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Analytical express ions and reduction formulas are developed for various inde finite int.eg ral s of the 
conAuent hype rgeometric fun ctions . These integrals are of the type f Ira, b, z)zi'eazdz, wh ere/ is one 
of the two Kummer fun ctions M (a , b, z) == ,F, (a; b; z) or U( a , b, z), with real or co mplex (J, b, z and n, 
and real p. 
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1. Introduction 

Multiple integrals occur in many physical problems in the form where one of the integrations 
results in a higher mathematical fun ction. Thus one is often faced with the task of evaluating in­
tegrals involving higher fun c tions. Whereas th ere exists a large body of literature for integrals with 
limits (0, (0) and (- ro, (0), there are cons iderably fewer sources pertaining to inde finit e integrals. This 
latter type is important, for example, in statistical mechani cs for th e integration of a distribution 
over a finite portion of ve loc ity or mome ntum space and in electromagne tic theory for the integra­
tion over a finite charge configuration. We note the appearance of only one major monograph with 
e mphasi s on ind e finite and finite integrals of higher fun c ti ons, th at of Y. L. L uke rlJl on Integrals 
of Bessel Functions_ This monograph covers a much wider range of mate rial than its title suggests. 

In this note we investigate so me indefinite integrals involving confluent hypergeome tric func­
tions of the type J f( a , b, z) zpeo zdz, wh erefis one of th e two Kummer fun c tion s M (a, b , z) == d' , (a; 
b; z) or U(a, b, z). Several rece nt applications of these integrals to studies on molec ular electroni c 
energies [2 , 3] have been made. 

It is well known that the conflu e nt hypergeome tri c fun ction s co ntain many other higher func­
tions as special cases. For the definitions and an extensive analysis of the properties of these 
functions, the reader is referred to the Handbook of Mathematical Functions [4] and the work by 
Slater [5]. 

We define the integrals to be considered in this note as follows: Z 

Mp(a; a, b, z) == J M(a, b, z)zPeozdz, 

and the special cases 
Up(a; a, b, z) == J U(a, b, z)zPeozdz, 

<P1I(a, b, z) == MII(O; a, b, z), 

\]f ll(a, b, z) == UII(O; a, b, z). 

(la) 

(lb) 

(2a) 

(2b) 

* An invited paper. This paper present s the results of one phase of resea rc h ca rried out atlhe Je t Propulsion Laborato ry, Cal ifornia Institute of Technology, unde r 
Contract NAS7- I OO, sponsored by the Nat ional Aeronautics and Space Ad ministration. Acknowledgment is made 10 Dr. M. Saffren for helpful discussions. 

**Present address: Jet Propulsion Laboratory, Cal iforni a Institute of T echnology, Pasadena, Ca lif. 91 103. 

I Figures in brackets indicat e the lit erature references at the end of thi s paper. 

:,! Throughout t hi s paper we omit the constant for all indefinit e ·integral s. 
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Here a, b, z, and a may be real or complex, p is real and n is a positive integer or 0. In section 2 
we discuss the function <Pn and in section 3 the function 'l'n showing how both of these functions 
can be reduced to simple linear combinations of elementary functions and various hypergeometric 
functions. In section 4 we consider eq (1) with a = 0, and we conclude in section 5 with a brief 
discussion of the general integrals Mp(a; a, b, z) and Up(a; a, b, z) of eq (1), relating them to some 
recent work by Babister [6]. In an appendix we specialize the parameters in Mp(a; a, b, z) and 
Up(a; a, b , z) to the Bessel function case, b= 2a, and, using the results of sections 4 and 5, display 
several interesting indefinite integrals for the Bessel functions. 

2. Analysis of <l>n(a, b, z) 

In this section we analyze the function <p" (a, b, z) and show its reduction to elementary 
fun ctions or to linear combinations of various hypergeometric functions. We use the following well 
known properties of the M(a, b, z) [4,5] 

(l + a- b )M(a, b, z) - aM(a+ 1, b, z) + (b -1)M (a, b -1, z) = 0, (3) 

bM(a , b , z) - bM(a-l , b, z) -zM(a, b + 1, z) = 0, (4) 

d a 
dz M(a , b, z) =b M(a+ 1, b + 1, z); (5) 

and their equivalent integrated expressions (see footnote 2) 

(l+a-b)<Pn(a , b , z) -a<PlI(a+ 1, b, z) + (b-l)<P II (a , b - l , z) = 0 , (3a) 

b<p" ( a , b , z) - b<p It ( a-I , b , z) - <p" + t ( a, b + 1, z) = 0, (4a) 

a 
zItM(a, b, z) - n<P,, - t (a , b , z) =b<P,,(a+ 1, b+ 1, z), (5a) 

a 
M(a , b , z) =b<Po(a+ 1, b+ 1, z). (5b) 

Equations (5a) and (5b) are obtained by integrating eq (5) by parts. We also note the useful 
expressions 

M(O , b, z) = 1, (6) 

zlt + t 
<p,,(0 , b, z) = 1 

n+ 
(6a) 

Four different cases arise dependent on whether a is equal or unequal to an integer and b is 
equal or unequal to an integer. 

