
l 

> 

) 

./ 

JOURNAL OF RESEARCH of the Notional Bureau of Standards - B. Mathematical Sciences 

Vol. 74B, No. 2, April- June 1970 

Acoustic Propagation and Stability Within an 
Inviscid, Heat-Conducting Fluid 

J. E. McKinney and H. J . Oser 

Institute for Basic Standards, National Bureau of Standards, 
Washington, D.C. 20234 

(January 26, 1970) 

Propagation of acousti c waves within a continuum of in viscid , co mpress ibl e, heat-conductin g 
fluid is evalu ated in de tail in te rms of both frequency (s teady-state) and time de pende nt (trans ie nt) 
function s. Th e analysis reveals that when the value of the ratio of s pecific hea ts, y , li es be tween one 
and two, the appare nt s teady-state so lutions a re co njugate to unstable, or regenerative, " trans ie nt" 
solutions, and , thus, are unacce ptable. Propagation is s table for other values (y= 1, y ;;. 2). The common 
assumption that the s teady-state phase velocity varies continuously with increas in g freque nc y from 
adiaba ti c to isothermal values is shown to be inva lid , exce pt when y = 2. 

Key words: Absorption; acous ti c; adiaba ti c; fluid; heat-condu ctin g; inviscid; iso thermal ; Kirc hoff
Langevi n equation ; stability; s teady-state; thermal ; transie nt. 

1 . Introduction 

This paper presents an analysis of the propagation of acoustic waves of s mall amplitude within 
a continuum of inviscid, compressible, heat-conducting fluid. The analysis gives the conditions 
imposed on such a fluid for the propagation to be stable. In this usage "stable" propagation is that 
manifested by a "stable" Auid , which has no internal energy sources (i.e., a passive fluid). With 
acoustic propagation the concept of s table propagation implies that for a medium subjected to 
sinusoidally time-de pendent excitation comme ncing at so me time, the response at any point in 
the medium will approach a bounded steady state. Although the requirement for stable propagation 
is obvious for any physically realistic fluid (as far as we know), its full significance has apparently 
been overlooked. In general the inclusion of this require ment will impose a relationship [1] 1 be tween 
certain thermophysical properties of the fluid _ 

In an earlier paper [1] stability criteria, given as inequalities in terms of certain thermophysical 
properties, were developed for viscous, heat-conducting fluids, which are a more general class . 
These criteria were developed without directly analyzing the explicit time dependence of the exact 
solution. In the following presentation the inviscid fluid , which is simpler to analyze, is examined 
in detail with respect to both steady-state and transient functions. The analysis reveals some 
contradictions in present generally accepted concepts with respect to propagation in inviscid 
fluids. Propagation in these fluids has been assumed to be stable and the steady-state propagation 
functions have been assumed to vary continuously from adiabatic conditions at low frequencies to 
isothermal at high frequ encies. Our analysi s reveals that propagation is unstable when the value 
of the ratio of specific heats, y, lies between one and two, and continuous variation in the steady
state propagation functions from adiabatic conditions at low frequencies to isothermal at high 
frequencies is not possible in any stable fluid , except when y= 2. The unstable class of fluids may, 
of course, be stabilized [1] by the inclusion of viscosity of sufficient magnitude within the model. 

Considerable discussion on propagation in heat-conducting fluids has appeared in the literature 
over the past 100 years, for-which some of the more recent examples are given in references [2-9]. 

1 Figures in brackets indicate the literature references at the end of this paper. 
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List of Symbols 

a= pdCvl K= C,'IKBs 
b = pdl (v+ 4rJl3) 

B* = B' - iB" = complex compressibility 
B' =Re B* 
B"=-lmB* 
Bs = adiabatic (isentropic) compressibility 

BT = yBs = isothermal compressibility 
B (t) = transient compressibility 

c = phase velocity (frequency dependent) 
Cs = adiabatic (isentropic) phase velocity 

Cl' = specific heat at constant pressure 
C v = specific heat at constant volume 
G* = complex shear modulus 
Hv = retardation spectrum for volume deformation 

i = imaginary unit 
in = Bessel Function 

K* = K' + iK" = complex bulk modulus 
M* = M' + iM" = complex longitudinal wave modulus 

P = S + iw = complex angular frequency 
Po = So + iwo = singular poi nt of B* (p ) 
Po = So - iwo = complex conjugate of po 

s=Rep 
So= Re Po 
t= time 
u = displaceme nt 
x = position coordinate 
a=Re r 
f3=wlc=lm r 
r = a + if3 = complex propagation function 
y = CI,IC" = BTIBs = ratio of specific heats, or compressibilities 
1] = shear viscosity 
K = thermal conductivity 
p = density 
T = time, relaxation time 
v = dilatational viscosity 
w = 1m p = angular frequency 

Wo = 1m Po 
Q3 *(p) = normalized dispersion function pertaining to complex compressibility 

Q3(t) =2'- 1 [Q3*(p )Ip ] 
2' = Laplace transform 

2'- ' = inverse Laplace transform 
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As a res ult of the complicated algebraic form of the apparent steady-state solutions and the diffi
culties whi ch arise in obtaining the general solution [9] of the differential equation, th e invalid 
assumptions me ntioned in the last paragraph have been widely accepted. In many cases co n
clusions were ba ed largely on qualitative cons ide rations (for example, references [10- 13]) and 
approximations whi c h facilitate simple calc ulations, but which shroud other important information. 
Recently , the analysis has been facilita ted by the advent of fast digital computers, which make it 
a practical matter to trace th e branc hes of the exact propagation functions over a wide freque ncy 
range for as many differe n t cases as necessary to illustrate the complete behavior. 

