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On Some Indefinite Integrals of
Confluent Hypergeometric Functions®
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Analytical expressions and reduction formulas are developed for various indefinite integrals of the
confluent hypergeometric functions. These integrals are of the type [ f(a. b. z)z’e“*dz, where fis one
of the two Kummer functions M(a. b, z) = F,(a; b; z) or U(a, b, z), with real or complex a, b. zand «,
and real p.
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1. Introduction

Multiple integrals occur in many physical problems in the form where one of the integrations
results in a higher mathematical function. Thus one is often faced with the task of evaluating in-
tegrals involving higher functions. Whereas there exists a large body of literature for integrals with
limits (0, ) and (— %, ), there are considerably fewer sources pertaining to indefinite integrals. This
latter type is important, for example, in statistical mechanics for the integration of a distribution
over a finite portion of velocity or momentum space and in electromagnetic theory for the integra-
tion over a finite charge configuration. We note the appearance of only one major monograph with
emphasis on indefinite and finite integrals of higher functions, that of Y. L. Luke [1]' on Integrals
of Bessel Functions. This monograph covers a much wider range of material than its title suggests.

In this note we investigate some indefinite integrals involving confluent hypergeometric func-
tions of the type [ f(a. b.z)z"e“*dz, where fis one of the two Kummer functions M (a. b, z) =F(a;
b; z) or U(a, b, z). Several recent applications of these integrals to studies on molecular electronic
energies [2, 3] have been made.

It is well known that the confluent hypergeometric functions contain many other higher func-
tions as special cases. For the definitions and an extensive analysis of the properties of these
functions, the reader is referred to the Handbook of Mathematical Functions [4] and the work by
Slater [5].

We define the integrals to be considered in this note as follows: *

M,(e; a, b, z) EfM(a, b, z)zPe*?dz, (1a)
Up(a; a, b, z) EfU((t, b, z)zPe*?dz, (1b)
and the special cases
D,(a, b,z) =M,(0; a, b, z), (2a)
Va.(a, b,z) =U,(0; a, b, 2). (2b)

*An invited paper. This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under
Contract NAS7-100, sponsored by the National Aeronautics and Space Administration. Acknowledgment is made to Dr. M. Saffren for helpful discussions.
Y

resent address: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif. 91103.
£

! Figures in brackets indicate the literature references at the end of this paper.

* Throughout this paper we omit the constant for all indefinite integrals.
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Here a, b, z, and a may be real or complex, p is real and n is a positive integer or 0. In section 2
we discuss the function @, and in section 3 the function ¥, showing how both of these functions
can be reduced to simple linear combinations of elementary functions and various hypergeometric
functions. In section 4 we consider eq (1) with «=0, and we conclude in section 5 with a brief
discussion of the general integrals M, («; a, b, z) and U,(«; a, b, z) of eq (1), relating them to some
recent work by Babister [6]. In an appendix we specialize the parameters in M,(a; a, b, z) and
U,(a; a, b, z) to the Bessel function case, b= 2a, and, using the results of sections 4 and 5, display
several interesting indefinite integrals for the Bessel functions.

2. Analysis of ®,(a, b, z)

In this section we analyze the function ®,(a, b, z) and show its reduction to elementary
functions or to linear combinations of various hypergeometric functions. We use the following well
known properties of the M(a, b, z) [4, 5]

(A+a—b)M(a, b, z) —aM(a+1, b, z) + (b—1)M(a, b—1, z) =0, 3)
bM(a, b,z) —bM(a—1,b,z)—zM(a, b+1, z) =0, (4)
< M(a. b, )=2M(a+1, b+1 2): 5)

dz 9 BZ b L i 2

and their equivalent integrated expressions (see footnote 2)

(1+a—0b)dy(a, b, z) —a®,(a+1,b,2z)+ (b—1)Dy(a, b—1, z) =0, (3a)
b, (a, b, z) —b®P,(a—1, b, z) —Pp11(a, b+1, 2) =0, (4a)
Z”M(a, b, Z) _nq)n—l(a, bg Z) :%cbll(a_'_ 17 b+ 17 Z)v (5&)

M(a, b,z):%cbo(a-i—l, b+1,z). (5b)

Equations (5a) and (5b) are obtained by integrating eq (5) by parts. We also note the useful
expressions

M(0,b,z)=1, 6)

Z)l+1

n+1

(Dn(o, b, Z) = (63.)