(i) a =1= integer, b =1= integer 

Use of eq (5a) with a replaced by a - 1 and b replaced by b - 1 yields the reduction formula 

_ (b -1) n _ _ _ (b -1) __ 
<pn (a, b,z)-(a_1)zM(a 1,b 1,z) n(a_l)<pn- t(a 1,b 1,z). (7) 

Repeated application of eq (7) generates <Pit (a, b, z) as a linear combination of terms 
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zn- n'M(a-n'-I , b-n'-I, z), with n' ranging from 0 to n-I , plus the lowes t order term, 
<Po(a-n , b - n , z) , which is given by eq (Sb). 

(ii) a orf integer , b = integer> 0 

We first note that the integral , as well as M (a , b, z) , is undefined for b = - m. For b orf 1 we can 
replace (b - 1) <P" - I (a - 1, b - 1 , z) in eq (7) by its equivalent from eq (3a) with a replaced by a - I 
and n replaced by n -1 , to yield a reduction formula analogous to eq (7) 

_ (b-I)" _ _ _ (a-b)_ 
<l>n(a,b,z)-(a_I)zM(a I,b I,z) ncI>n-l(a,b,z)+n(a_I)cI>n- t(a I,b,z). (8) 

Repeated application of eq (8) generates for cI>n a linear combination of M's plus the lowest order 
terms cI>o(a', b', z) which we obtain from eq (Sb). For the case b = 1 we see that eq (8) is still valid 
if we recognize from eqs (3) and (4) that 

Lim (b - 1) M (a - 1, b - 1, z) = (a - 1) zM (a, 2, z). 
b - I 

(9) 

Substituting eq (9) into eq (8), we have the reduction formula 

<P,,(a, 1, z) =zll+'M(a, 2, z) -n[cI>"_ I(a, 1, z) -cI>/I _ ,(a - I , 1, z)], (10) 

with the lowest order term being given by 

cI>o(a, 1, z) =zM(a, 2, z). (11) 

One can easily show by mathe matical indu ction that the ge neral res ult for the case b = 1 is 

It (n) 1 cI>n(a,I,z)=zl/ +'I/'2o (-1)'1/ m (m+I)M(a,m+2,z) (12) 

which holds equally well when a is an integer. 

(iii) a = integer, b orf integer 

For a > n + 1, eq (7) can be used to reduce cI>,,(a, b, z) to a series of M 's plus the lowes t order 
term cI>o(a - n, b - n, z) given by eq (Sb). For a = n + 1 and a = n > 0, repeated application of eq (7) 
again reduces <l>/I to a series of M's plus the lowest order terms cI>o(I, b- n, z) and cI> 1 (1, b- n+ 1, z) 
respectively. These are related through eq (4a) with a = 1 and n = ° and eq (6a) by 

cI>1(1, b-n+I, z) = (b-n) [cI>0(1, b-n, z) -z]. (13) 

The primitive function <P o(1, b', z), not reducible any further, can be written [1, p. 5] 

(14) 

For the special case where b' is an integer, the 2F2 function ca~ be reduced to incomplete gamma 
functions and exponential integrals as will be seen in case (iv). The condition n > a > 0 is easily 
handled by repeated use of eq (4a) with n replaced by n -1 and b replaced by b-I 

cI>,,(a,b,z)=(b-l) [cI>" - I(a,b-I,z)-cI>n-l(a-I,b-I,z)], (15) 

until the reduction ge nera tes either of the lowest order terms cI>", (0, b, z) given by eq (6a), cI>o (a' orf 1, 
b', z) of eq (Sb), or cI>o(I, b', z), the primitive given in eq (14). Lastly, for the case a=- m, m = 0,1, 
2, ... , since M( - m, b, z) is a polynomial of m+ 1 terms we can either employ eq (Sa) backwards 
until we arrive at cI> n+m (0, b + m, z) , given by eq (6a), or directly integrate to obtain 
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11/ (m) Z// +k+1 
<l>1I(-m, b, z) = 1&0 (_1)/, k (b),,(n+k+l)' (16) 

where 
(b)J..=r(b+k){r(b). 