2. Steady-State Functions 

2.1. Propagation Functions 

In thi s work we are principally concerned with the forced vibration (si nusoidal) solutions of 
the differential equation [4] (see appendix), 

(1) 

whe re u = u (x, t) is the di s place me nt 2 of an e le me nt in the x direc tion at ti me t, Cs is the ad iabatic 
(or isentropi c) phase velocity, K is the thermal conductivity , p is the de nsity, taken here in the 
absence of any di sturbance within th e medium , CI" is the s pecific heat at co ns tant volum e, a nd 'Y 
is the ratio of specifi c heats (C,,/C ,). cs , K , p, C" , and y a re take n to be constants of the Auid 
independe nt of x and t , which implies that these quantities are inde pendent of the s mall Auctuation s 
appropriate to the linearized equation (eq (1»). Equation (1) describes the infinitesimal (i.e., linear), 
uniaxial response of a hypothe tical continuum of compressible , inviscid , heat- conducting Auid. 
This is probably the simplest case for which the role of thermal conductivity is considered in 
acoustic propagation. For our purposes eq (1) may be taken axiomati cally and is used as a point 
of departure for subsequent arguments. 

We are concerned with obtaining the exact solution:l of eq (1) su bj ec ted to the boundary 
condition u(O, t) =uoV(t) cos wt (along with other obvious s tate me nts with respect to initial 
conditions and behavior as x ---7 00) where Vet) is th e unit step fun ction. Although ob taining the 
Laplace transform, Sf [u (x, t)] = flex, p), is straightforward procedure, obtainin g its inverse 
u(x, t) appears to be ex tremely difficult. Howe ver, s ufficie nt information can be obtained from 
flex, p) to re veal that the exact solution is unbounded, or uns table , when 1 < Y < 2. 

In view of the diffic ulties in obtaining the exac t solution , we will assume the form of the 
steady-state solution of eq (1). From this we will obtain the frequency-dependent propagation fun c
tion rep) and its equivalent res ponse fun c tion B * (p), whi ch appears in simpler form_ Th e s tability 
will be evaluated by applying Laplace transform theory to the response fun ction , and verified later 
by obtaining the corresponding time-dependent (transient) function. 

For waves traveling in the positive x direction only with sinusoidal time dependence, the 
apparent 4 "steady-state" solutions of eq (1) may be expressed in the following form: 

u(x, t) =Re [AePt -rx Js =o=Ae- ax cos (wt-f3x) (2) 

where p=s+iw is the complex angular freque ncy ,5 and r=a+if3 is the complex (frequency 
dependent) propagation function with f3 = w/c, where c is the frequency dependent phase velocity. 

t The equation for veloc it y al a poin t . v = v{x , f), has ide ntica l fo rm . 
:1 Th is type (i ncluding transie nt res punse) of a nal ys is with respec t to acousti c propaga tion is, in genera l, fairly recent in the litera ture. }~or the exact sulu t ion 

pertaining to a viscou s. nonconduClill 1J; fluid . sec . for e xample, refe re nce [141. 
4 We speak of eq (2) as an "appa re nt " s teady-s tat e s olu tion inas m uc h as it appears to be a stead y s tate and sat is fies the diffe rential C(l uUl ion (C(I (I )). Howe ve r, 

it remains to be seen if eq (2) is t he exac t solution as t ~ 00 . 

~ The complex frcquc nc y. /)=s+ iw. is used for the purpose of apply ing the Lap lace tra nsfo rm in the SUbsc<lue nt d iscu ss ion s . It is conve nie nt to u se the furm 

exp (pt - r x) in lieu of exp ( I' .... - pt ) in o rde r to fac il ita te the s ubsequent use of thi s transform without modifi c at ion. 
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A is a constant (for each branch), which is taken to be real without loss in generality. 
Substitution of eq (2) into eq (1) gives the following frequency dependence of the complex 

propagation function fCp): 

P(p)= yp2[ 1+~+(1+2(Y-2)a+a2)1 /2 ] (3) 
2d p yp p2 

where a = pc~C I ' /K, or alternatively, a = C I' /KBs , remembering c~= l/pBs where Bs is the adiabatic 
compressibility. Equation (3) may be identified as the propagation function for "steady·state" 
solution of the Kirchhoff·Langevin equation [8, 9] with zero viscosity, or equivalently, with an 
infinite viscous Reynolds number. 

For waves with diminishing intensity in the direction of propagation, as required for passive 
fluids, ll' and f3 must have the same sign. This requireme nt is met for all four branches given by 
eq (3). The two branches for which ll' and f3 are both negative are ignored in this analysis because 
they correspond to backward traveling waves and contribute no additional information to the 
properties of the fluid . The two branches implied by the i-power term in eq (3) are commonly 
called the acoustic and thermal branc hes. As customary, the acoustic branch is taken to be the 
one for which the absorption, ll', vanishes in the low·frequency limit in contrast to an unbounded 
value in the thermal branch. This choice is consistent with the acoustic branch propagating adi
abatically in the low·frequency limit. 

Expressions for ll' and f3 as functions of real frequency are obtained tediously, producing 
expressions containing eight radicals each, which, indeed, exceed the practical limit of compre
hension and space available here. However, the values of these functions with frequency were 
computed for several examples and are illustrated in section 2.4 along with their corresponding 
complex response functions. 

2.2. Complex Response Functions 

For mathematical convenience the propagation function obtained in the last section is con
verted to the complex response function which describes the response to alternating pressure of 
any small volume element of constant mass within the acoustic field. The information obtained in 
these two representations is equivalent. 