Four different cases arise dependent on whether a is equal or unequal to an integer and b is
equal or unequal to an integer.

(i) a # integer, b # integer

Use of eq (5a) with a replaced by a—1 and b replaced by b —1 yields the reduction formula

b= g (a—1,b-1,2). @

b, (a, b, z)= (b—i; z22"M(a—+1,b—1,z)—n (a=1)

(@=

Repeated application of eq (7) generates ®,(a, b, z) as a linear combination of terms
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2 "M(a—n'—1, b—n'—1, z), with n’ ranging from 0 to n—1, plus the lowest order term,
®y(a—n, b—n, z), which is given by eq (5b).

(ii) a # integer, b=integer > 0

We first note that the integral, as well as M (a, b, z), is undefined for b=—m. For b # 1 we can
replace (b—1)®d, (a—1, b—1, z) in eq (7) by its equivalent from eq (3a) with a replaced by a— 1
and n replaced by n—1, to vield a reduction formula analogous to eq (7)

(a—b)
(@=1)

@u(a. b, 2) == M (=1, b1, 2) —n®y_s(a, b, 2) +n

(a—1) ®,_1(a—1,b,z). (8)

Repeated application of eq (8) generates for @, a linear combination of M’s plus the lowest order
terms ®y(a’, b', z) which we obtain from eq (5b). For the case 6=1 we see that eq (8) is still valid
if we recognize from eqs (3) and (4) that

IT;LIP b—1)M(a—1,b6—1,2z)=(a—1)zM(a, 2, z). 9)

Substituting eq (9) into eq (8), we have the reduction formula
®dy(a, 1, z) =z"*""M(a, 2, z) —n[Pn-i(a, 1, 2) —Py_1(a—1, 1, 2)], (10)
with the lowest order term being given by
by(a, 1, z) =zM(a, 2, z). (11)

One can easily show by mathematical induction that the general result for the case =1 is

n 1
Du(a, 1, z) =z"*1 Y (—1)"'(,2) mM(a, m+2, z) (12)

m=0
which holds equally well when «a is an integer.

(iii) @ = integer, b # integer

For a>n+1, eq (7) can be used to reduce ®,(a, b, z) to a series of M’s plus the lowest order
term ®y(a—n, b—n, z) given by eq (5b). For a=n+1 and a=n > 0, repeated application of eq (7)
again reduces ®, to a series of M’s plus the lowest order terms ®o(1,b—n,z) and®,(1,b—n+1, 2)
respectively. These are related through eq (4a) with a=1 and n=0 and eq (6a) by

®,(1,b—n+1,z)=(b—n) [®e(1, b—n, z) —z]. (13)
The primitive function ®y(1, &', z), not reducible any further, can be written [1, p. 5]
Do(1, b, z2) =2z2F>(1, 1; 2, b'; 2). (14)

For the special case where b’ is an integer, the »F» function can be reduced to incomplete gamma
functions and exponential integrals as will be seen in case (iv). The condition n > a > 0 is easily
handled by repeated use of eq (4a) with n replaced by n—1 and b replaced by 6—1

d,(a, b,z)=(b—1) [Pur-1(a, b—1,2) —Py_1(a—1,5—1,2)], (15)

until the reduction generates either of the lowest order terms @, (0, b, z) given by eq (6a), Py(a’# 1,
b', z) of eq (5b), or Py(1, b', z), the primitive given in eq (14). Lastly, for the casea=—m,m=0, 1,
2, ..., since M(—m, b, z) is a polynomial of m+ 1 terms we can either employ eq (5a) backwards
until we arrive at ®,,.,(0, b+ m, z), given by eq (6a), or directly integrate to obtain
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i m b : m zn+k+l
®u(=m 6.2 = 8 <04 (}) ey el

=0
where

(0) k=T (b+k)/T'(b).

(iv) a= integer, b= integer > 0.