(iv) a= integer, b = integer> O. 

With a?: b, repeated use of eq (4) generates 

11/ (m) Zl, 
M(b+m, b, z) =eZ h~ k (b),,' (17) 

slllce 
M(b, b, z) =ez, (18) 

which holds even when b ,1= integer. Integration of eq (7) obviously yields 

111 (m) 1 J <I>//(b+m, b, z) = t:o k (bh Zll +kezdz. (19) 

For the case b > a > 0, we have from eq (3a) with b = a + m, the recursion relation 

(l-m)<I>,,(a, a+ m, z) =a<l>//(a+ 1, a+ m, z) - (a+ m-l) <I>,,(a, a+ m-l, z). (20) 

Equation (20) is repeatedly applied until the right hand side contains only terms of the form b= a + 1. 
Using eq (4a) with b replaced by a and n replaced by n - 1, we have the reduction formula 

<I>//(a, a+l, z) =a J z" - lezdz-a<l>n _l(a-l, a, z). (21) 

The reduction by eq (21) is continued, generating a series of terms I zkeZdz plus the lowest order 
term. If a ~ n, the lowest order term is <l>1I - a(O, 1, z), which is given by eq (6a). With a = n + 1, 
the lowest order term is 

J dz 
<1>0(1,2, z) = (eZ -l)-;, (22) 

or equivalently 

<1>0(1,2, x) =Ei(x) -lnx x> 0, (23a) 

<1>0(1, 2, - z) =-EI (z) - lnz larg zl < 7T, (23b) 

where Eland Ei are the exponential integrals [4, Chap. 5]. Finally, if a > n + 1, the lowest order 
term is <1>0 (a - n, a - n + 1, z). Using eq (5b), we can express this in terms of M (a - n - 1, a - n, z). 
Since 

n! 
M(n, n+l,-x)=- [1-e- xell _l(x)], 

x" 
(24) 

It Xk 

where ell (x) = &0 If; we have 

(a-n)(a-n-2)! 
<l>o(a-n, a-n+ 1, z) = (_1)"- 11- 1 a-n-l [1-e zea _ II _2(-Z)]. (25) 

z 
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We note that since 

y(a, x) =a~ l x"e - ·l'M(1, I+a, x) =a- 1x"M(a, l+a, - x), (26) 

where y(a, x) is the in co mplete gamma fun ction [7], the $00, b', z) of eq (14) can alte rnatively 
be writte n as 

$0(1, b' , z) = (b'-I) J y(b' -1, z)zl - b'ezdz, 

whereas <PII(a, 1 + a, - x) can be expressed as 

For a =1= 1, this reduces to 

<PII(a, l+a,-x)=a J y(a,x)x - adx, 

a 
<Po(a, a+ 1, -x) =-1- [xl - ay(a, x) +e - x ]. 

-a 

(27) 

(28a) 

(28b) 

For a= 1, eq. (28a) reduces to eq. (23b), and with a = integer > 1, eq (28b) reduces to eq (25) . 
The last case to be considered in this section is b > a where b > 0 and a = - In. This case is 

immediately obtainable from eq. (16) since that equation obviously holds for b= intege r > O. 

3. Analysis of '\)In(a, b, z) 

Analogous to the results of sectio n 2, the fun ction 'l',,(a, b, z) can be reduced to elementary 
functions or to linear combinations of various hypergeometric fun ctions . He re , too , four differe nt 
cases, a equal or unequal to an integer and b equal or unequal to an integer, mu st be considered 
for the complete reduction of'l'". We co mmence the analysis with th e de finition of U(a, b, z) [5] 

U( b) 7T [ M(a, b, z) 
a, ,z =sin7Tb r(1+a-b)r(b) 

l_bM(l+a-b, 2-b, z)] 
z r(a)r(2-b) , 

and the well known properties [4,5] 

U(a, b, z) -aU(a+ 1, b, z) -U(a, b-I, z) = 0, 

(b - a) U(a, b, z) + U(a -1, b, z) - zU(a, b + 1, z) = 0, 

d 
dz U(a, b, z) =-aU(a+ 1, b+ 1, z). 

We also note the integrated form of eqs (30)-(32)2 

'l'1I (a, b, z) - a'l'" (a + 1, b, z) - 'l'" (a, b -1, z) = 0, 

(b-a)'I',,(a, b, z) +'I',,(a-I, b, z) -'1''' +1 (a, b+ 1, z) =0, 

z"U(a, b, z) -n'l'II _ I(a, b, z) =-a'l'n(a+ 1, b+ 1, z), 

U(a, b, z) =-a'l'o(a+ 1, b+ 1, z). 