The longitudinal wave propagation function and its corresponding complex response functions 
are related [15] by 

4 M*=K* +-G*= pp2jP 
3 (4) 

where M * = M' + iM" is commonly called the longitudinal wave modulus, which is appropriate 
to describe linear res ponse for uniaxial strain with sinusoidal time dependence . K * and G * are 
th e complex bulk and shear moduli, respectively. Since we are concerned with inviscid, compress· 
ible fluids, which support no shear stress, G* may be take n to be identically zero from which follows 

(5) 

where B*=B'-iB"= l /K* is the complex compressibility. Thus, B* and P have the same fre· 
quency dependence except for a factor of p2. The alternative expressions (; equivalen t to eq (5) 
in terms of real and imaginary components at real frequencies are 

(6) 

6 From ins pec tion of eq (6) it is clear that there are only two distinct branc hes of B* (p) from the four branches of r (p) given by eq (3), s ince a and t' always 

have the same sign. 
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As commonly used in acoustics (and in thi s discussion) the co mplex compressibility relates 
the dilatation to pressure in both amplitude and phase for sinusoidally time dependent excitation. 
B *(p) is n ot a property of the fluid alone, as are the isothermal and adiabatic compressibiliti es 
for a viscous fluid , but may also depend on the boundary conditions. Other respo nse functions, 
s uch as the characte ri stic impedance, or adm ittance, of the medium, could be analyzed in Lhi s 
manner. Since th ese response functions are equivalent, the conditions for stability obtained through 
analysis of any of the m remain the same. The complex compressibility appears to be the mos t 
convenient function for stud ying this particular case . 

The ide ntity , 

(7) 

where c and d may take on all real values, is useful for establishing the inverse relations to eq (6) 
and certain other useful relations obtained subsequently. In this paper the notation z 1 / 2 is used 
for the double-valued fun ction. Expressions of the form Yz are interpreted to be single-valued 
functions with a nonnegative real part. The other branc h will be denoted by - Vz (with a non
posi tive real part). This convention so far does not distinguish the branches of ZI / 2 when the value 
of z is on the negative real axis. For a reason which will become apparent in th e treatment of the 
special case y = 2 (sec. 4.2), the branch cut is taken along th e negative real axis and is assigned 
the polar argume nt the value 8 = -1T (ins tead of the more cus tomary c hoice 8=1T). Thus, for 
the first branch (-1T ";; 8 < 1T) we write z 1/ 2 = Yz, which has a nonnegative real part, and for the 
second branch (1T";; 8 < 31T), ZI / 2= - Yz, with a nonpositive real part. This choi ce has the co nse
quence that V-l =- i ins tead of + i as us ual. The form ± Yz or =+ Yz is used according to the 
convention that the upper sign applies to the aco ustic branc h, whenever applicable_ 

The inverse relations to eqs (6), 

a=w[ ~(-B'+ v'B'2+B"2 )r/2 

/3 =w [ ~(B'+ v'B'2+ B"2)] 1/2, 

are readily obtained from eqs (5) and (7). 
From eqs (3) and (5) the explicit frequency dependence of th e co mplex co mpressibility is 

1 

B*( )=YBs[1+~+(1+2(Y-2)a+a2)2] 
p 2 p yp p2 

which, after taking p = iw (s = 0), becomes 

B*(w)=yBs [l_ia±~l_a~ _2i(y-2)a] , 1";;y < 2 
2 w w 2 W 

B*( )_yBs[l ia_~l a2 2i(y-2)a] 2 w --2- - w + - w2 - W ,y ~ . 

(8) 

(9) 

(lOa) 

(lOb) 

The followin g real and imaginary compon ents of B * (w) = B' - iB" are obtained by applying eq (7): 

B'(w) = y:s {l±)~ [l-::+~ (l-::r +(2(y:~)ar ]}, 1 ,,;; y < 2 (lla) 
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yB { h[ a2 I( a2 )2 (2(Y-2)a)2]} 
B'(w) =T I+\j-2 1- w2+-Y 1- w2 + wy ,y::;:,:2 (lIb) 

yB , {a ~I[ ( a2) I( a2)2 (2(Y-2)a)2]} B"(w) =----;f-~+ "2-I - w2+-Y I- w2 + wy , y::;:,:1 (lIe) 

Equations (10) and (11) are in keeping with our convention given in the last paragraph and con
sistent with our previously s tated choice (sec. 2.1) that the acoustic branch be the one for which 
the absorption vanish in the limit w ~ o. This choice is consistent with B *(0) = BO' for the acoustic 
branch. The two ex pressions of B*(w) and B' (w) are shown here for the purpose of distinguishing 
between the acoustic (upper sign) and thermal (lower sign) branches. The reason for the sign 
reversal at y = 2 is found in the fact that the roles of the two branches are interchanged in a way 
which should become clearer during further discussions. Values of y less than unity are not con
sidered because these would require the existence of a negative compressibility or specific heat. 
It will be shown in the next section that for 1 < y < 2, the apparent steady-state solutions are 
misleading because the fluids are unstable in that the corresponding "transient" functions are 
regenerative in time _ Thus, in excluding the unstable solutions, eqs (lOa) and (lla) are applicable 
only to the special case where y = 1. 

From initial inspection eq (9) appears to have a simple pole at the origin in addition to the 
branch-point singularities. A binomial expansion of the radical reveals that the simple pole in the 
acoustic branch disappears by virtue of a cancellation in terms of alp. The presence of the simple 
pole in the thermal branch is consistent with the unbounded absorption in the low-frequency limit. 

2.3. Evaluation of Stability from the Location of Singularities 

It is commonly assumed in wave propagation that transient solutions decaying with time, are 
conjugate to steady-state solutions decaying in the direction of propagation. In this section it will 
be shown that this assumption is not correct in general and is violated for the response functions 
under consideration when 1 < Y < 2. 

