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On Complementary Polar Conical Sets*

Christoph Witzgall**

(February 6, 1970)

Tucker has formulated the Duality Theorem of Linear Programming in terms of orthogonality
properties of a pair of complementary orthogonal linear manifolds with respect to the positive orthant.
This theorem is generalized by substituting complementary polar conical sets for complementary
orthogonal linear manifolds, and the generalization is proved under simple stability assumptions.
Equivalence to Fenchel’s Duality Theorem for conjugate convex functions is established. There are
strong parallelisms to work by Kretschmer.
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1. Introduction

Two linear manifolds M and N in R" are called orthogonal, if (X;—X:)"(Y,—Y.)=0 holds
whenever X, XoeM and Y., YseN. They are called complementary orthogonal, if they are orthogonal,
if their intersection is of dimension zero, and if their dimensions add up to n.

The following formulation of the duality theorem of Linear Programming has been given by
Tucker [1]:1
THEOREM M: Suppose M and N are complementary orthogonal linear manifolds both of which
meet the nonnegative orthant RE. Then there exist two nonnegative vectors U and V such that

UeM, VeN, and U'V=0 (fg. 1).

\%
‘ M 7
v
IPNNN\N W
/ N

FIGURE 1. Orthogonal solutions U, V for complementary orthogonal

manifolds M, N.
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The purpose of this paper is to extend the above theorem to pairs of “‘complementary polar
conical sets.”
We say that two sets F' and G are

complementary polar conical sets,

if F=P+C and G=Q+ C? for some points P, (), and some cone C with C=Cr?. Here C? denotes
the (negative) polar of the cone C, i.e.,

Cr={Y |Y"X <O for all XeC}.

We want to consider the existence of nonnegative vectors U and V' such that UeF, VeG, and
U™ =0, where F and G are complementary polar conical sets. This statement generalizes Theorem
M, since each pair of complementary orthogonal manifolds is also a pair of complementary polar
conical sets (fig. 2). Carrying the generalization of Theorem M still further, we drop the nonnegativity
hypothesis for U and V" and require instead that

UeK, Ve—KP

for some given (closed) cone K (fig. 3).
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FiGure 2. Orthogonal solutions U, V for complementary polar FIGURE 3. Orthogonal solutions U, V for complementary polar
conical sets ¥, G with respect to RED' conical sets ¥, G with respect to cones K, —K".

In the case of manifolds, the vectors U and V are usually unique, whereas they are typically
not unique in all other cases. Therefore we require in addition that the vectors U—P and V—Q
be orthogonal —a condition satisfied in the case of manifolds. We say that U/ and V' form a pair of

orthogonal solutions

of the complementary polar sets F' and G with respect to the cone K.
It would appear natural to generalize even further by adding points P’, Q' to K and — K7,
respectively. Orthogonal solutions would then be defined as satisfying

Ue(P+C)N(P'+K), Ve(Q+Cr) N (Q'—KP)
W =P = Q) =D=AU=RYR(F =05
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However, the linear transformations U:=U—P', V:=V—Q', P:=P—P', Q:=0Q— Q' reduce

this case immediately to
Ue(P+C)NK, Ve(Q+CP)N (—KP),
(U—-P)r(V=Q)=0=0"7.

Therefore it is no restriction of generality to assume P'=(Q' =0, and this will be done throughout
this paper.

2. Propositions

The first extension of Theorem M concerns the special class of polyhedral conical sets, that is,
conical sets that are intersections of finitely many closed halfspaces. If F= P+ C is such a conical
set, then sois G=(Q + C?, and C =C??. Here R may be any ordered field.

THEOREM P: If F and G are complementary polar polyhedral conical sets both of which meet
polyhedral cones K and — K" respectively, then ¥, G possess orthogonal solutions UeK, Ve —KP.