(29) 

(30) 

(31) 

(32) 

(30a) 

(3Ia) 

(32a) 

(32b) 

Equation (32b) is simply ob tai ned from eq (32a) by setting n = O. Other properties of the U (a, b, z) 
used in this analysis are 

U(O, b, z) = 1, (33) 

'1',,(0, b, z) =z,, +I/(n+I), (33a) 

U(a, a+ 1, z) = z - a, (34) 

U(a, I-n, z)=z"U(a+n, l+n, z), (35) 
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the last equation being a special case of Kummer's transformation. One final property of the 
U (a, b, z), as opposed to the M (a, b, z) , is that they are defined for all values of a and b. 

(i) a -,1= integer, b -,1= integer 

Using eq (32a) with a replaced by a - 1 and b replaced by b -1, we have 

1 . 
'l' n(a, b, z) = (1- a) [z"U(a - 1, b -1 , z) - n'l' n - I (a -1, ~ -1 , z)]. (36) 

Repeated use of eq (36) reduces 'l' n to a series of terms zn-n' U (a - n' - 1, b - n' -1, z) plus the 
lowest order te rm, which by eq (32b) is given by 

'l'o(a',b',z)=( 1,)U(a'-l,b'-I,z), 
I-a 

or equivalently, from eq (30) with a replaced by a-I 

'l'o(a', b"z)=(1~a , )U(a'-I, b',z)+U(a', b',z). 

(ii) a -,1= integer, b = integer 

(37) 

(38) 

For b ~ 1, if we replace both terms on the right hand side of eq (36) by their equivalents from 
eq (30) and (30a) with a replaced by a -1, then we have the reduction formula for 'l'n 

'I' n(a, b, z) = [zn{U(a -1, b, z) + (1- a)U(a, b, z)} 

-n{'I'n- l(a-1, b, z) + (1-a)'I'n - l(a, b, z)}]; (39) 

the lowest order term is given by eq (38). If b ~ 0, we use the integrated form of Kummer's trans­
formation, eq (35), to yield 

'I',,(a , - m, z) ='1'''+11< +1 (a+ m+ 1, m+ 2, z), (40) 

which can obviously be handled by means of eqs (39) and (38) above. 

(iii) a = integer, b -,1= integer 

If a=-m, m=O, 1, 2, . . . , then from eq (31a) with a=-m+1, we have the recursion 
relation 

'I' n(- m , b, z) = '1' ,,+1(- m+ 1, b+ 1, z) - (b+ m-1)'I'n(- m+ 1, b, z), (41) 

which reduces to 'l'n'(O, b', z) of eq (33a) upon repeated usage. An alternative approach is to note 
that since 

U(- m , b, z) = (-l)lnm ! LI,? - I)(Z), (42) 

where Llg )(z) is the associated Laguerre function [4, chap. 22], direct integration yields 

In (m + b-1) (-l)k zn+" +1 
'I'n(- m, b,z)=(-l)"'m! L m-k -k-!-(n+k+l)· 

k = O 

(43) 
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For a > 0, three distinct situation s arise. If a > n+ 1, use of eq (36) reduces 'I'lI(a, b, z) to 
a series of U's plus the lowes t order term '1'0 (a - n, b - n, z) given by eq (37) as in case (i) above. 
With a = n or a = n + 1, repeated application of eq (36) reduces 'I' n to a series of U's plus the low· 

~ est order terms '1'0(1 , h-n, z) and '1'1(1 , b - n + l , z) respectively. These are r elated through 
~ eq (31a) with n = 0 and a = 1 by 

I 

~ 

> 

\1110, b' + 1, z) = z+ (h'-I)\IIo(1, h', z). (44) 

Furthermore, from the definition of U(a, b, z), eq (29), with a = 1, we see that 

(45) 

where the first term in eq (45) is an incomplete gamma function and the second term is precisely 
the primitive function discussed in section 2, eq (14). We remark that for the case b = integer, 
eq (45) red uces to powers, logarithms and the exponential integral as will be seen in (iv) below. 
Finally, for a < n, use of eq (31a) with n r eplaced by n - 1 and b replaced by b - 1 leads to the 
reduction formula 

\III/(a , b, z) = (b-a-l)'I'Il - I(a, h-l, z) +\1111- 1 (a-I, b - l, z). (46) 

I Continued application of eq (46) res ults in the lowes t order terms \111/,(0, b', z) give n by eq (33a) 
and 'I'll' (n' , b', z), the case a = n disc ussed above . 

l 

(iv) a= integer, b= integer 

Corresponding to eq (26) for the representation of the incomplete gamma function , y(a , x) , 
in terms of M, we have 