With a = b, repeated use of eq (4) generates

M(b+m, b, z)=e 3 (’”) 7 a7)
k=0 k) (b) &
since
M(b, b, z) =e?, (18)

which holds even when b # integer. Integration of eq (17) obviously yields

m 1
&, (b+m, b, z) = (’") —fzwezdz. (19)
z L) o

For the case b > a > 0, we have from eq (3a) with 6= a + m, the recursion relation

(1—m)®,(a, a+m, z)=a®,(a+1,a+m, z) —(a+m—1)D,(a, a+m—1, z). (20)

Equation (20) is repeatedly applied until the right hand side contains only terms of the formb=a+1.
Using eq (4a) with b replaced by @ and n replaced by n — 1, we have the reduction formula

®,(a,a+1,z)=a f 2" 'e*dz—a®y_1(a—1, a, z). (21)

The reduction by eq (21) is continued, generating a series of terms [z¥e?dz plus the lowest order
term. If a < n, the lowest order term is ®,_,(0, 1, z), which is given by eq (6a). Witha=n+1,
the lowest order term is

®(1, 2, 2) =f (e —1) %, (22)

or equivalently
I, O ) (23a)
I = = Bzl (23b)

where E; and Ei are the exponential integrals [4, Chap. 5|. Finally, if @ > n+1, the lowest order
term is ®y(a—n, a—n—+1, z). Using eq (5b), we can express this interms of M(a—n—1, a—n, z).
Since

!
M(n, n+l,—x)=%;— [1—e*en_1(x)], (24)
n xk
where e, (x) = E 773 we have
= k!

)(a—n—2)!

za—n—l

Dy(a—n, a—n+1, z) = (—1)a-n-1 {a—n [1—e?eq_n_s(—2)]. (25)
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We note that since
v(a, x)=a"'xe *M(1,1+a, x)=a 'x"M(a, 1+a, —x), (26)

where y(a, x) is the incomplete gamma function [7], the ®y(1, ', z) of eq (14) can alternatively
be written as

Dy(1, b, )—(b'—l)J’ (" =1l A= (27)
whereas ®(a, 1 +a, —x) can be expressed as
dy(a, 1+a,—x) =a f v(a, x)x “dx, (28a)
For a # 1, this reduces to
Do(a, a+1, —x) = lfa [x'*y(a, x) +e*]. (28b)

For a=1, eq. (28a) reduces to eq. (23b), and with a=integer > 1, eq (28b) reduces to eq (25).
The last case to be considered in this section is b > a where b > 0 and a=—m. This case is
immediately obtainable from eq. (16) since that equation obviously holds for b= integer > 0.

3. Analysis of ¥V, (a, b, z)

Analogous to the results of section 2, the function W, (a, b, z) can be reduced to elementary
functions or to linear combinations of various hypergeometric functions. Here, too, four different
cases, a equal or unequal to an integer and b equal or unequal to an integer, must be considered
for the complete reduction of W,. We commence the analysis with the definition of U(a, b, z) [5]

Clanoaalis s wb[1‘(1%2’—135)21)‘(1))_"'""M(lr(::)_? Eb)b Z)]’ (29)
and the well known properties [4, 5]

U(a, b, 2) —aU(a+1, b, 2) —U(a, b—1, z) =0, (30)
(b—a)U(a, b, z) + Ula—1, b, z) —2U(a, b+1, z) =0, (31)
LU0 b2y =—al(a+1,5+1, 2). (32)

We also note the integrated form of eqs (30)—(32)?2
T (a, b, 2) —a¥ylat 1 b, 2) = Tala, b1, 2) =0, (30a)
o e e B Jo G (i g (31a)
2U(a, b, 2) —n¥n_1(a, b, 2) =—a¥u(a+1, b+1, 2), (32a)
U(a, b, z) =—a¥o(a+1, b+1, 2). (32b)

Equation (32b) is simply obtained from eq (32a) by setting n=0. Other properties of the U(a, b, z)
used in this analysis are

U, b, z)=1, (33)

(0, b, z) =z""/(n+1), (33a)
U(a,a+1, z)=2z19, (34)
U(a,1—n, z)=z"U(a+n, 1+n, z), (35)
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the last equation being a special case of Kummer’s transformation. One final property of the
U(a, b, z), as opposed to the M (a, b, z), is that they are defined for all values of a and b.