Since the general solution of eq (1) is extremely difficult and apparently has not been obtained, 
we have chosen an alternate approach, namely, to study the transient 7 response function B(t), 
where B (t) is the ratio of time-dependent dilatation, to step function pressure. B (t) corresponds 
to the response function B* (p) in frequency space. (See eq (9).) The complex and transient func
tions are related by 

B*(p) = p2' [B(t)] 

with the corresponding inverse 

B(t) = 2'-1 [B* (p )/p], (12) 

where 2' and 2'-1 are the Laplace and inverse Laplace transform operators. We say a solution of 
eq (1) is stable if the corresponding transient response function is bounded for all times t after 
removal of terms linear in t. This requires B* (p) to have singularities only on, or to the left of, the 
imaginary p axis. (See, for example, [16, 17].) Terms of B (t) linear in t (corresponding to simple 
poles of B* (p) at the origin) are permitted, although they are unbounded in the limit as t ~ 00. 
These terms are analogous to those for steady-flow shear within a Newtonian fluid. In general, for 
compliances (resulting from step-function stress) of the form etn, the only acceptable values of 
n for stable response are 0 ~ n ~ 1. n < 0 would give a singularity at t = 0 implying an infinite 
instantaneous deformation from the application of stress. n > 1 characterizes a deformation which 
would continue to increase after removal of the stress (and without bound in the limit t ~ 00) , as 

7 The response to step·func tion exc itation is com monl y ca lled the transie nt response function, in view of the fa c t that thi s fun ction usualJy vanis hes at large 

times. In thi s case the so-called " transient" response function B (t) of I en grows with time a;ld is unbou nded in the limit as t --i>::O, This behavior is contrary to that 

implied by the ordinary definition of tran sien t , i. e., ex ist ing over only a s hofl lim e. 
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can be seen by applying the Boltzmann superposItIOn principle. 0 < n < 1 corresponds to a de
formation which would recover completely on removal of stress but would in crease_~Jthout li J?:lj! as 
long as the stress is applied. n = 0 and n = 1 represent purely elastic and purely viscous response , 
respectively. 

In addition to the simple pole at the origin, branch point singularities appear at the values 

(y-2)a 2iaVy-1 
p =- + . 

y y 

Thus, as required for real time-dependent response functions, singularities off the real axis are 
always complex conjugates. The locus of these singularities with respect to I' is a circle obeyin/! 
the relation 

(13) 

This plot is shown on figure 1 in which the values of yare given for the intercepts. Singularities 

W 
: 2 

F IGUIlE L Locas oj the branch-point singaLarities oj the 
compLex response jal1ction, B*(p) , given by eq (9). 

Ol)en circ les cor res ponding 10 y = I and y = 1Xl indicate excl usions from th e locus. 

are restricted to be on and to the left of the imaginary axis when y ~ 2. When y is exactly one, the 
radical in eq (9) is a co mpl ete square and the point at p = a is regular. However, as soon as y differs 
from unity (even infinitesimally), a pair of branch points appears and the corresponding in stability 
sets in. Accordingly , the point 1' = 1 is an isolated stable point. At 1' =00 the branch-point s ingu
larities become either simple poles or vanish e ntirely. (See sec . 4.3.) Accordingly, the points p = a 

(corresponding to y = l) and p=-a (corresponding to 1' =00) are excluded from the loc us as indi
cated by the open circles in figure 1. Since the singularities are paired symmetrically about the 
real p axis, the transient response will be oscillatory. (See sec. 3.2.) When the singularities are 
paired about the negative real axis as with I' ~ 2, the oscillations damp out with time. When the 
singularities are paired about the positive real axis, as they appear for 1 < I' < 2, the oscillations 
amplify with time and are unbounded as t ~ 00. 

2.4. Graphical Display of the Functions 

The values of the apparent steady·state functions plotted in this section were obtained in 
three different ways for the purpose of checking the validity of the results. The functions were 
programmed in OMNIT AB and also in FORTRAN using both the real and complex modes. With 
OMNITAB and FORTRAN using the real mode, eqs (11) were used to compute the values of th e 
real and imaginary components of the normalized com plex response functions. These were con
verted to the values of the normalized propagation functions using eqs (8) with f3 = w/c. With 
FORTRAN using the complex mode eqs (10) were used to compute the values of the normalized 
complex response function, which were converted to the values of the normalized complex propaga-
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tion function using eq (S) rewritten in the form 

r( w) = - W v' pB * (w) . 

Since we have taken the branch cut of the function Zl / 2 in a manner consistent with V-T =- i 
(see sec. 2.2.), whereas the FORTRAN complex mode assigns the value i to the operation V-T, it 
was necessary to include a statement to make the corresponding inversion at y = 2 over the range 
w> a (see sec. 4.2.). Figures 2 and 3 give the computed dimensionless complex response functions 
plotted against dimensionless frequency over the interesting range including the value corre
sponding to w = a for different values of y. The principal distinction between these two figures 
is that figures 2 and 3 pertain to unstable and stable fluids, respectively. Figures 4 and S give the 
corresponding dimensionless propagation functions, which are, of course, more directly realizable 
experimentally and discussed in the literature. The functions for which the fluids are unstable 
are included because they are illustrations of functions which have been considered to be stable. 
Figures 2 and 3 with y= 1.S are an example in the range of 1 < Y < 2 over which the fluids are un
stable. The unstable fluids are the only ones (except when y=2) which would seem to propagate 
monotonically and continuously between adiabatic and isothermal limits. Figures 3 and S with 
y= 1,2, and 2.S are examples for which the fluids are stable. From these figures the nature of the 
coalescence and inversion of the branches at y = 2 (see sec. 4.2) is revealed more clearly. 

With the exception of the special case of y = 1, the compressibility always vanishes in the 
high-frequency limit of the acoustic branch for stable fluids. This corresponds to so-called "anom
alous" propagation in that the phase velocity is unbounded in the high-frequency limit. Although 
the acoustic branch propagates adiabatically in the low-frequency limit, and the thermal branch, 
isothermally in the high-frequency limit, the functions are never continuous between these limits 
for stable fluids except when y = 2. In this case, the infinite derivatives at the value corresponding 
to w = a in all of the functions are consistent with the existence of a branch-point singularity at 
this value. This singularity also accounts for the coalescence of B I (w) and B" (w) in the range 
w ~ a and w ~ a, respectively, with y = 2. 