If R is the field of real numbers, then the relation C =C?? characterizes closed cones. The
following example shows that general complementary polar conical sets need not admit orthogonal
solutions, even if both meet the nonnegative orthant K=—K?= R *.Consider

c={(’z§) [ m}

This is a circular cone with an opening angle of 90°. Clearly C»=—C. Choose P=0Q= (1, 0, 0)7.
Then (fig. 4)

FIGURE 4. Example for nonexistence of orthogonal solutions: Two
circular cones with angle of 90° at apex, meeting the positive
orthant in two rays ¥ and G.
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FNRI={P+6(0,0,1)"|6=0}
GNRL={Q+6(0,1,0)"|6=0}

and these sets have no orthogonal points in common.
Thus we need additional conditions in order to extend Theorem M to general conical sets in

the real space R".
A point D of a closed cone C is called

stable in C

if the conical hull #(C U (—D)) is again closed.
If D lies in the relative interior of C, which we shall denote by C’, then D is stable in C. Indeed,

D:i A;u,-
i=11

where 4;eC, u; > 0, and k=dim ¥ (C), where #(C) denotes the linear hull of C. Thus 4,, . . .,
Ay, —D span positively the linear hull of C. If therefore DeC' then ¢ (C U (—D)) =% (C), and
linear subspaces of R" are closed.

If D belongs to a polyhedral cone C, then % (C U (— D)) is again a polyhedral cone and therefore
closed. Thus every point of a polyhedral cone C is stable in C.

Further we need the notion of a

direction of infinity.
Vector D is a direction of infinity of /' with respect to (), and vector E a direction of infinity of G

with respect to P, F
(1) DeK, Ee—K»

(ii) DeC, EeC? (1)
(iii) D"Q=0, P"E=0,

respectively. Zero vectors are included in this definition, since this will simplify statements later on.
The name “‘directions of infinity”” has been prompted by the following fact:

If U, V are orthogonal solutions of ¥, G, then so are U+ 60D, V+7E for all 6, 7= 0. (2)
Indeed, (1.ii) and (1.iii) imply in view of polarity:

D"V=D"(V—Q) =< 0 for all VeG

(3)
UTE =(U—P)TE < 0 for all UeF.
From (1.i) one obtains again in view of polarity:
DTV=D"(V—Q)=0 for all VeG N —K”
(4)
UTE=(U—P)TE=0 for all UeF N K.
Finally, since E+ QeG N — K,
DTE=0. (5)

Proposition (2) now follows from (4) and (5): (U+6D)"(V+7£)=U"V=0, (U+6D—P)"(V+7E—Q)
=(U—P)"(V—Q)=0. U+60DeF N K and V+7EeG N —K? is plain, as DeC N K and EFeC?N —K?.
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We are now able to formulate the general

THEOREM S: Suppose F=P+ C and G=Q+ C? are a pair of complementary polar sets. If I and
G both meet the closed cones K and — K" respectively, and if all ? directions of infinity of ¥ are
stable in C and K, while all directions of infinity of G are stable in C* and —KP, then F, G possess
orthogonal solutions UeK, Ve — K".

Let 4 (S) denote the affine hull of a set SCR" and let S! stand for the interior of S with respect
to the relative topology in . (S). We call S’ the relative interior of S. Then we have as a corollary
to Theorem S:

THEOREM I: If F and G are complementary polar conical sets in the real space R", and if
FINK'# ¢, G'N (—K")'# ¢, then F and G possess orthogonal solutions UeK, Ve — KP.

This follows immediately from the following
LEMMA: If G'N (—KP)!# ¢, then —DeCNK holds for every direction of infinity D of F=P+ C.
ProoF: By (3), the plane H={X | D’X=0} is a supporting plane of G. Since G'N (—K?)! # ¢
by hypothesis and H D G N (—K?) by (4), we have H N G' # ¢ and H N (—K?)! # ¢. Any supporting
plane of a convex set S which meets the relative interior S’ must contain S. Hence H DG and
HD —K?. In view of (1.iii) we have HDOG— Q= C?. This is equivalent to —DeC. — DeK follows
from H=—HDJK». -

Theorem P for the real space R" also follows from Theorem S. Indeed, if C and K are polyhedral
cones, they have a finite number of generators, as have C” and — K”. But then so have € (CU{—D}),
¢ (KU{—D}), €(CPU{—E}), €(—KrU{—E}), which are therefore again polyhedral cones
and therefore closed, no matter what D and E are selected.