(i) a # integer, b # integer

Using eq (32a) with a replaced by ¢ —1 and b replaced by 6 —1, we have

1
(1—a)

Ya(a, b, z)= [z°U(a—1,b—1,2) —n¥, 1(a—1,b—1, 2)]. (36)

Repeated use of eq (36) reduces V¥, to a series of terms z" *'U(a—n'—1,b—n"—1, z) plus the
lowest order term, which by eq (32b) is given by

Yo(a', b, z)= U —1,b'—1,2), (37)

_1
(1—a’)
or equivalently, from eq (30) with a replaced by a —1

Vo(a', b’,z)=ﬁU(a’—1, b, z)+U(a', b, 2). - (39)

(ii) a # integer, b= integer

For b = 1, if we replace both terms on the right hand side of eq (36) by their equivalents from
eq (30) and (30a) with a replaced by a—1, then we have the reduction formula for ¥,

V,(a, b, z) =[z{U(a—1, b, z) + (1—a)U(a, b, z) }
—n{¥u1(a—1,b,2)+(1—a)¥ui(a, b, 2)}]; (39)

the lowest order term is given by eq (38). If b < 0, we use the integrated form of Kummer’s trans-
formation, eq (35), to yield

V.(a,—m, z) =Vyimi1(a+m+1, m+2, z), (40)
which can obviously be handled by means of eqs (39) and (38) above.

(ili) a=integer, b # integer

If a=—m, m=0, 1, 2, . . ., then from eq (31a) with a=—m+1, we have the recursion
relation

Voul—m, b,2)=VYpu(—m+1,b+1,2) —(b+m—1)¥u(—m—+1, b, z), (41)

which reduces to W,/ (0, b', z) of eq (33a) upon repeated usage. An alternative approach is to note
that since

U(=m,b,z)=(—1)"m ! LE-V(z), (42)

where L{§)(z) is the associated Laguerre function [4, chap. 22], direct integration yields

" <m+b—1> (—1)k  gnek+ -

— =(—1)mm! .
Fulm, b= CUEmE Xk )R arErD
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For a > 0, three distinct situations arise. If @ >n+1, use of eq (36) reduces W, (a, b, z) to
a series of U’s plus the lowest order term Wy(a—n, b—n, z) given by eq (37) as in case (i) above.
Witha=nora =n+1, repeated application of eq (36) reduces V¥, to a series of U’s plus the low-
est order terms Wo(1, b—n, z) and V(1, b—n+1, z) respectively. These are related through
eq (3la) with n=0 and a=1 by

Wi(1, 6" +1,z)=z+(b'—1)W¥(1, b, z). (44)

Furthermore, from the definition of U(a, b, z), eq (29), witha=1, we see that

JLP()(I b _1) Jb, CD()(]. b Z) (4‘5)

®'=1)

where the first term in eq (45) is an incomplete gamma function and the second term is precisely
the primitive function discussed in section 2, eq (14). We remark that for the case b =integer,
eq (45) reduces to powers, logarithms and the exponential integral as will be seen in (iv) below.
Finally, for a <n, use of eq (31a) with n replaced by n—1 and b replaced by 6—1 leads to the
reduction formula

Y.(a, b,z2)=(b—a—1)¥Vy_1(a,b—1,2)+¥V,—1(a—1, b—1, z). (46)

Continued application of eq (46) results in the lowest order terms W, (0, b, z) given by eq (33a)
and W, (n', b', z), the case a=n discussed above.

(iv) a= integer, b= integer

Corresponding to eq (26) for the representation of the incomplete gamma function, y(a, x),
in terms of M, we have

I'(a, x) =x%*U(1, 1+a,x)=e*U(l —a, 1—a, x). 47)
Therefore for the case a=b=—m, m=0, 1,2, . . ., we have
Y, (—m,—m, z) :fz"ezf(rrl+ 1, z)dz. (48)

Replacing I'(m—+1, z) by its expansion as a truncated exponential and integrating termwise,
we obtain

n+k+1

o Lt
O - Ek. (ntk+1) )

For a=b=+ m, we have a two-step reduction procedure. First, from eq (30a) with a=m and
b=m+ 1 we have

Vy(m+1, m+1, z) :7171_ f z"‘"‘dz—% Y, (m, m, z), (50)

where we have used the integrated form of eq (34) to eliminate ¥, (m, m—+1, z). This reduction
is continued until W, (1, 1, z) is generated. Second, noting that