The dotted lines shown with the case for y=2.S were calculated for the components of the 
viscoelastic resr: onse function 

B* (. ) - Bs 
LW - 1 + . 

LWT 
(14) 

l 

< 

where T is the relaxation 8 time for a single element relaxation spectrum. The limiting values of 
eq (14) for small and large p are the same as those for eqs (llb) and (llc) using the upper signs. A 
single relaxation manifests the narrowest dispersion region possible with respect to any non- < 
negative relaxation distribution. Accordingly, it is clear from inspection alone of figures 3c and 5c 
that the in viscid functions under discussion cannot be represented by any distribution of relaxation 
(or retardation) times in the form 

B*( ) = B + ! "" HV(T) d 
p 9 ol+PT T (15) 

with HV(T) nonnegative. For a single relaxation time HV(T) is a delta function multiplied by a con
stant. Since eq (IS) applies only to functions with singularities on the negative real p axis, it is not 
applicable, in general, to the functions under discussion. 

II This usage is apparently comm(m in acoustic nomenclature. According to viscoelastic nomenclature [18], this quantity should be called a retardation time when 
used in connection with compliances as with eqs (14) and (15) in contrast to a relaxation time, with moduli. 

74 



I 

I 

~ 
~ 

Ii 

--- --

2 
Acoustic 
Thermol 

VI 
'1 = 1.5 

en 
B'IBs -' -en 

-0 
c: B'IBs 0 

VI 
en , 

-en 

0 

-I 

Log WKBs/Cv 
FIGURE 2. Heal and imaginary parts of the normalized 

complex response functions as functions of normalized 
frequency with y = 1.5 as an example in the range of 
1 < Y < 2 for which the propagation is unstable. 

VI 
CD -, 
In 
"0 
c 
0 
U) 

CD 
-' CD 

2 ,----,--.--,----.----. 

Acoustic -
Thermal +-+-++ 

B'/!3s(ThermaO and B'iBS<Acoustic) 
O·rr~HH~~4444+++++++++~~~++~~ 

-I 

2 

I 

0_1 

2 

y=2 

B'/Bs(Acaustic ond The"mal) 

y= 2.5 

B'/BS ... .. 
Single 
Relaxation •••• 

.. ' .. , .. ' 

(g) 

0 
(b) 

..... -
~~,~~_-L ___ ~ __ ~~~~~~ 

Log WKBs/Cv 
FIGURE 3. R eal and imaginary parts of the normalized 

complex response functions as functions of normalized fre
quency with (a) y = l , (b) y = 2, and (el y = 2.5 as examples 
at y = 1, and in the range of y ;;' 2forwhich the propagation 
is stable. 

75 

2 '1=1.5 

U) 

~ 
o 

FIGURE 4 . Normalized propagation functions corresponding 
to the functions in figure 2 (unstable propagation). 

'" ~ 
o 

2 r-c---,----,_-~-,_--~ 

c/cs 

Acoustic -
Thermal +-t-++ 

y=1 

o~ ____________ ac~s~/w~ __________________ _ 

- I 

2 

o 
(a) 

o 
(b) 

o 
(c) 

Log wKlpoc~Cv 

y. 2.5 

clcs 
Single 
Relaxation •••• 

FIG URE 5. No rmalized propagation functions corresponding 
to the functions in figure 3 (stable propagation). 



3. Transient Response Functions 9 

3.1. General Integral Formulation 

In the previous paragraphs we have given a necessary and sufficient criterion to distinguish 
between stable and uns table fluid s. For the purpose of obtaining additional insight into the detailed 
b ehavior of the solutions, it is useful to s tudy more closely the transient response fun ctions which 
can be written down explicitly as inverse Laplace transforms of B* (p) /p. It is convenient to split 
the expression for B*(p) /p (see eq (9)) as follows: 

B*(p) = yBs [.! + ~ + 1E*(p)] 
p 2 P p2 P , 

(16) 

where 

(17) 

Application of the inverse Laplace transform to eq (16) yields: 

B(t) = y~s [1 + at + lE(t)]. (18) 

This reduces the problem to finding the explicit time dependence of IE (t), a function which is 
double valued, owing to the l/2-power in IE* (p). 

If we put 

So = 
(2 - y)a 

y 

2av'Y=l 
wo= 

y 
and 

po = So + iwo 

Po = So - iwo, 

we may write eq (17) as follows: 

(19) 

which can be decomposed still further into 

58 * (p) = D (p) _ 2so D (p) + a 2 D (p ) , 
p P p2 

where 

From equation 5.3.34 in [19] we find 

2'-1 {D (p)} = e'o' Jo(wot). 

9 See footnote 7. 
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Writing ± to allow for the double-value d ness of the 1f2-power fun c tion, we obtain 

f 'f" + a2 0 0 e S"T]o(WoT)dTdt'_ 

Partial integr ation in th e double integral and application of equation 11.3.5 in [20] yields the fin al 
result: 

± 1.8 (t) = e s.' [ (1- sot)] 0 (wot) - wot] I (wot ) ] 

+ (a2t-so) Jo'e S.T]o(WOT)dT. (20) 

Re me mbering our convention that the upper sign pertains to the acous ti c bra nch , the exac t 
form of the transient response fun ction B (t) for y ~ 2 (so :%; 0) is obtained from substituting eq (20) 
into eq (18): 

B(t) = y~S {I + at =+= [e s", (1- sot)]o(wot) - wot] I (wot) 

+ (a 2t - so) L eS.' ] o( woT)dT]} , y ~ 2. (21) 

When I :%; y < 2 (so ~ 0) , eq (21) is valid also except =+= becomes ±. 