[(a , x) = xae- x U (1 , 1 + a , x) = e- xU(1- a , 1- a , x). (47) 

Therefore for the case a = b = -m, m = O, 1,2, ... , we have 

\1111(- m , - 171 , z) = J zneZ[(m + 1, z )dz . (48) 

Replacing [(m + 1, z) by its expansion as a truncated exponential and integrating termwise, 
'( we obtain 

I 

~ 

m 1 zn+k+1 
\IIn(-m,-m,z)=m!2:-kl( k 1)" 

k = O • n+ + 
(49) 

For a = b = + 171, we have a two-step reduction procedure. First, from eq (30a) with a = 171 and 
b= m+ 1 we have 

1 J 1 \II,,(m + 1, m + 1, z) =- zn- mdz-- \IIn(m, m, z), 
171 m 

(50) 

where we have used the integrated form of eq (34) to eliminate \IIn(m, m+ 1, z). This reduction 
is continued until '1'" 0, 1, z) is generated. Second, noting that 

U(I, 1, z)=ezEI(z), 
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multiplying by Zll and integrating by parts, we obtain the reduction formula 

zit 
'lI,,(l , 1, z) = z"ezE I (z) +-- n'lln- l (1, 1, z). 

n 
(52) 

Equation (52) is applied n times until 'I' 0 (l, 1, z) is generated which, by integration of eq (51), is 
obviously given by 

(53) 

This same res ult is obtained from eq (47) with a chosen as 1- m and the re placement under the 
integral sign of f(1-m, x) by X1 - IIIEII/(x). 

For b > a, if a ~ 0, eq (41) is repeatedly applied until a series of terms 'I' n' (0, b' , z) is obtained 
which is given by eq (33a). With a> 0, specifically choosing a = m + land b = m + m' + 2 in eq 
(30a), we have the recursion relation 

'lI n (m+ 1, m+ m' +2, z) = (m+ I)'lI,,(m+ 2, m+ m' + 2, z) + 'lI,,(m+ 1, m+ m' + 1, z). (54) 

This recursion is repeated until the right· hand side contains only terms with b = a + 1, given by 
the integral of eq (34). The general result is then simply 

1 III' ( ') J 'lI,,(m + 1, m + m' + 2, z) = m! k~O ~ (m + k)! zll - h' - m- I dz. (55) 

Finally, the case a > b is either treated by the reduction formula eq (41) for a ~ ° until 'lI",(O, 
b', z) of eq (33) is obtained, or for a > 0, by repeated use of eq (3Ia) until a = ° or a = b = + m 
(considered in eqs (50)-(53) above) is reached. Often one ca~ utilize eq (35) to reduce the parameters 
to lower orders before starting the recursions. As a simple example of the case a > b, we present 
the result for '1'2(4,2, z) 

(56) 

4. Mp(O; a, b, z) and Up(O; a, b, z) 

Consider first the integral Mp(O; a, b, z). When the series for M (a , b, z) is integrated termwise, 
we find that 

>CO (ah 1 f(p+k+I) . ZlJ+l 
Mp(O; a,b , z)=~-(b).k!f( +k+2)zP+h +I=-=tl 2F2(p+I,a;p+2 , b;z) , (57) 

k = O k p P 

provided that b#-O, -1, -2, ... , and p#--I , -2, .... We note that for p = -m, with 
m = I , 2, 

_ '~2 (ah -.L 1 Zl+k-",+ (a),n-I 1 In z (58) 
f:o (bhk! (m-k-I) (b)m - I (m-I)! . 

From the definition for U(a , b, z) in terms of M(a, b, z), eq (29), we have 

Up(O; a , b, z)= sin1T'1T'b [r(I+a~b)r(b) Mp(O; a, b, z) 

-r(a)r~2-b) Mp +I- O(O , I+a-b, 2-b, z) J. 
92 
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Contiguous relations for the generalized hypergeo metric fun c tions, rFq , are given by Rainville 
[81. From th e special cases for r = q = 2, we obtain 

aMp (0 ; 0.+ 1, b, z) =zp+IM (a, b, z) - (p+ l-a)Mp(O; a, b, z), 

(b-l )Mp(O ; a, b - l , z) =zp+IM( a, b, z) - (p+2-b)Mp(0 ; a, b, z), 

and for the Up( O; a, b, z), from eqs (59), (60), and (61), we have 

(60) 

(61) 

0.0 + a - b )U,,(O ; 0.+ 1, b, z) =Z/H IU(a, b, z) - (p + 1- a)U,,(O; a, b, z), (62) 

(b-a-l)U,,(O ; a, b-l, z) = zIJ + IU(a, b, z) - (p+ 2- b)Up(O; a, b, z). 