U, 1, z)=eE(z), (51)
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multiplying by z" and integrating by parts, we obtain the reduction formula

Wil k0, 2) = ehetl (2) +z—’:—an,,_.(1, 1. 2). (52)

Equation (52) is applied n times until W, (1, 1, z) is generated which, by integration of eq (51), is
obviously given by

Y(1, 1, z) =In z+e*E,(2). (53)

This same result is obtained from eq (47) with a chosen as 1—m and the replacement under the
integral sign of I'(1—m, x) by x'"""E,(x).

For b > a,if a<0, eq (41) is repeatedly applied until a series of terms W,/ (0, b, z) is obtained
which is given by eq (33a). With a > 0, specifically choosing a=m+1land b=m—+m’'+2 in eq
(30a), we have the recursion relation

V,(m+1, m+m'+2,z)=(m+1)V,(m+2, m+m'+2,z) +¥V,(m+1, m+m’'+1, z). (54)

This recursion is repeated until the right-hand side contains only terms with b6=a+1, given by
the integral of eq (34). The general result is then simply

V,(m+1, m+m'+2,z)= 'i ( ) m+k)!fz"""*"”‘dz. (55)

Finally, the case a > b is either treated by the reduction formula eq (41) for @ < 0 until ¥,(0,
b', z) of eq (33) is obtained, or for a > 0, by repeated use of eq (3la) until a=0 or a=b=+m
(considered in eqs (50)—(53) above) is reached. Often one can utilize eq (35) to reduce the parameters
to lower orders before starting the recursions. As a simple example of the case a > b, we present

the result for WV, (4, 2, z)

V,(4,2,z)=V,(3,0, z) (1+2) —z(2+2z)e*E(2)]. (56)

12 [
4. My(0; a, b, z) and U,(0; a, b, z)

Consider first the integral M, (0; a, b, z). When the series for M (a, b, z) is integrated termwise,
we find that

= (a)g 1 T'(p+k+1) F FAREL .
5 — — 4 +tl= ol'9 +1 A +2, b; 9
Mp(0; 0,8, 2)= 3, 5 K IT(p+ k+2) pr1iePtlap 2, - 67
provided that 6#0, —1, —2, . . ., and p#—1, —2, . . . . We note that for p=—m, with
m=1,2, ...,
(U)m 2 ‘
M_n(0; a, b, z) =—— B)mm ';F;(a+1n, 1,1; b+m, 2, 1+m; z)
_m—z (a)"'L 1 1+k—m —(a)’"‘lil
O =D 2 B =1 6B

From the definition for U(a, b, z) in terms of M(a, b, z), eq (29), we have

1
sin 7rb [F(l +a—0b)I'(b)

Uy(0; a, b, z)= M,(0; a, b, z)

1
Cal2—b)

92

Mpi1-(0, 1+a—b, 2—b, z)]. (59)
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Contiguous relations for the generalized hypergeometric functions, ,.F,, are given by Rainville
[8]. From the special cases for r=¢=2, we obtain

aM,(0; a+1, b, z) =z*'"M(a, b, z) — (p+1—a)M,(0; a, b, z), (60)
(b—1)M,(0; a, b—1, z)=z"*"'"M(a, b, z) — (p+2—56)M,(0; a, b, z), (61)
and for the U,(0; a, b, z), from eqs (59), (60), and (61), we have

a(l+a—>b)U,(0; a+1, b, z) =z"*"'U(a, b, z) — (p+1—a)U,(0; a, b, z), (62)
(b—a—1)U,(0; a,b—1, z) =z*'U(a, b, z) — (p+2—56)U,(0; a, b, z). (63)

Finally, by integrating eq (1) by parts, we have the recursion relations
aMy,1(0; a+1, b+1, z) =b[z’*'M(a, b, z) — (p+1)M,0; a, b, z)], (64)
aU,10; a+1,b+1,z)=(p+1)U,0; a, b, z) —z’*'U(a, b, z). (65)
For p=integern, n=0,1,2,. . ., M,(0; a,b,z) = P,(a, b,z) andU,(0;a, b,z) =V,(a,b,z),

the cases discussed in sections 2 and 3 respectively. For p # integer, four cases arise for which the
integrals can be evaluated in terms of elementary functions or in terms of M’s or U’s respectively.
The first case is the trivial one with a=0. We obviously have, by eqgs (6) and (33)

