=0 with (5.3a).
Hence, the time domain response yields

kl 3 (1) = 1 &
alr, x)=E 32y oii] 23 A0, 0 Bil2) ]

n=0 lk:() 0 m=0 0

ke * k
X NEE A" 2 e A 'I+) —m HB(”= )'l
(8=} * I+ S S A B |

k=0 o m= 0 0

k+n+1 ~
x{4(r—da(0))} * 1000t erfel B aptifr— o () 2] (6.7)
0 0 0 0

1 1 1
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where (5.10) replaces (6.7) at n=0 and x=0.
To determine the 7 interval of uniform convergence invoke the inequality

(87D

izl & A
(47— )} ® 17 erfe | 8 0 (1 n(x) 12| <S5 s 6.8)

forp=n,n+1.
For large time intervals we first note that (5.13) and (5.14) furnish a starting point for the

expansion
Sl/Z

1_ 2 —2Iy(s):—
p (S)E (1+nsl/)

2 M(3)s n/2 (69)

such that M'? coeflicients define according to the rules:

MIP= 20— b, = AP, M= 5= (AR, + 0L+ AVBR), MY == AR, b

n
where A(n31 2 A(n'ilk,OAs\?,)u-
k=0

From (5-12) and (6.9) we have the product

s (1+nosl/2) g A(,;“))S"/z
Z()(S) l nE:()

e : — = - . (6.10)
£ b= pz(s)e 2ly(s) s12 2 M @)gn/2
C n

n=0

ZO(S) an

Following the methods of (6.3) and (6.4) produces

= k k
€~ a(x)y(s) = e~ (x)VRCs1/? i (L’(I:)-—sl_ { i g(,‘;’)s”'”} 1

k=0 m=0

= e~ up@YRCAP NV BO) (x)snh, (6.11a)

n=0

contingent on the following definitions and properties:

(n/2) ak(x)

B, (x) = 2 ek s (n=2), (6.11b)
k=1
B, (x) =1, BP,(x) =0, B®(l) =B (). (6.11c)

We define the equations

CElx) = E AR BPo(x) (% >0);
m=0

(6.12a)
Cu(0) = AP

AP =1, AP =AQP+ AR, (6.12b)
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n k
Ee)=Sc Y A0 AR L BS . (x), (6.12¢)

k=0 m=0

n-1
C(nzi(x) o 2 Nm,k(X)M(,,"{_)m

m= n=1
Nuv(a)= o (x s 0)- (6.12d)

From (6.11) and (6.12) three special cases condense into the forms

No,o(x) =No,1(x) =1/M®,
A — M3 M (6.13)
AP + A3 — M M)

Ny,i(x) == IM};’"

In the s domain we have the representation

1 il 3 %
Ez(S, x) = z (_ l)ke—a W) VRCs1/2 E N,,,k(x)s‘"—3”'2 (6.14)

k=0 n=0

which converges uniformly in x and s over0 < x </ and 0 < €y < |s| < S,. It is necessary to consider
three positions on the line: (a) x=0, (b) x=1, (¢c) 0 <x <[. At x=0 the terms corresponding to
n=0 on Laplace transform inversion contribute "2, a term which cancels on using the series
expansion of I' erfc (). Hence, observe the complete asymptotic expansion for time domain
reflectometry (TDR).

(_)m-] {21\/Rc‘lm—l
% 1/2
62(t, O) ~F ZN()Z RC 2 [1 —‘I'IJL +N|,0(())U(t)

g ey

2
x e 2n-1 RY
+ Y (= 1) "Nano(0)1 (Fs &) — N1,1(0) erfe {—tlﬁc}
n=1

IVRC
IR Hn—Z{T}
< Nn,] (O) (615)
n=2

PR t
€ 211A2t(n—1)f2

as t = . In view of (6.12) and the coefficient definitions of section 5 (6.15) at ¢ = © reduces to

\/%+ IR
ez(oo, 0) g

o & >
A
the d-c voltage divider equation.

