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A rigorous definition is given for the concept of an "interaction matrix " (Zij) where i = 1 to In 

and j = 1 to n, in term s of two idempote nt matri ces A" and Bs of rank rand s, respec tively. It is then 
shown that the frequency distribution of the eigenvalues of (Z)(Z), depends only on rand s. Applica· 
tions are given to matrices of residui\ls arising from two-way data, ei ther by removing rowand/or 
colu mn-means, or by applying any number of sweeps of the "vacuum cleaner." The theorems are 
important in the theory of the analysis of two-way tables of nonadditive data. 
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1. Introduction 

In a recent paper [1],1 a method has been presented for a partitioning of the row by column 
interaction in two-way tables and the practical usefulness of this method as a tool in data analysis 
has been demonstrated. The method required the calculation, by Monte Carlo techniques, of 
quantities that are analogous to the "degrees of freedom" in ordinary analysis of variance. These 
new degrees of freedom were calculated as follows, 

Let (Zij) be an m X n matrix of independent random normal deviates (zero mean, unit variance). 
Consider the m X n matrix of residuals (dij ) , where 

dij = Zij + Z .. - Zi. - Z .j, 

where a dot indicates averaging over the index replaced by the dot. 

Then the new quantities, denoted as degrees of freedom, are the expected values of the 
eigenvalues of the matrix product (d) (d) I (where I indicates the transpose of a matrix). The 
expected values of these eigenvalues are functions of m and n, and were tabulated as such. Pro­
fessor John Tukey, of Princeton University, has pointed out that the degrees of freedom calculated 
by this procedure are of far more general applicability than indicated in the paper in question. 
The present paper provides the theoretical development from which the more general results are 
obtained. It is based on anew, mathematically rigorous definition for an interaction matrix, from 
which an important general result can be derived. 

2. A Definition of Interaction of Two-Way Tables 

Let (diJ be an m X n matrix of normally distributed variates, all of zero mean; and let the 
covariance of dij and di,j' be denoted by cov (dij, dilj' ) , 

We will say that (dij) jn an interaction matrix ofr degrees offreedom by s degrees offreedom 
jf cov(dij , dill) is ofthe form 

COy (dij, dilj' ) = [aii ' . bjj'] (T2, 

I Figures in brackets indicate the literature references at the end of this paper. 
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where the mXm matrix AT= (aii') is idempotent of rank r, and the nXn matrix Bs=(bjj') is 
idempotent of rank s. 

We will say that AT and Bs are the covariance matrices associated with the interaction matrix 

(dij ) . 

3. The Eigenvalues of (d)(d)' 

THEOREM I: If (dij) is an m X n interaction matrix with associated covariance matrices Ar and 
Bs, then the nonzero eigenvalues of the matrix product (d)(d)' (where (d)' denotes the transpose 
of (d)) are the same as those of the matrix (t)(t)' , where (tij) is an r X s matrix of normally and inde­
pendently distributed variates tij, of zero mean and common variance (Tt. 

PROOF: Let P = (PH') represent the m X m orthogonal matrix whose rows are the eigenvectors 
of AT. Since Ar is idempotent and of rank r, we have 

PA P' = (!d2) 
1 010 ' (2) 

where I,. is the identity matrix or rank r. Similarly, representing by Q = (qjj') the n X n orthogonal 
matrix whose rows are the eigenvectors of Bs , we have 

and 

QBsQ' = (Wo)· 
From (2) and (3) we derive, respectively, 

'" '" ., {ow L.. L.. PikP~ akl = 0 
k I 

for i, i' ~ r 

for i or i' > r 

for j, j' ~ s 
for j or j' > s, 

where Ok/is the Kronecker delta (Okl = 1 for k = l, and Okl = 0 for k 'i= /). 
Consider now the transformation 

(tij) = P(dij)Q'. 

Then, 
(t*) (t*)' = P(d)Q'Q(d)'P' 

or 
(t*)(t*)' = P(d)(d)'P'. 