Z/MI

M,(0;0, b, z)=U,(0; 0, b, z) = 2
»( z) »(0:0, b, 2) p+1 (66)
The second case, a=p+2+m, m=0,1,2,. . .,is reduced by repeated use of eqs (60) and (62)
to the lowest order terms a=p+ 2, where
. _—‘Z[“Y’l y
M, (0; p+2,[).z)fp+]ﬂl(p+l.l),z). (67a)
p+1
Up(0; p+2, b, 2) = £ (p+1,b,2), (67b)

e —— A
(p+1)(p+2—0b)

which are directly obtainable from eqs (60) and (62) by setting a=p -+ 1. Thirdly, if b=p+1—m,
then use of eqs (61) and (63) leads to the lowest order terms b= p+ 1, where

z[l+1

M, (0; u,p+l,z):p+lM(u,[H-Z.z), (68a)
U, (0 P AR N 68b
P(’asp+ ’Z)-(p-i-l—a) (aep »Z)v ( )

which we find from eqs (61) and (63) by setting b= p + 2. Lastly, for b—a==integer, use of eqs
(60) and (61) reduces M, to the case a= b for which

ZP+1
MII(O; a, a, Z):mM(p+la p+2a Z), (693)
whereas, if b—a=1, 2, . . ., repeated application of eqs (62) and (63) reduces U, to the case
b=a-+1 for which
Uz (O a, atl, z) Zfz"*"dz. (69b)

We note that if none of the above conditions are satisfied, then use of eqs (60)—(65) will reduce the
integrals to a series of similar integrals with p, a, b in the interval (0, 1). Further analytical reductions
are not available.
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5. The General Integrals M,(a; a, b, z) and Up(a; a, b, z)

Let us consider the differential equation

12 d
Z%Hb—z) d—zy—ay:f(z). (70)

For f(z) =0, we have the well-known confluent hypergeometric equation for which M(a, b, z) and
U(a, b, z) are solutions. Babister [6] defines two nonhomogeneous confluent hypergeometric
functions 6, (a, b; z) and A, ,(a, b; z) which are particular solutions of eq (70) for (i) f(z) =z!
and (ii) f(z) =exp (z)z? ! respectively. He further discusses series expansions, contiguous rela-
tions, recurrence formulas, differential properties and several definite and indefinite integrals
for f and A.

We shall presently express M, and U, in terms of the functions investigated by Babister.
Consider the following special cases of eq (70),

@/ _ ﬂ_ — o—1
zdz2+(b z) g, = exp (pz)z°1, (70a)
and
d?u du
LN e 70b
zdz2+(b z) 7 au=0, (70b)

with particular solutions y=A, ,(a, b; z) and u=M (a, b, z), respectively. Multiplying eq (70a)
by ue=#z’=' and eq (70b) by ye~?z~!, and subtracting, we obtain

i [z”e*z(M(a, b, z)-(é Ap. o(a, b; z) — Ay, o (a, b; 2) dii M(a, b, z))]

dz dz

=P -1gbt0 2 (g, b, z). (71)

Integrating both sides of eq (71) and setting b + o —2=p and p=a+1, we have

My(a; a, b, z) =zle=* [M(a, b, z) _jz Ao+, p—v+2(a, b; z)
d
—Aa+1, popr2(a, b;2) pp M(a, b, Z)]- (72)

From the differential properties of M(a, b, z), eq (5), and A, (a, b; z) [6, p. 135]

% Ap. ola, by 2)=(c—1)Ap o—1(a+1,b+1;2) +pA, o(atl, b+1;2), (73)

we obtain an alternative expression for M,(«a; a, b, z) of eq (72)

My(a; a, b, 2)22”6’2[(a+ L)M(a, b, z)Aat1, p-v+2(a +1, b+1; 2)
+(p—b+1)M(a, b, z)Aa+1,p-b+2(a+1, b+1; z)

~E M@t 1, b+ 1, D) Aar, posa(a. b z>] (14)