Finally, by integrating eq (1) by parts, we have the recursion relations 

aMp + 1(0; 0.+ 1, b+ 1, z) =b[zp+IM(a, b, z) - (p+ I)Mp(O; a, b, z)], 

aU" + 1(0; a+ 1, b + 1, z) = (p + 1) Up(O; a, b, z) - Z/H IU(a, b, z). 

(63) 

(64) 

(65) 

For p = integer n, n = 0, 1, 2, . . . , MI/(O; a, b, z) == <1>// (0., b, z) and UI/(O; a, b, z) == \[1//(0. , b, z), 
the cases discussed in sections 2 and 3 respectively. For p ,t. integer , four cases arise for which the 
integral s ca n be e valu ated in terms of ele mentary fun c tions or in te rm s of M's or U's res pectively. 
The first case is the trivial one with 0.=0. We obviously have, by eq s (6) and (33) 

Z ll + I 

M,,(O ; 0, b, z) = U,,( O; 0, b, z) = --1' 
p+ 

(66) 

The second case, 0. = P + 2 + In , In = 0 , 1 , 2 , . . . , is reduced by repeated use of eqs (60) and (62) 
to the lowest order terms a = p + 2, where 

Z/H I . 

M,,(O; p + 2 , b , z) = p + 1M(P + 1, b, z), (67a) 

Z ,, + I 
U (0, p + 2 b z) = U( p + 1 b z) 
", " (p + l)(p + 2 - b) , , , (67b) 

which are directly obtainable fro m eqs (60) and (62) by setting 0.= P + 1. Thirdly, if b = p + 1 - In , 

then use of eqs (61) and (63) leads to the lowes t order terms 6 = p + 1, where 

(68a) 

( ZP+I ) 
Up (0; a , p + 1, z) = p + 1 _ a U (a, p + 2, z), (68b) 

which we find from eqs (61) and (63) by setting 6 = p +2. Lastly, for b-a=±integer, use of eqs 
(60) and (61) reduces Mp to the case a = 6 for which 

whereas, if 6- 0. = 1, 2, 
6 = 0.+ 1 for which 

ZJl+I 
Mp (0;a,a ,z ) = p + lM(p+l , p+2 ,z) , (69a) 

., repeated application of eqs (62) and (63) reduces Up to the case 

U,,(O; a, a + 1, z) = J zp- adz. (69b) 

We note that if none of the above conditions are sati sfied , the n use of eqs (60)- (65) will reduce the 
integrals to a series of similar integrals with p, a , b in the interval (0, 1). Furth er analytical reductions 
are not available . 
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5. The General Integrals Mp(a; a, b, z) and Up(a; a, b, z) 

Let us consider the differential equation 

d 2y dy 
z -. + (b-z) --ay=f(z). 

dz2 dz 
(70) 

For fez) = 0, we have the well·known confluent ;hypergeometric equation for which M(a, b, z) and 
U(a , b, z) are solutions. Babister [6] defines two nonhomogeneous confluent hypergeometric 
functions Oer (a , b; z) and A p, if (a, b; z) which are particular solutions of eq (70) for (i) f(z) = Z" - I 

and (ii) fe z ) = exp (z )zer - t respectively. He further discusses series expansions, contiguous rela· 
tions , rec urre nce formulas, differential properties and several definite and indefinite integrals 
for 0 and A. 

We shall presently express M p and Up in terms of the functions investigated by Babister. 
Consider the following special cases of eq (70), 

d2 dy 
z d :+ (b-z) -d -ay=exp (pz)zer - l , 

z- z 
(70a) 

and 

d2 u du 
z-+(b-z) --au= O 

dz 2 dz ' 
(70b) 

with particular solutions y=Ap, (J"(a, b; z) and u = M(a, b, z), respectively. Multiplying eq (70a) 
by ue-zzb- I and eq (70b) by ye- zzb- I , and subtracting, we obtain 

:! [zbe - Z( M(a, b, z) ~ Ap. (T(a, b; z) - Ap, er(a, b; z) :! M(a , b, z))] 

= elp - 1)zZb-KT - 2M (a, b, z) . (71) 

Integrating both sides of eq (71) and setting b + rr - 2 = p and p = a + 1, we have 

Mp(a; a , b, z) = Zbe -z [M(a, b, z) 1z Aa + l , p- b+2(a , b; z) d 

- Aa+l, p- b+2(a, b; z) dz M(a , b, z) l (72) 