(3) 

(4) 

(5) 

(6) 

(7) 

From (7) it follows that (t*) (t*)' and (d) (d)' have the same nonzero eigenvalues. Furthermore, we 
have , on account of (6) 

m 11. 

tS = L L Pil.:qjudku • (8) 
Consequently, k II 

m n m n 

cov(t;'j, t(:j') = L L L L PikqjllPi'lqj'v cov (dku , d lv ) . (9) 
k II I v 

Introducing (1) into (9), we obtain 

m n m n 

cov (t;j, t(:j') = (T2 L L L L PikqjuPi'lqj'vaklbliv 
k u I v 
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which, as a result of eqs (4) and (5), becomes: 

for 

o for 

{ i,i'~r 
j,j' ~ s 

{ i or i' > r 

j or j' > s. 

(10) 

From (8) it also follows that the t'0 are normally distributed with E (tij) = 0 for all i and j. Con· 
sequently, because of (10), the tf) are equal to zero for all i, i ' > r or j, j' > s. For i, i ' ~ rand 
j, j' ~ s, it follows from (10) that the t'0 are normally and independently distributed with zero 
mean and variance (T2. 

We have already shown that (d) (d) 1 and (t* ) (t*) 1 have the same nonzero eigenvalues. If 
we omit from the matrix (t*), all elements for which i> r, or j > s (all of which are zero), we obtain 
an r X s matrix, say (tij), such that (t)(i) 1 has the same nonzero eigenvalues as (t*)(t*) I, and 
consequently as (d) (d) I. QED. 

NOTE: We have assumed, in the definition of an interaction matrix, that the dij are normally 
distributed, and have proved that under this assumption, the t'0 defined by eq (8) (except for those 
that are identically zero), are independently and normally distributed with zero mean and variance 
(T2. We can generalize the definition of an interaction matrix by requiring only that the dij be con· 
ditionally normal, given the aii' and bji" Since the distribution of the tij does not depend on the 
au, and bjj l , it is unconditionally normal with zero mean and variance (T2, and Theorem I remains 
true under the more general definition of an interaction matrix. 

4. Residuals from an Additive Structure 

THEOREM II: Let (du) be a matrix whose elements are 

{ i = 1 to m 

j = 1 to n 
(1) 

where Yo are independent normal variates, such that E(yu) = /-L + Pi + Yj, and whose common variance 
is (T2, and where {l, Ph Yi are the usual estimates of the grand mean, the row effects and the column 
effects. Then (du) is an interaction matrix of (m -1) degrees of freedom by (n - 1) degrees of freedom. 

PROOF: It is readily shown from (11) that 

cov (dij , d i1j l ) = ( 8uI - ,~)( 8j j' - ; )(T2 . (12) 

The matrix A = ( 8U' - ~) is idempotent. Its trace is L ( 8ii , - ~) = m - 1. Hence its rank is m -1. 
1 

Similarly, the matrix B = ( Ojjl - ;) is idempotent, of rank n - 1. This proves the theorem. 

S. Residuals from the Vacuum Cleaner 2 

LEMMA I: Let (Yu) be an m X n matrix of observations Yij, with common variance (T2. Let (dij ,k) be 
the matrix of residuals obtained from the Yu after extraction of the grand mean ({l), the row effects 
(Pi), the column effects (Yi), and k sweeps of the vacuum cleaner [3]. Then the followin.g relation 

holds: 
,.-

dU,k = Yu - ({l + Pi+Yi) - L [K1Pliqlj + CXljqlj + ,BljPIi] (13) 
1= / 

2 The result s co nlained in Lemmas 1, II. and III are not novel. The y have been dc ri ved I)re vious ly , by a diffe re nt method, by W. L. Nichol son [ 2] . and arc pre­

sent ed here only for completeness. 
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in which 

(1) 

(2) 

(3) 

L P~i = L qii = 1 
i j 

_ al- I,i 
Pli- , 

~Lai-l'i 

for all!. 