3. Uniqueness

Let us briefly examine the uniqueness of orthogonal solutions U, V, however only in the
case K=—K?= Rg. If there exists an index i such that u;=v;= 0, we say that U and V" have a com-
mon zero. In the case of manifolds, there is a known result:

THEOREM U:  Orthogonal solutions with a common zero exist if and only if the orthogonal solutions
are not unique.

The “only if”” part of Theorem U is commonly deduced from the following statement:

THEOREM V: [If complementary orthogonal manifolds M, N possess orthogonal solutions at all,
then they possess orthogonal solutions without a common zero.

The analogous statements for complementary polar conical sets do not hold. Consider for
example the following polyhedral conical sets:

F:= ;C/ SOARGY == B dre A ass L =gy s S
z

G:.= ’; FAFIT S Gl =GR ARGy AR 2 22 Py 9= r 08 22 B frc
z

The above two sets are complementary polar, with P=Q = (3, 3, 1)7. The orthogonal solutions are

o = ¢ e
V={0],U=A[1]|4+u|2],\, u=0, \+tu=1.
2 It will become apparent from the proof of Theorem S, that it suffices to require that there exists at least one stable direction in the relative interior of the cone of
directions of infinity.
4 The horizontal bar at the end of a paragraph marks termination of a proof.
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They are not unique in spite of the absence of common zeros. Thus the “if” part of Theorem U
is not valid for complementary polar conical sets.
As a counterexample for Theorem V consider the conical sets:

o

Here F N R¢ and G N Ry are the nonnegative parts of the z axis and the y axis, respectively. Hence
x=0 for all UeF N R and VeG N Ry. Note that in this example the existence of orthogonal solutions
cannot be inferred from Theorem S.

Lydss ERYIT L CaCr=bc K=~ Ki=Rp.

4. Proofs

We proceed to prove Theorem P. The proof of Theorem S will then be based on Theorem P.

Proof oF THEOREM P: Let UeK, Ve—KP? be vectors in F, G respectively. By the definition of
the polar (U—P)T(V—Q) < 0 as well as UTV = 0. Thus

UV —(U—P)T(V—Q)=U"Q+PTV—PTQ =0 (6)
for UeF N K and VeG N (—K?), and
UTQ+PTV—PTQ=0
is necessary and sufficient for U"V'=0 and (U—P)T(V—Q) =0 to hold simultaneously. The

existence of a pair of orthogonal solutions U and V is therefore equivalent to the following linear
program having an optimal value of zero:

Minimize UTQ+PTV —PTQ over U, V subject to (7)
UeP+ C, UeK
VeQ+ C?, Ve—KP".

Program (7) is separable: The pair U, V' is an optimal solution of (7) if and only if U and V are
optimal solutions of the following two programs respectively:

Minimize UTQ over U subject to (8)
UeP+ C, UekK,

and
Minimize P*V—PTQ over V subject to
VeQ+ C?, Ve—K". 9)

By hypothesis, C and K are polyhedral cones
C={S|A"S< 0}, K={BZ|Z =0}
CP={AT|T=0}, —Kr={W|B™W = 0}.

One has U=BZ=P+S with Z=0, A’S<0, and V=Q+ AT with T =0, BTV =0. In terms of
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Z and T the programs (8) and (9) thus reduce to
Minimize Z" B Q with Z subject to
—ATBZ =—A"P (10)
Z=0.
Maximize —P AT with T subject to
—B"AT < B"TQ (11)
T=0.

The programs (10) and (11) are clearly duals of each other. The duality theorem of linear
programming then gives Z"B"Q=— PTAT or

UTQ+ PV —PTQ=0,

as UT'=Z"TB" and AT=V —(Q, for optimal solutions Z and T of programs (10) and (11), respectively.
The existence of optimal solutions follows from the hypothesis, that F and G meet K and — K?,
respectively, and that therefore feasible solutions to both programs exist. —

Proor oF THEOREM S: Let Dy be the set of all directions of infinity of /=P + C, and similarly
let D¢; be the set of all directions of infinity of G=(Q + C?. Plainly, Dy and D are closed convex
cones. Moreover, by the stability hypothesis of Theorem S,

the four cones (12)
(g(C U _DI-) :C_DF:C+LF, L/«': :of(D].) = l)ﬁ'_l)]<',
€(CPU—D¢)=CP—Dg=CP+Lg, Lc:=%(D¢)=D¢—Deg,

%(K U _Dp) :K_DF:K+LIv‘,
(g(—K" U -D(;) :—K"—D(;:_K1'+ L(,-
are closed.