3.2. Approximate Behavior for Large t 

Although eq (21) is the general relation appli cable for all values of t and y ~ 1, it is diffic ult to 
obtain comprehe nsible information with res pec t [Q the explic it asymptoti c behavior as t ~ 00 

which is of particular inte res t he re. To obtain this information we take the expans ions of B*(P) /p 
about the three singularities p = 0, p = Po, and p = po. (From the general theory of Laplace trans
forms [21] the a symptotic behavior of y (t)for large t may be readily de termined by the be havior of 
the leading terms of 2' [y (t)] = y* (p) /p expanded about the singularities in the p plane.) 

In thi s connection we are inte res ted in evaluating e q (16) (sec. 3.1) which is 

(16) 

where 

---- 1+ +-. 1.8*(P)_I[ 2(y-2) a2]1 /2 
p p yp p2 

(17) 

Since the inverse transform s of the first two terms in the brackets of eq (16) are readily available , 
we are only concerned with the appropriate expansions of eq (17). 

a . Expansion about p = 0 

For the expansion about p = 0 , we rewrite eq (17) a s follows : 
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For small P the above equation may be expanded by the binomial theorem indicating double 
valuedness by the =+= sign. 

\S* (p) = =+= ( a2 + y - 2 +. . .). 
P P yp 

The dots indicate regular terms which do not contribute to the asymptotic expansions of either 
B(t) or \S(t). The corresponding expression for \S(t), for large t, is then 

where the subscript 0 indicates that only the contribution from P = 0 is included. 

b. Expansion about P = Po 

In this case we rewrite eq (17) as 

\S*(p) a _ , 
--= -:- [(p - Po) (p - Po)] /2 

P p2 

which when rewritten in appropriate form for expansion about p = Po becomes 

\S*(p) = a(po - Po) ' /2 1 + Po - Po (_ )'/2 f 
( p - Po )1/21 

., ( )2 P Po , 
P Po 1 + P ~oPU 

where all the terms within the brackets are regular at p = Po. Consequently , 

where the omitted terms in the right-hand parenthesis are ignored because they give rise to a 
series expansion of \S (t) in decreasing powers of t, thus contributing less as t----'HXJ. From reference 
[21] we find 

\S (t) = =+= ~ VPo - Po eJlOlt-3/2 
1 2 2 ' Po 1T 

t~ 00 

as the leading term for the contribution from P = Po. 

c. Expansion about p = po 

The expansion about p =Po is obtained from the above expression for \SI (t) by interchanging 
Po and po, which is tantamount to taking the complex conjugate of \S1(t). Thus , 

- a VPo - Po -\S1 (t) = =+= - e- Po1 t - 3/2 

2{J8 1T ' 
t~oo 

pertains to P = Po. 
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d . Summation of Contributions 

Adding the above contribution s (lBo, lBl, and lB 1) together along with the contributions 
from th e two left-hand te rm s in eq (16), we obtain the following general (y ~ 1) asymptotic ex pres
sionforB(t) ast~oo: 

B(t) = yBs {I + at =+= [at + y - 2 + ~ t -3/2 Re (YPo ~ Po eP.t )]}. 
2 y vr; p~ 

Alternatively, the following equivale nt expression may be obtained in terms of real quantities: 

B(t) = y~S {I +at=+=[at+ y~2+ (S~:W~)2 ~ ((s~-w~+2sowo) coswot 

- (s~ - w~ - 2sowo) sin wot )r3/2e s"t J} , (22) 

where the upper sign now pertains to the acoustic branch for all y ~ 1. 
For the stable class y ~ 2 the asymptotic behavior is 

B (t) = y ~ s [1 + at =+= (at + y ~ 2) ]. 
Asymptotes linear in t (although unbounded in the limit t ~ (0) are consistent with stable solutions 
for the reason given in section 2.3. At large t sinusoidal oscillations about these asymp totes are 
damped by the factor t - 3/2e sot for which So :s; O. For th e uns table class 1 < Y < 2 these oscillations 
regenerate by the same factor for which so> O. 

4. Special Cases for Different Values of y 

The following discussion includ es th e special cases of the fun ction s for different values or 
ranges of y. In these cases the functions may reduce to considerably simpler form and may also 
reveal di stinct characteris ti cs not immediately obvious from the more general form. 

4.1. Stable Case y = 1 

When y = 1, th e reduced express ion for eq (9) becomes 

Bs [ a ( a)], B * (p) = 2: 1 +j; ± 1 -j; , y = 1. (23) 

Thus, it is apparent that B' = Bs and B" = 0 for the acoustic branch, and B' = 0 and B" = C1.f KW 

for the thermal branch. These values are consistent with a constant adiabatic (or isothermal) 
phase velocity with no absorption in the acoustic branch. The thermal branch propagates in a 
manner analogous to shear propagation within a Newtonian fluid [2] in that 

a=f3= jwpCv. 
V 2K 

The steady-state functions for this case are displayed in figures 3a and Sa. 
At y = 1 the branch point singularities vanish because the square in eq (19) is completed. 

Accordingly, this point is an isolated stable point and the response is charac terized by the simple 
pole at the origin. 
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The following expression for B(t) (which is exact for all t) is obtained by operating on eq (23) 
directly; 

Bs 
B (t) = "2 [1 + at ± (1- at)] , l' = 1. 

It is apparent from the above equation that when 1'= 1, the thermal branch (lower sign) of B(t) 
is analogous to the s hear compliance of a Newtonian fluid subjected to a constant stress. Transient 
terms linear in t (although unbounded in the limit t ~ (0) are consistent with stable solutions for 
the reason given in sec tion 2.3. 