From the differential properties of M(a, b, z), eq (5), and A p, er(a, b; z) [6, p. 135] 

d 
dz Ap. er( a, b; z) = (rr -1) A p, ,, - I (a + 1, b + 1; z) + pAp, er(a + 1, b + 1; z), (73) 

we obtain an alternative expression for Mp(a; a , b, z) of eq (72) 

Mp(a; a , b , z) =Zbe- Z[ (a + I )M(a, b, z)A a + l , p- b+2(a + 1, b+ 1; z) 

+ (p - b+ l)M(a , b , z )Aa +l , p- b+2(a + 1, b+ 1; z) 

-~ M(a+ 1, b + 1, z)A a + 1, p- b+2(a, b; z)] (74) 

Contiguous relations for the A are given by Babister [6, p. 135]. Two interesting special cases of 
eq (74) are obtainable, when a=O and when a=-l due to the relations [6, p. 134] 

Ao, (J"(a , b; z) = O(J"(a, b; z), 
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The first is obtained from eq (74) with 0 = 0 and eq (7Sb) and gives an expression for the Mp(O; a , 
b, z) of section 4 in terms of 8's and M's 

Mp(O; a , b , z) = Zb e i1T(b - p) [ M (a, b , z ) 8p- b+2 (b - a, b + 1; e i1T z) 

- (p - b + l)M(a , b ,z)8p- b+l(b-a, b+1; e i1Tz) 

- ~ M(a+ 1, b + 1, Z)8 p - b+2 (b-a, b, e i1T z) J. (76) 

Furthermore, from eq (57) and from the following expression [6, p. 121] 

(77) 

we obtain 

>- 2F 2 (p+ 1, a; p+2, b; z) = M(a, b, z) 2F2 (1, p -a+ 1; p - b + 2 , p + 2; -z) 

p + 1 z 
+ p + 2 (p-b+2) M(a, b , z) 2F 2 (l, p -a+2; p - b +3, p +3; -z) 

a z 
b (p-b +2) M(a + 1, b + 1, z) 2F2 (l , p - a +2; p-b + 3, p+2; -z ). (78) 

The second case of interest is obtained from eq (74) with 0 = - 1 and eq (75a), and 
is given by [6, p. 131] 

Mp(-l; a, b , z) = zlJe- z[ (p - b + l)M (a , b , Z)Op- b+l (a + 1, b + 1; z ) 

-~M(a + 1 , b + 1 ,Z) 8fJ-b+da, b; z) J. (79) 

Mp(-l; a , b, z) can be related to the Mp(O; a, b, z) discussed above and in section 4, if we use 
Kummer's relation [4,5 ] 

e- zM (a, b, z) = M (b - a, b , e i1Tz); 

thus 

The condition b = a in eq (81) gives 

ZP+l 
Mp(- l; a, a, z) = --1' 

p + 

(80) 

(81) 

(82a) 

corresponding to the first case conside red in section 4, eq (66). The integral of eq (80) in addition 
to eq (5b) gives 

b - 1 
Mo(- l; a, b , z) = 1 b e- zM(a, b - 1 , z). 

a + -
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Cases two and three of section 4, eqs (67a) and (68a), allow for the analytical integration of Mp(-I; 
a, b, z) when b = a +p+2+ m and b= p+l-m for m=O, 1,2, ... , and reduce respectively 
to the lowest order terms 

Z,, + I 
Mp(-I; a, a+p+2, z) =--1 e- zM(a+1, a+p+2, z), 

p+ . 

ZP +I 
M p(-I;a,p+l,z)=p+l e- zM(a+1,p+2,z). 

From case four of section 4 we can obtain the integrals Mp( -1 ; ± n, b, z) for n = 0, 1, 2, 
Specifically, for n positive we have 

M (- l' b ) - IH I - Z [( - 1) n (b - n) II _1_ M (1 + 2 ) 
p , n, , z - z e (p _ b + 2) 11 p + 1 ' P , z 

/I - I . (b-n)k ] 
+ L (- 1) I. ( _ b + + 1 _ k) . M (n - k, b, z) . 

k = O P n h + I 

(82c) 

(82d) 

(82e) 

For n negative, rather than using the reduction formula eq (60), it is simpler to integrate term by 
term the finite polynomial M (- n, b, z) . 