To see, for instance that C+ Ly is closed, let Dy be any point in the relative interior D! of Dp.
Then €(Dr U {—Dy})=Lr and therefore C+Lr=%(C U {—Dy,}). The latter cone is closed
since Dy is stable by hypothesis. —

Next we show that without loss of generality, we may assume that

CNKDLprand CP N (—K?) D Lg. (13)

To prove this we shall use on several occasions the following simple lemma whose verification is
left to the reader:

Let L be a linear manifold in R®, and let A and B be any sets in R". Then A C L implies
A+BNL)=(A+B)NL. (14)

We return to proving that (13) constitutes no restriction of generality. Suppose the pairs of
cones C, C? and K,— K? do not satisfy (13). Then we consider the following modified pairs

C:=(C+Lp)NLy, Cr:=(CP+Le) N L.
K:=(K+Lr) N Ly, —Kr:=(=KP+Lc) N L.

The (closed) cones € and C? are indeed polars of each other, as are K and K?, since by (5), we have
L[-QL?% and L(;QL#, (15)
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and (14) then gives
C=(CNL{) + Ly,
K=(KNLg) +Lp.
Polarizing these equations yields in view of (12)
Cr=(CP+Le)NLE= (CP+ L) NLE
Kr=(Kr+L¢) NLE= (KP+ Lg) NLE,
and finally

—Kr=(—K?—L¢)N — (L) = (—KP+ L) N L.

Next we verify that C, C? and K, A—IA(I' indfzedA satisfy (13). To this end we denote by Cr, Cq
the cones of directions of infinity of F:=P-+C, G:=(Q+ C? with respect to K, —K?”. Let then

DeCrcCnNK. As C+Lp= C—Cp, since Ly=Cp—Cp and CrCC, we have D=D,— D, where
D.eC and DweCp. Similarly, D=D;— D, where DseK and DiCr. We claim D, + D,eCr. Indeed,
(D1 +D3)TQ= (D+ Dy +Dy)"Q=D"Q+DIQ+DiQ=0; D,+DseC as D:eC, DiCrCC; D,+ D,
=D, + D;eK as D:eCr CK, DseK. Clearly, D;+ DseCp. Thus D= (D, + D,) — (Ds+ D4)eCr— Cr=L;

This proves CrCLp. Now Ly CCN Kby the definitions of C and K, and in view of Ly CL¢ (15).
Moreover, ﬁ"Q=O for every Tl =05 by (L.iii). Thus, and by an analogous argument for G,

Cﬁ':LF (Llld é(,':L(,'. (16)

This clearly implies (13) for C and K. Moreover it shows that € (CU{—D})=C, % (CrU{—E})=C»
for all DeCy and EeCy. In other words, all directions in infinity of F', G are stable (the reader should
recall at this point, that the construction of F, G did require that the original sets F, G had only
stable directions of infinity).

By (4),
FNKCLE and GN (—KP) CLE. 17)
Since Pel by (1.iii), application of (14) yields
F=P+C=P+ (C+Ly)NL{=(P+C+Ls)NLL.

Hence,

FNK=P+C+Ly) N (K+Ly) NLEDFNKNLE
By (17), and an analogous argument for G,

FNKDFNKandGN (—Kr) DG N (—K»). (18)
This shows that if F', G meet K, — K?, respectively, then F, G meet K, —K».

__Altogether, we have seen that if F, G, K satisfy the hypotheses of Theorem S, then so do
F, G, K. It remains to be shown that if F, G possess orthogonal solutions UeK, Ve—KP, then orthog-
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onal solutions UeK, Ve—K» of F, G can be derived from them. As UeF =P +C—C;,=F —Cy,
there exist U,elF’, D,eC; such that UZUI—DI. As 06[2, there exist U,eK and D.eC; such that
U=U,—D,. Then U.=U,+D,=U,+ D, belongs to F N K. Similarly, there exist VeG, V.e—K”
and E,, E;eC; such that V:=V+E,=V,+E G N (—KP). U and V satisfy the orthogonality
conditions in view of (4) and (5). Hence they are orthogonal solutions of F, G with respect to K.
If therefore Theorem S holds for cones satisfying (13), then it holds in general.