Contiguous relations for the A are given by Babister [6, p. 135]. Two interesting special cases of
eq (74) are obtainable, when «=0 and when a=—1 due to the relations [6, p. 134]
AO,O’(aa b» Z)'__e(f(aa b; Z)e (753')

A1, o(a, by z)=e ™ e?*0,(b—a, b, e™z), (75b)
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The first is obtained from eq (74) with a=0 and eq (75b) and gives an expression for the M, (0; a,
b, z) of section 4 in terms of #’s and M’s

M,(0; a, b, z) =z"e"”(b—l”|:M(u, b, 2)0p-p+2(b—a, b+1; ei"z)
—(p—b+1)M(a, b, 2)0p—p+1(b—a, b+1; e"z)

_% M(a+1,b+1,2)0,_ps2(b—a, b, ei"z)]. (76)
Furthermore, from eq (57) and from the following expression [6, p. 121]

“ »(1,0+a; o+1, c+b; 2),

0«7-((1, [); z) — m 2F (77)

we obtain
oFo(p+1,a; p+2,b;z)=M(a, b, z) :Fo(l, p—a+1; p—b+2, p+2; —2z)

p+1 z
par (p=b=r%)

Wl((@, (g 2) (1, =@ 28 jp= {7 8%, joer ok =),

a z

—7 mM(a-i- IOz (I D= 128 D=D 3 S D=2 =) (78)

The second case of interest is obtained from eq (74) with «=—1 and eq (75a), and
is given by [6, p. 131]
My(—1; a, b, z) =z"e‘z[([)—[)+ )M (a, b, z)0p-p+1(at+1, b+1; 2)

—%Jl(u+l.1)+l.z)0nfmz((l«[1;1)]- (19)

M,(—1; a, b, z) can be related to the M,(0; a, b, z) discussed above and in section 4, if we use
Kummer’s relation [4, 5]

e*M(a, b, z)=M(b—a, b, e"z); (80)
thus
My(—1; a, b, z) =e ™W+UM,(0; b—a, b, e7z). (81)
The condition b= a in eq (81) gives

z11+l

p+1

My,(—1; a, a, z)= (82a)

corresponding to the first case considered in section 4, eq (66). The integral of eq (80) in addition
to eq (5b) gives

b—1
at-1—b>
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Cases two and three of section 4, eqs (67a) and (68a), allow for the analytical integration of M, (—1;
a, b, z) when b=a+p+2+m and b=p+1—m for m=0, 1, 2, . . ., and reduce respectively
to the lowest order terms

)+ 1
M,(—1;a,a+p+2,2z) =;]_|_1 e *M(a+1, a+p+2, ;), (82c¢)
1
M,,(—l;a,p+l,z)=p+le*zM(a+1,p+2, z). (82d)

From case four of section 4 we can obtain the integrals M,(—1; =n, b, z) forn=0,1,2, . . ..
Specifically, for n positive we have

(b_n)n 1
(p—b+2)up+1

n—1 g (b_n)k
D

M,(—1;n, b, z) =z"+e? [(-—1)" M(1, p+2, z)

M(n—Fk, b, z)]. (82e)

For n negative, rather than using the reduction formula eq (60), it is simpler to integrate term by
term the finite polynomial M(—n, b, z).
The analysis proceeds in a straight forward manner for the U, («; a, b, z) if we use the definition

of U(a, b, z) in terms of M from eq (29). We then have

— 7T 1 .
U CH [1‘(1 Ta—byr(e) rlee bz

1
_mM“_bH(a;a—b-{-l,Z—b, z)] (83)
We first note that forb=a+1

Uya;a,a+1,z)=M,_(a; 0, 1 —a, 2) ZJZI’*“e“ztlz. (84a)

We also obtain from eq (83) for a =—1 and eqs (26) and (82¢) the case b=a

1
pt+1

Uy(—1;a,a,z)= [z2*11'(1—a, z)+y(p—a+2, 2)]. (84b)
Analogous to eq (82b) we find that by repeated use of eq (31), U,(—1; a’, b', z) is reduced to a
series of terms Uy(—1; a, b, z), given by

Uy(—1;a,b,z)=—e*U(a, b—1, z). (84c)

Corresponding to the cases b=a+p+2+m and b=p—+1—m we have

m 1
Uy(—1;a,at+p+2+m,z)=—2"1le? E (—1)"'(—"1'5—' Ua+1+k,a+p+2+m,z), (84d)
k=0 m—r).