The analysis proceeds in a straight forward manner for the Up (ex; a, b, z) if we use the definition 
of U(a, b, z) in terms of M from eq (29). We then have 

U,,(ex; a, b, z)= sin7r
7rb [r(l+a~b)r(b) Mp(ex; a, b, z) 

- r(a)r~2-b) Mp - b+l(ex; a-b+ 1, 2-b, z) J. (83) 

We first note that for b = a + 1 

Up(ex; a, a+ 1, z) =M,, _,,(ex; 0, I-a, z) = jzp - aeazdz. (84a) 

We also obtain from eq (83) for ex = - 1 and eqs (26) and (82e) the case b= a 

1 
Up (-I; a, a, z) = p+ 1 [z/Hlr(l-a, z) +y(p- a+ 2, z)]. (84b) 

Analogous to eq (82b) we find that by repeated use of eq (31), UI/(-I; a', b', z) is reduced to a 
series of terms Uo(-I ; a, b, z), given by 

Uo(-I; a, b, z) =-e-zU(a, b-l, z). (84c) 

Corresponding to the cases b = a + p + 2 + m and b = p + 1- m we have 

//I m' 
Up (-I; a, a+ p + 2 + m, z) =- z" + le - z k~O (-1)1. (m -'k)! U(a+ 1 +k, a+ p+ 2+m, z), (84d) 

11/ m! 
Up(-I; a, p + 1- m , z) =-ZII+le - Z I~o(m- k)! U(a+ 1 +k, p+2-m+k, z). (84e) 

We note that for b=±n, care must be taken in the use of eqs (59) and (83). In this instance , 
th e limiting forms for these equations must be used. For a detailed discussion of this point, the 
reader is referred to Erdelyi et a1. [9]. 
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6. Appendix: Reduction to the Bessel Function Case 

If b = 20., then M (a, b, z) and U (a, b, z) are related to the modified Bessel fun c ti ons I a nd K 

(AI) 

(A2) 

Specializ: __ g the parameters in eq (57) to the case b = 20. and substituting from eq (AI), we have 
the indefinite in tegral 

(A3) 

in agreement with Luke [1, p. 96J. Equations (67a) and (82c) give special cases of eq (A3) with 
fL= - 3/2 and v= p + (3/2) whereas eqs (68a) and (82d) give speciaJ cases of eq (A3) with fL = V= p/2 . 

Equations (67b) a nd (84d) of th e text give ri se to 

Z- I/1eZ 

(p + 1) (p + 2) [(p + 2 - z)Kp +(:l/2)(Z) - zKp+(7./1)(Z)] , (A4) 

J Z- 3/2e- zK,)+(3/2)(z)dz=- V27i (2z),) +le- 2ZU( p +3, 2p+4, 2z) 

Z- I/2e-Z 
(p + 1) (p + 2) [(p+ 2+z)K,J+(:;/2J(Z) -ZK,)+(a/2)(Z) ] ; (AS) 

whereas e qs (68b) a nd (84e) yield 

J (2 Z)"+I 
z"ez K.,(z)dz = -v; (2v+ 1) z"U(v+ 1/2, 2v +2, 2z) 

(A6) 

I z"e - ZK,,(z) dz=--V; (2Z) "Z,, +le- 2zU(v+3/2, 2v+2, 2z) 

e- Zz"+l 
= (2v+ 1) [K ,, (z) - K V+ I (z)], (A7) 

in agreement with the Handbook of Mathematical Functions.3 We note further that eq (84b) gives 

(v 0;6 1/2) . (A8) 

From eqs (74) and (78) we obtain inde finite integrals of the product of powers of z , Bessel 
functions, and exp (az) expressed in te rm s of the A's and e 's of sec tion 5. Equation (79) leads to 

:I Sec (,(/ S . ; 11.3. 15) and (11 . .). 16) in 14. chap. II I. Luke 11. p. 971 ;,: ives an equi vu len l form for (A6) 3 tHI (A 7) when 11 = O. 
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an interesting identity involving 2F2's 

(~)"eZ[r(v+1)] - 1 2F2( v+1/2, lL + v+1; 2v+1, lL +v+2; -2z) 

= I "(z) 2F2(1, IL+~; IL- v+ 1, IL+ v+ 2; 2Z) 

- (w-~v+ 1) [1 v(z) + 1"+1 (z)] 2F2 (1, IL+~; IL- v+ 2, IL + v+ 2; 2z). (A9) 

Finally, from eq (82b), we obtain a decomposition formula for zF2 (a, b; c, d;z) when a=l, c=2, 
and d= 2b. We then have 4 

2 
ZzF2(l, a+ 1; 2, 2a+2; z) =- (a+ 1/2)[M(a, 2a+ 1, z) -1], 

a 

for a 0/= - k/2, k = 0, 1,2, . . ., or in terms of Bessel functions 

(AlOa) 

1 
2zzF2(l, v + 1/2; 2, 2v + 1; 2z) = (v _~) [(2/z) "zezf(v + I){I"- 1 (z) - I"(z)} - 2vJ. (AlOb) 
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