Consider now a pair of complementary polar conical sets F=P+C and G=0Q +C? with the
cones C and K satisfying (13). Moreover, we suppose that F N K # ¢ and G N —K? # ¢. Then we
approximate C and K by increasing sequences of polyhedral cones C*) and K%,

CHCC®c...clC=UCWw

(19)
K1) - K@) cC ... g[{: UK(A‘)’
such that for k=1,2, . . . and F®®:=P+C®),
F® N KK g, (20)
and
L CCH® CLy, Ly CK® C L. (21)

We construct such a sequence of cones C*) from a sequence {X®)},_; » . . of points everywhere

dense in C. Since F' N K # ¢, we may assume that X(' 4+ Pel' U K and put
Ch.=g{Xv, . . X®}4+Lp

Both €{X®), . . ., X%} and Lp are polyhedral cones, and the sum of two polyhedral cones is
again polyhedral. Sequence K® is formed similarly. C’®¥ N K®&)C € N K C L by (4). Thus (21)
is satisfied.

The sequences of the polar cones C%? and — K®r are decreasing sequences which approxi-
mate C? and — K7, respectively,

C(l)p 2 C(‘.’.)p Q T 2 C[): N Ci/{)p
(22)
— KMp Q — K(@2)p ;) L. Q —Kr=nN —K(l\‘)p’

and satisfy for k=1, 2, . . . and G*:=Q+CWp,

GCH N (—K®p) # 6 (23)
and

LeC CWPC LE and La C —KWr C L. (24)
Indeed if XeC, then there exists a sequence {X")},_; » . . . such that X("NeC® and X(H) — X,

For every Ye N C*r and all £ we have therefore Y”X() < 0. Hence Y”X <0 for all XeC, which
proves YeC?. The inclusion C? C N C%)? is trivial. The same argument gives —K»’= N — K"»,
The properties (23) and (24) follow immediately from G*) D G, —K"*» D —K», and L}y C C*),
— K" C L{ from polarizing (21).

In what follows, we will replace sequences (19), and thereby sequences (22), repeatedly by
suitable subsequences. The terms “sequences (19)” and “‘sequences (22)” will always refer to the
current, and not to the original specimens. Sintlarly, C*), K(*) will be the kth elements of the
sequences (19) as they stand after modifications, and U*)eK®) (k)¢ — K(k)» will always be orthog-
onal solutions of F(F) =P+ CH) GH =)+ CH»r Such orthogonal solutions exist by Theorem P.
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The orthogonal solutions U*), F'(¥) are in general not uniquely determined. They can be modi-
fied by adding arbitrary directions Del, EeL respectively. Indeed Delr, Eel are directions of
infinity of F®), G with respect to K(*), and we have seen that adding such multiples leads to'new

orthogonal solutions. Now let D, . . ., Ds be a basis of Ly. Then there exist multipliers a; such
that U®): = U™ —3 o;Dielp. It follows that without restriction of generality, we may assume
UMeL} and VPeL{. (25)

Now either sequences (19) can be replaced by subsequences such that the limits

U=lim U®), V=1im V'®)

exist, or | |[U®||—= o or || V®)||— oo,

Assume that | |[U®||— . If sequences (19) are replaced by a suitable subsequence, then
the sequence {U®/||U®||}x-1,2, . . . converges towards a direction D, ||D||=1. We have
oy S R )

D=l Trgm=p11 ~ ™ o
As C and K are closed by hypothesis,
DeKNC. (26)

Select any point UeF(VN K. Then UeF®NK®, and since U¥) is an optimal solution of program
(8) over F'®) NK(*) we have

UWTQ < UQ for all k.

In other words, the sequence {U®TQ}i=1, » is bounded above, whence

.....