4.2. Stable Case 'Y = 2 

When 1' = 2, eqs (llb) and (llc) reduce to 

B' (w) =Bs {I + ~~ [1 -~+ 11 -~ 1 ]} , 

B"(w) = Bs {~+ ~~ [- (1- ::) + 11 - :: I]}, 1'= 2. 

It is apparent from the above equations that B' is single valued and constant over the range w ~ a, 
and B" is single valued over the range w ~ a , in a manner consistent with the branch point singu
larities at p = ± ia. In this case the two branches of B' coalesce for 0 ~ w ~ a by virtue of the fact 
that (1' - 1 )Bs = Bs. The steady-state functions for this case are displayed in figures 3b and 5b. 

Since this case corresponds to d = 0 in eq (7), and because of the single-valuedness mentioned 
above we have some liberty in designating the branches with respect to acoustic or thermal over 
the range w > a. If we had used the customary convention in settin g yCT = i , in lieu of yCT = - i 
(see discussion after eq (7), sec. 2.2), the branches (as shown on fig. 3b) would be interchanged 
over the range w > a . Since this case has been shown to be stable, we have chosen to deviate from 
the customary convention. This results in the limiting behavior of B*( oo ) being the same as that 
for the stable class l' > 2 in that 

Acoustic B*( oo ) = 0, y~2 

Thermal B*(oo) = yBs , 1 < l' < 2_ 

The response function B (t) valid for all t (expressed in integral form), and approximate for 
large t, is obtained by setting So = 0 in eqs (21) and (22), respectively. The asymptotes are 

lim B (t ) = B s [l + at + at], 1' = 0. 
I~ ~ 

At large t the sinusoidal oscillations about these asymptotes are damped by the factor t - :3/2. This 
behavior, which is characterized by the branch points , is distinct from that of undamped resonance , 
characterized by simple poles also paired symmetrically on the imaginary p axis. 

4.3. Stable Case 'Y = ro 

Since there is no phenomenological bound on the maximum value of 1', we are considering 
the role of all possible valu~s for which 1 ~ l' ~ 00. (For example, l' is apparently singular at the 
critical point [22] in that C p is more singular than C v or alternatively, B1' is more singular than Bs-) 
The general form of B* (p) taken from eq (9) in the limit as l' ~ 00 is 

lim B*(p) = B1' {I +~+ [1 + ~ - o( 2a )]} , 
y~x 2 p p y(p + a) 

(24) 
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where the 0 symbol is the one used in asymptotic theory. The value of B* (p) at y = 00 de pends on 
the dependence of Bs on y in the limit as y ~ 00. The behavior of B*(p) at y= 00 is summarized in 
table 1, where th e acoustic a nd thermal branches are treated separately. It is interes tin g to observe 
from comparison of eqs (9) and (24) that the branc h-point singularities coalesce into a simple pole 
at p =- a corres pondin g to y =oo, and , as in dicated by table 1, the simple pole at p =- a vanishes 
for finite values of Br (B8= 0). 

The ge neral form of B ( t) in th e limit as y~ 00 corresponding to eq (24) is 

;~~ B (t) = ~r { 1 + at =+= [ 1 + at - o( ; (1 - e - at) ) ] }. 

The behavior of B(t) at y= 00, is also summarized in table 1. Although B(t) may be unbounded at 
y = 00 for all values of t under certain conditions as shown, this case is considered to be a stable 
one because the response does not grow with time after removal of the terms linear in time. A 
medium of infinite compressibility, for example, a vacuum, does not , necessarily , have intrinsic 
energy sources as implied by our criterion for an unstable fluid . 

TABLE 1. Behavior o/B *( p) andB (t ) al y = oo 

lim Bs(y) B* (p ) , Acous ti c B* (p) , Th e rmal B (I), Acousti c B(t) , Th e rmal 
-v-" 

Bs= 0 0 H, (l + a/p ) 0 BT( l + al ) 
Bs = Const aBs/( p + a) 00 Bs( 1 - e-"') 00 

Bs = (C on st)'Y, E > 0 00 00 00 00 

5. Summary of Asymptotic Values and Relations Between Asymptotics of B*(p) and B(t) 

Table 2 summarizes the asympto ti cs for B *(p) a nd B(t). Th e limiting values [or B *(p) with 
p = 0, a nd p ~ 00 are ta ken from the a ppropriate binomial expan sion s of eq (9). The values of B (t) 
with t = O, a nd t~ ro are take n from eqs (21) a nd (22), res pectively. The ± (ro ) notation in di cates 
regenerative oscillations modulated sy mm etricall y a bout the va lue zero with the amplitudes going 
to infinity as t ~ roo 

The following gi ve th e relations be tween the asymptotes of B* (p) a nd B (t) 

B*(ro) = B(O) , 
B* (0) = B (00) , 
B* (0) =i' B (00 ) , 

y ;:;,: 1 
y ;:;,: 2,y = 1 
1 < y < 2 

The first is readily obtained from Laplace transform theory without recourse to any relations 
given in this paper. The first two are always obeyed in passive response functions. The reason the 
second is not obeyed in the unstable class (1 < Y < 2) is simply because the rightmost singularities 
appear to the right of the imaginary axis of the p plane. 