_---'=f3"'I-=I"", i== qlj= 

~Lm-I'i 
i 

Kl = L L dij, I- IPliqli 
i 

f3lj = L dii,I - IPli - K1qli' 
i 

These relations result from the definition of the vacuum-cleaner process (see [3]), according to 
which 

(14) 

and the quantities K, p, q, a, {3, are calculated as above. 
LEMMA II: Using the notation of Lemma I, we have 

~ PliPI'i = all' J (15) 

and for all 1, l' 
L qljql'i = all' (16) 
j 

PROOF: Let (t) = (tt, t21 . . . , t,,) be any vector of n elements, such that L tj = 0, and assume 
that the following relations hold for some given value of l. j 

(1) L tjql + l,j = ° 
j 

(2) " t·d·· I = ° L.J J 1) , . 

where dij,l satisfies eq.(14) of Lemma I. 
Then the following relations hold: 
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PROOF: 

( ) '" '" (3l + 1,j 1 a L.. tjql +2,j = L.. tj = ---:= == 
j j ~L/3[+ I ,j ~L/3[+ I ,j 

L tj [L dij ,IPl+ 1,i - KI + 1ql+ 1,j] 
) 1 

) 

j j 

- Ctl+1,i L tjql + 1,j - Pl + 1,i L tj/31 + 1,j = 0, because of (1), (2), and (a). 

Thus, if conditions (1) and (2) are fulfilled for any value of l, they are also fulfilled for any value 
l' > l. In that case, we have 

L tjql'j=O fori' ;:?! l + 1. 

If we now make tj == ql , j, we can verify that conditions (1) and (2) are fulfilled. Hence, 

for l ' =l= l , 

and by definition L qljQLj = 1. The relation L PUPI'i = Oll ' is proved in a similar way. 
j 

LEMMA III : D~fining (dij , k) as in LemmaI, we have 

cov (dij ,k, di'j',k) = (1"2 ( Ow - ! - ip,iPIi') (Ojj' - ~ - ±qljqlj')' 
l= 1 l = 1 

PROOF: The lemma is easily verified for k = 1. It is also readily shown, using Lemma II , that 
if the lemma holds for k, it also holds for k + 1. Thus, the lemma is proved by mathematical induc­
tion on k. 

THEOREM III: Define (dij ,k) as in Lemma I, 'lnd assume furthermore that the Yij are normaLLy 
and independently distributed, with E(Yij) = J.t + Pi + Yh and common variance (1" 2 ; then the m X n 
matrix (dij , k) is an interaction matrix of (m - k - 1) by (n - k - 1) degree of freedom. 

PROOF: The theorem results at once from Lemm:a III amd the fact that a matrix of the form 

with 

~PliPl'i = Oll', 
• 

is idempotent and of rank m - k -1. (The trace of this matrix is 

3 The distribution of the d ij,A' is only condit iof/all )' normal, given all PI; and q l) va lu es . but as shown on p. 151 , thi s does not invalidate Theore m I. Consequently , 

Theorem III :s true . 
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THEOREM IV: Let (Yu) be an m X n matrix of normal, independent variates Yu, whose means are 
E(yij) = p.= Pi+ 'Yj and whose common variance is (T2. Extract from Yu the mean fl , the row effect 
Pi> and the column effect Yj, as well as k sweeps of the vacuum cleaner, and denote by (dij ,k) the 
matrix of residuals resulting from this treatment. 

Then the nonzero eigenvalues of the matrix product (dij ,k) (dij , ,,· )' are the same as those of 
(t)(t)' where (t) is an (m-k-1) by (n-k-1) matrix (tij) of normal, independent variatestij of 
zero mean and common variance (T2 . 

The theorem holds for all values of k, from k= 0 to k= min [(m -1), (n -1)]. 
PROOF: The theorem is an immediate consequence of Theorems I and III. 

6. Principal Result and Summary 

As indicated in the introduction, the present work was motivated by a desire to generalize 
results obtained in connection with a new method of data analysis. Weare now in a position to 
state this generalization in the following precise form. 

THEOREM V: Let (dij) be an m X n interaction matrix of r degrees of freedom by s degrees of 
freedom. Then the probability distribution of the eigenvalues of the matrix product (d)(d)' depends 
only on rand s, and not on m and n. 

PROOF: The theorem follows at once from Theorem I. 
Our principal result is the following: To study the probability distribution of the eigenvalues 

of (d) (d); where (d) is any interaction matrix with r by s degrees of freedom, it is sufficient to 
study the probability distribution of the eigenvalues of (t) (t) " where (t) is an r by s matrix whose 
elements are independent random normal deviates (mean zero, unit variance). The probability 
distribution in question is completely determined by the values of rand s. 

The author is greatly indebted to Professor John Tukey for pointing out to him the generality 
of his previous results and thereby providing the incentive for the present work. 
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