Over 0 < x <! we use the expansion of /! erfc ( ) again to cancel the term associated with
t'? and extract the complete asymptotic expansion
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1 % =} \/EE m—1
ex(t, x) ~ E)NoVRC 2 —D¥ak(x) 3 : )l—m {ak(XZ)tl/z }
L m=1 m!I‘(l—i———,—)
2
b3 1 et (2EIVEC VRC)}
k=0
1 71&1\)’((7 H {ak(x) M RC}
+E Y (—1)ke 2 Nk (x) "~ 212
k=0 2 Qn-2p(n— 1)/2

as t—> o, In the case of time domain transmission (TDT) note x=1[ means «y(/) = a;(/) and,
consequently the coefficient of NV, vanishes. Also at t = and x=[ we obtain the d-c voltage divider

expression
\/Z
C

2 (o, [) =—F7— 6.18
ex( 7 (6.18)

ZVC-HR

7. Realization of TDR and TDT Data

7.1. Theoretical and Experimental Results

A transmission line with the following pardmeter values is illustrated: L. =1.184 X 10" H/m,
C=2.46%10-7 F/m, /=137.2 m (450 ft), R’ =1.466%10-2 Q/m, KVs =3.35X10-5Vs (/m.
Three curves of each figure correspond to three models of Z (s) (sec. 1). Each theoretical curve
approximates experimental data best over a certain time interval and the relative error between
the two sets of data (taking either set as correct) over that time interval is realized through the
following example:

TDT Data
t (microseconds) 1l 2 S L3
% error % 1 1 }Z(s) 2 TKVs+Ls

In view of a 3 percent uncertainty of the experimental system [6], a maximal 2 percent error for
the appropriate Z (s) in the data of the figures below is optimal. Experimental data points for ¢ less
than 10 ns are not reliable [6].

7.2. Computational Observations

Computer programs were written on a CDC 3800 digital computer in Fortran language to
realize theoretical TDR and TDT data. We mention certain considerations of the computational
procedure for (6.7) by starting with ¢ and d") coefficients of (2.5a). Their product possesses
recursions

n—l (71+A—“> (n—k)'8
(1) (1 Ao (1)
Fu+10 IB"FNO Fnl\+l (ZA+1)(2A+2) B'Fnl\ (721)
where
FO = cpipidlli o - (OSh=pandn=12,.. .).
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FIGURE 2. Step response at receiving end with one unit of time delay (1VLC)
removed.
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FIGURE 3. Step response at receiving end with one unit of time delay (1VL.C)
removed.
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FIGURE 4. Step response at sending end (no time delay).
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Similarly from (2.5b)

n—f—% (n+k+%> (n—h) g,
(1) = D) e = =2 pa)y
D"+1,1) BOn"‘l n,0° n,k+1 (2A+ 2) (2A+3) B“ n,k (722)
where
D) =cnridNyi10621 (0=<k=nandn=0,1, .. .).

In computing B{}), (x) (at x=0. /) it makes no difference whether (4.5) or (5.5) is implemented
to realize J{!), . since indexing occurs over k. However, suppose inquiring only about the magnitude
of reflection n occurs. Then coefficients A{!), compute via (4.5) by recurring over the mth now of
the nth column 7 whereas (5.5) requires recursion between columns n and n—1.

For the time interval 8 0 < ¢ < 10 us it is necessary to set k=1(1)25 and n=1(1)10 to compute
the Sheffer polynomials
AL B (x).

+1-m,n"m,n
0

i M=

Their ranges of magnitude at x=0 and x= [ appear below:

k=1 k=25

n=0 | fox10-2 fix10-14
1<|fi| <6G=0, .. ., 3).

n=10 | f,x10-1 £ X102

Now determining numerical values of erfc u

(1)

(u=k () X (7= ()

through its power series and using the recursion formula [16].
I? exrfc u=—217-1 erfc u+i1”‘2 erfc u ({(32%5)
P 2p

enables term by term computation of (6.7). In reference to (6.7) let
éx (7, x) = &,n(7, x) and o,n(7, ) =Y &,n,x(7, ).
Then a pair of practical terminating conditions for computing (6.7) can be stipulated:

@ |emem(7,2) | =105,  m+4+q(m) <25, m=1(1)p;
(b) |éxp(r, x) | =104, p =< 10.