TABLE 2. Summary 0/ asymptotics of B*(p) alld B(t) 

Stable class Unstable class 
(y = l , y ",,:n (l < Y < 2) 

Acousti c Thermal Acous ti c Thermal 

B *( O) Bs Bs(y- l +ya/ p ) 13,\' Bs (y- l +yrt /p) 
13( 00 ) 13s 13s (y - l +yal ) 13s ± (00 ) 13s ( y - l + yrtl) ± (00) 

13 *(00) 0 13T 13T 0 
13 (0 ) 0 /3 T 13T 0 

For mean ing of ± (00 ) , see text. 
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6. Concluding Remarks 

The analysis of the differential equation for acoustic propagation in a continuum of an inviscid, 
compressible, heat-conducting fluid yields solutions which display unexpected properties. Although 
the "apparent" steady-state, forced-vibration solutions correspond to a physically reasonable 
behavior in that they predict oscillations which always decay in the direction of propagation, the 
corresponding "transient" response functions predict a response (to step-function excitation) 
which at long times may oscillate with increasing amplitudes_ A regener~tive "transient" response 
implies that the exact solution of the wave equation oscillates with increasing amplitude which is 
unbounded in the limit of infinite time, and, accordingly, a true steady-state solution does not exist. 
Since we restrict "acceptable" solutions to those which predict physically realistic behavior for 
passive, or stable, fluids, we reject the regenerative, or unstable. solutions. 

The following statements are considered by the authors to be the most important consequences 
of the foregoing analysis: 

1. Contrary to the popular concept, the phase velocity can never vary continuously with 
frequency from adiabatic to isothermal values in a compressible, inviscid, heat-conducting fluid, 
except when the ratio of specific heats is exactly equal to two. 

2. Propagation within the above fluid is stable only when either of the following conditions hold: 

(i) 1'= 1 

or 

(ii) 1';::' 2. 

With the unstable class (1 < l' < 2) the "steady-state" phase velocity of the acoustic branch 
appears to vary continuously with frequency from adiabatic to isothermal values. With this class 
the apparent steady-state solution is actually conjugate to a regenerative "transient" solution 
unbounded in the limit as t ~ 00. 

With fluids where the ratio of specific heats lies between the values one and two, stability may 
be achieved by the inclusion of a minimum viscosity. In a previous paper [1] the stability criteria 
were developed in terms of thermophysical properties applicable to all values of l' in this more 
general case. These requirements are summarized as follows: 

1'=1 
or 

1' > 1 

where v and YJ are the bulk and shear viscosities. Either of the above conditions is sufficient to 
insure stability, and these two are the only stable cases. 

Although the in viscid fluid is a hypothetical one (since all fluids presumably exhibit a finite 
viscosity), the unstable fluids cannot be stabilized by the inclusion of a viscosity of infinitesimal 
magnitude. The results from reference [1] clearly show that a lower bound exists on viscosity to 
insure stability when 1 < l' < 2. The above stability requirements were found to be obeyed for all 
the fluids checked except the molten metals, including mercury, and possibly the superfluids. 
These results indicate that in some cases different assumptions would have to be made in deriving 
the propagation equation (Kirchhoff-Langevin equation) for compressible, viscous, heat-conducting 
fluids. 

In general an alternative evaluation of stability may be done by an appropriate qualitative anal
ysis using the Kronig-Kramers [23], or the equivalent Ginzberg [24], relations, which relate the real and 
imaginary parts of passive complex functions. (The Ginzberg relations apply specifically to velocity 
and absorption.) In this manner it is often possible to relate the sign of one complex component 
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to the sign of the trend of the other. For example, referring to figures 2 and 3c, it is possible to show 
that B' (acoustic) must be monotonically decreasing, and B' (thermal), monotonically increasing, 
with frequency for stable propagation. These trends are not obeyed in figure 2 because correspond· 
ing propagation would be unstable. The results with respect to stability are equivalent to those from 
the foregoing analysis because the Kronig-Kram ers relations imply the existence of all singularities 
on, or to the left of, the imaginary axis of the complex p plane. 

The results of thi s work and those from the more general case [1] indicate the possibility that 
the apparent steady-state relations obtained from either phenomenological or molecular theories 
may be inconsistent with stable propagation. In particular, whenever thermoconductivity is included 
in a model, stability may be ques tionable. As illustrated here, the fact that the apparent steady
s tate solutions predict diminishing intensity in the direction of propagation is necessary, but not 
s ufficient, for stable propagation. 

7. Appendix. Derivation of the Propagation Equation 

Equation (1) of the text may be obtained from the hydrodynamic equations [25] applicable to a 
Newtonian fluid under very general conditions. These equations are the equation of continuity, 
the Navier-Stokes equation, and the Fourier-Kirchhoff-Ne umann energy equation. After dropping 
viscosity terms and linearizing (replacing D/Dt by a/a t, dropping produc ts of derivatives, and 
taking p constant when it appears in a product with a quantity which goes to zero with vainishing 
motion) , these equations for motion in the x direction are 

ap+ p av = o 
at ax (A.I) 

av aP p -=--
at ax (A.2) 

(A.3) 

where v, e, P, and e are the velocity, temperature, pressure, and internal energy per unit mass, 
respectively. 

For an inviscid fluid we take e = e(p, P) and 8 = 8(p , P) to be single-valued functions of the 
indicated arguments. From eqs (A.2) and (A.3) the following ordinary thermodynamic relations are 
·implied: 

(~) = yBsC v 
aP p exP 

Expanding eq (A.3) by the chain rule, we obtain 

( ae ) ap + (~) ap __ P av (ae) a2p (!!!!.) a2p 
p ap p at p aP p at - ax + K ap p ax 2 + K aP p ax 2 

in which the derivatives operating on e are removed by substituting the above thermodynamic 
relations , and those on 8, by substituting the definitions 

Bs =!' (~) =~ (~) 
p aP s yp aP 8' 
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Differentiation of this result with respect to x and t and substitution of eqs (A.I) and (A.2) to replace 
aP/ax and ap/at gives 

(A.4) 

Equation (1) of the text may be obtained by substituting auf at for v. One time derivative may 
be integrated out by taking a definite integral from - 00 to t and setting u(x, - (0) and all of its 
derivatives equal to zero. The result (eq (1) of text) is simply a substitution of u for v in eq (A.4). 
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