& m!
Up(_].; a, p+1—m’ Z):—zl"‘le*l E

———— Ula+1+k, p+2—m—+k, z). (84e)
“(m—Fk)!

We note that for b==n, care must be taken in the use of eqs (59) and (83). In this instance,
the limiting forms for these equations must be used. For a detailed discussion of this point, the
reader is referred to Erdélyi et al. [9].
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6. Appendix: Reduction to the Bessel Function Case

If b=2a, then M(a, b, z) and U(a, b, z) are related to the modified Bessel functions / and K

M(v-f*%. 2v+1, 2z)=l‘(v+l)2”z“"ez1u(z), (A1)
U(V+2, o, 2z) m-12(22) K, (z). (A2)

Specializi. g the parameters in eq (57) to the case b=2a and substituting from eq (A1), we have
the indefinite integral

zu+l/+1

f A = e )

ze(,LL+V+1 V+ sutv+2, 2V+1;i22), (A3)

2’

in agreement with Luke [1, p. 96]. Equations (67a) and (82c) give special cases of eq (A3) with

p=—3/2 and v=p+ (3/2) whereas eqs (68a) and (82d) give special cases of eq (A3) with u=v=p/2.
Equations (67b) and (84d) of the text give rise to

e 2 p+1
[ =40 aane) de=— VI e UL, 24,20

1/2

:—(—1—}:_1—)5);:_2—) [([)+2—Z)Kp+(:;/2)(2) —ZK1;+(5/2;(Z)], (A4)
j373/"’6’3Kp+(3/2)(z)dz— V2m (2z)"*e*U(p +3, 2p +4, 2z)
Z"1/2872

= p+1)(p+2) [(p+2+2)K,ii2)(2) —2Kpi2(2) ]: (A5)

whereas eqs (68b) and (84e) yield

fz’ K, (2)dz= V' ((22 :)_Vl)z U(v+1/2, 2v+2, 2z)

(,zzt +1

(Zv+l)

[K.(z) +K,i1(2) 1, (A6)

J'z”e*zKu(Z)dz=—\/; (2z)vzv*t1e—22U(v+3/2, 2v+2, 2z)

e—ZZV+1

T (2v+1)

[K;,(Z)—K,,H(Z)], (A7)
in agreement with the Handbook of Mathematical Functions.? We note further that eq (84b) gives

f e~%z2 'K, (z)dz= e %217 [K,-1(z) — K, (2) ] (v#1/2). (A8)

B
v—1)

From eqs (74) and (78) we obtain indefinite integrals of the product of powers of z, Bessel
functions, and exp («z) expressed in terms of the A’s and 0’s of section 5. Equation (79) leads to

3 See eqs. 111.3.15) and (11.5.16) in [4, chap. 11]. Luke [1, p. 97] gives an equivalent form for (A6) and (A7) when p=0.
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an interesting identity involving »F5’s

(%) ve[C(v+1)] ' oFo(v+1/2, u+v+1; 2v+1, u+v+2; —2z)
=15 (2) 2F2<1, ,u,+g; =ap ll marpar 28 2z)

z

—*[I./(2)+IV+I(Z)]2F?(1,M+§;M—V+2,M+v+2;22)- (A9)
(u—v+1)

2

Finally, from eq (82b), we obtain a decomposition formula for .F, (a, b; ¢, d;z) whena=1, c=2,
and d=2b. We then have *

2F2(1, a+1; 2, 2a+2; z) =—i- (a+1/2)[M(a, 2a+1, z) —1], (A10a)

fora #—k/2,k=0,1,2, . . ., orinterms of Bessel functions

2z:F> (1, v+1/2; 2, 2v+1; 22) N S [(2/z) ze?T" (v +1){I,-1(2) —1.(z) } — 2v]. (A 10b)

-3
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4Equation (A10a) is a particular example of the more general result derivable from the series representation of , F.

Zps1Fqn1(1, ap+1; 2, bg+1; z) = [, Fg(ay; be; 2) —1] (ﬁ a;)/ ( lg'[ b.-).
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