To clarify these conditions suppose that e:(7, 0) is wanted for 7=14.1 (=10 us). Reference to
(6.7) shows that n=1(1)14 while numerical computation reveals & m, qum (7, 0) satisfies condition
(a) for m=1(1)4. At p =4 conditions (a) and (b) are met and all computations on (6.7) are terminated.

A practical value for the interval of convergence may be determined by invoking the inequality

TN 3 o i ] e : o &
Note the subscript position reversal of A{!) in comparing (,;,‘v ), of (4.5).

% Setting £=1(1)50 and n=1(1)10 jumps computing time on the CDC 3800 from 30 s to 3 min. This happens because so many convolutions occur. However,
it is not necessary to go beyond 4 =25 for this particular transmission line.
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(1) k
a =
1 2 1

2’{(7-'—&12(x))’\‘/2 Tk erfc <_“’ &n \”) CAYM(X))_I/2> < 2kg?2 <T—>
e ]
2 (7.2.6)

2
Substituting the asymptotic expression 1'(z) ~ 2me #2#"12 k=25, and computing that value
of 7 which satisfies the equation

7={I'(25/2+ 1) }2/25S;1 (280
produces t=7.4X10-% seconds. Now €, 1,¢(1)(7, x) | z=0,: does not satisfy condition (a) at
t=2.1xX107%s. Hence, (7.2.7) gives a pessimistic (but useful) guideline for the interval of conver-

gence.

In asymptotic calculations terms corresponding to Ny, x(x) and N, x(x) are dominant and no
more then three terms of each series (odd and even) are needed for this combination of parameter
values. Asymptotic results are used for t=20, 30, 40 us.

8. Appendix A. Bound for |o|!/?

We have as a condition from the binomial series (2.1)
|Bo+ B20"| < |or]- (A1)

Let |o| =v? and invoke the triangular inequality to obtain®
v2—|Bo+ B2012| = v*— Bov— Bo=f (V). (A2)

Calculating the positive zero of f(v) yields

It remains to show that f(v) =0 for v=wv, Noting f(v) has one extremum, a minimum, at

11=’%2 and f" (v) =0 for v = B82/2 completes the argument.

This bound is sharp since the selection o'/2=1, is an admissible value. Transforming from
o to s produces the result

57 { \/4L2 } S

9. Appendix B. Asymptotic Expansion Discussion

The problem is to show that

0

ex(t, 1) ~ E erfc (81712) + L:/Zexp {—a%-'} {2 Bhii,

><Hg,,(St*“)

"*] 1(’211+’ 1 +[)2u+2, 1
22ng =

(t—>0) (B1)

22n+1[n+1

Hopiq (82712) }

9 The author is indebted to O. N. Strand for this argument.
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is completely asymptotic <8:é \/RC).

Let ¢n(t) = Hy—1(8t7"2)/t"? and define a sequence {{s, ()}, such that

W (2)
}LFLI D) 0 for every n. (B2)
Then (B2) forms an asymptotic sequence [17] uniformly in n. Using the definition of Hermite
polynomials [18] observe the limit quotient

Lr 2n+1
| mnle) |y 2 (22
B ey TR e )
as t— «, Hence, a rearrangement is necessary to satisfy (B2).
It is quite easy to see that odd and even subsequences satisfy respectively
hn Pants(t) :lim‘M :1im0(l>:0, (B4)
Ul 50211+1(t) L% (P'Zn(t) t—>x t
A complete asymptotic expansion with respect to {{sx(¢) } » obeys the relation [19]
. el
@)=Y ()= 0(a(t)), = (B5)
=0

By definition of {@2n(t) }on, |@an(t)| = |@2a(t)|(n=N, N+ 1, .. .) as t—> . Also b2),, , origi-
originates from a convergent series, i.e., b2, <M < » We have

= on
2 bR 1,1 el l <M | o2x(1)

2271

=l
Y 5an—0 (p2n(2)), (B6)
n=N

n=N

as t —> «©, a relation which satisfies (B5). Clearly (6) also holds for the odd numbered terms. This
argument extends to (6.15) and (6.17) in view of the fact V,, 1 (x) is uniformly bounded.

The author is sincerely grateful to Prof. N. S. Nahman for his guidance and inspiration through-
out the course of this project.
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