Ut k}'l'Q

DTQ=1i
¢=lim gy

<0. (27)
Select any point VeG N (—K»). Then D'V =0 as DeK and Ve—K?> and D" (V—Q) <0 as DeC
and V' —QeC?. Hence D7Q = 0. Together with (27), this gives

DTQ=0.
In other words, D is a direction of infinity of F', and

DEL F

by (13). On the other hand, DeL} by (25). Thus D=0, which contradicts ||D|]=1. Therefore
||U®||— o cannot hold.
Assume then | |V®)| | — . For suitable subsequences of sequences (23),

() — (k)
ittt (SO EE N Ao lROl PR B S

“=lmpe o v

and || E ||=1. Select any point ¥eG N (—K”). Then VeG) N (—K®r) as sequences (22) are
decreasing. Since V'®) is an optimal solution of program (9),

PTY (k) < PTI7for all k,
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and therefore

Py
TEF =1 =
PTE =lim 7| < 0.

It then follows as before that E€L, contradicting ||E||=1 and EeL}.

We may therefore assume that limits U, V' exist. UeF N K and VeG N (—KP?), as C and K are
closed. URTY R = (k) — P)T(V k) —(Q) =0 for all £ by orthogonality, and this carries over to
U and V. The latter are therefore orthogonal solutions of F' and G. This completes the proof of
Theorem S.

5. Fenchel Duality

Fenchel [2, 3] considers the following pair of dual programs

Minimize f(X) —g(X)

Maximize g¢(Y) —fc(Y). (28)

Here f is a convex function f|[R"— R U {+»} and g is a concave function g|R*— R U {—x}. It
is convenient to consider f and g as defined everywhere on R” and to admit infinite function values.
The obvious interpretation is used, whenever infinite values occur in the convexity (concavity)
conditions:

FOMX 1+ NX) < M f(Xy) HAf(X2)
gNX 1+ AX2) = Ng(Xy) +Ag(Xs)

for all Ay, A2 = 0 with A\; + A2= 1. The following “domains of finiteness”
K(f) :={XeR"|f(X) <+x}, K(g) :={XeR"|g(X) >— =}

are convex under these circumstances.
The function f¢ is the “convex conjugate” of f, and the function g¢ the “concave conjugate”
of g. They are defined by

Je(¥) :=sup (YIX—f(X)), g°(Y) :=i§1f{Y"X—g(X)}-

From this definition,
FAYY =YX —fX); g2 (Y) = YFX —a(X)
and therefore

FX)=8(X) = g(Y)—1°(¥)
for arbitrary X, YeR". In other words,

inf (f(X) ~g(X)) = sup (g°(¥) —f*(Y)).

The question examined by Daulity Theory is under which circumstances inf=sup, or stronger,
min= max. The conditions

K(f) N K(g) # ¢ and K(f°) N K(g°) # ¢ (29)

are obviously necessary for min=max to hold. Another, in general necessary, condition is that

the functions
f and g are “closed”, (30)
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that is, lower semicontinuous convex and upper semicontinuous concave, respectively. In this
case, fcc=f and g¢c=g.

Except for polyhedral functions, hypotheses (29) and (30) are not sufficient for min= max,
not even for inf=sup to hold. So-called “duality gaps” may occur, as first communicated by Stoer
in a letter to Karlin. The stronger hypotheses,

K(f)INK(g)'# ¢ and K(f<)! N K(g°)! # 9, (31)

together with (30) ensure min= max in the general case. Rockafellar [5] and Stoer[6, 7] investigated
“stability” hypotheses weaker than (31) but stronger than (29), for which min = max or inf = sup
obtains.

This situation is analogous to the one examined in this paper: Theorem P holds for polyhedral

cones but not in general. Theorem I holds in general but is too weak to yield Theorem P in the special
case of polyhedral cones. Theorem S finally gives a general result subject to stability conditions.
One is therefore lead to expect a relationship between Fenchel’s Duality theorem and Theorem S.
We proceed to show that they are in fact equivalent. More precisely, we prove:
THEOREM E: ForeachtripleF =P + C,G = Q + C?, K, where C, K are arbitrary closed cones and
P, Q arbitrary points, there exist closed functions f and g, convex and concave respectively, such
that ¥, G have orthogonal solutions UeK, Ve — K" if and only if min= max for the corresponding
programs (28), and vice versa, for each pair of such closed functions f, g there exists a triple ¥, G, K
such that again equivalence holds between the statement min = max and the existence of orthogonal
solutions.

Proor: Given a triple (F=P+C, G=0Q+C», K), define

Q7X for XeK

o otherwise

0 for XeP+C

— o otherwise.

o0 =

Then £ :_{

0 for YeQ + K»

o otherwise.

fe(¥) =sup (YTX—f(X)) = sup (Y—Q)"'X={
Putting Z : =X —P, one has similarly

g¢(Y)=inf (Y’X—g(X))= inf Y?X=Y"P+inf Y7Z,
X XeP+C

ZeC
and therefore

VA Ka—{Gj

— o otherwise.

er(n) =]
Programs (28) then become
Minimize Q"X with X subject to
Xe(P+C) N K
Maximize Y"P with Y subject to
Ye(Q+K?) N (—CP)
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Substituting U : = X, V : = Q — Y, and transforming the maximization program into a minimization
program yields programs (8) and (9), and it has been shown that the existence of orthogonal solu-
tions is equivalent to min+ min= 0 for these programs.

In order to prove the converse direction, we transform the minimization program (28) into

Minimize z,— z, with z,, z», X subject to (32)
z1 = (X)), z, < g(X).

Introducing the cones

X i
Cr:=%|| z ||z=f(X)
1 J
r/X =
Cy:=%|| 2z |lzseX) |,
L |
and the linear subspace
X
21
A R P D
: X , Z2€R, )
22
L()
we formulate program
Minimize z,— z» subject to (33)

X, il
2z
tl ~ ~
X
22
ts

Ak | (34)

-_—_0 O - O O

We proceed to prove, that
programs (32) and (33) are equivalent. (35)
We have to show, that if (z;, z2, X) is a feasible solution of (32), then (¢, =1, ta=1, z1, z2, X, =X,

X>,=X) is a feasible solution of (33), and vice versa.
For an auxiliary argument, consider any closed convex set K in R%, and the convex cone

H(K) :=% {(T)‘ WGK}

Then H(K) is not necessarily closed. However, H(K) .and H(K) differ only in points <W> with
w
w= 0. Indeed, let
W (n) 174
2
( w™ ) <W>

be a convergent sequence of nonzero elements of H(K), i.e., W®WwmWeK. If w > 0, then
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W ww — WlweK as K is closed. But then ( W) e€H(K). Thus only if w=0 may (Z) be in

w
H(K) but not in H(K).
As the functions f and g are closed, so are the convex sets

(2 mrct () e en )

The above argument can therefore be employed to show that

(G €3 N T AC X )R T,

where T denotes the plane characterized by ¢, = t; = 1. In the expression (34) for the feasible
region of (33), one can then replace (C; X Cy) by (C; X Cy) NT, (C; X Cy) NT and (CyX Cy)
successively, without changing the set. It is then plain that the points in (34) correspond to the

feasible solutions of (32).

Program (33) is of type (8).

The product C;X C,, plays the role of K, and the linear subspace L plays the role of C. Furthermore

[

I
SH= = e =)
~
Il
— oo ~o o

We have to show, that the corresponding program (9),

Minimize w; + w» subject to

Y] 0

S1 1

wy |e— (C;xCy)r N 0 |+L+
Y, 0

S2 —1

w» 0

S —

is indeed equivalent to the maximization program (28). To this end, we note that
Bq
0

w, ||wi, we€R, YeR?"
Y2

LL

L w2_J

All feasible solutions of program (36) are therefore necessarily of the form
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These points must moreover belong to — (C;X Cy)r. As (C;X Cy)?=(C;XCy)r=(C; X C,)P.
all feasible solutions are characterized by

—Y'X+z,+w; =0 and Y'X — 2z, +ws = 0 whenever z, = f(X) and z: < g(X),
in addition to being of the form (37). These conditions are clearly equivalent to

—Y'X+f(X) +w;, =0 for all XeR"
and

Y'X —g(X) + w2 = 0 for all XeR™",
respectively. These in turn are equivalent to

wy = f<(Y) and w, = —ge(Y).
Hence program (36) becomes
Minimize f<(Y) —gc¢(Y)
or
Maximize g¢(Y) —fc (Y),

which was to be shown. —
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