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A number of results on the normal subgroup structure of the classical modular group is announced. A typical result
is that a normal subgroup of square-free index is necessarily of genus 1, apart from 4 exceptions.
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1. Introduction

In this note we summarize the results of some work on the normal subgroups of the classical
modular group I', which is a continuation of the work begun in [1]! and [4]. We may regard |" as
the free product of a cyclic group of order 2 and a cyclic group of order 3; I'= {x} * {y}, x2=y3=1.
The number of normal subgroups of I' of index w will be denoted by N(w). If G is any subgroup
of I', G’ will denote its commutator subgroup, and G? the fully invariant subgroup of G generated
by the pth powers of the elements of G. The level of G is the least positive integer n such that
(xy)"eG. If G is a normal subgroup of index w = 6 and n is its level, then the genus of G is given by

g=1+u(n—=6)/12n,

and the number of parabolic classes of G by

t=u/n.

Except for the groups I', I'2, or I'3, the index of a normal subgroup is a multiple of 6.
The commutator subgroup I’ of I' is a free group of rank 2, freely generated by

a=xyxy?, b=xy2xy.

The normal subgroups of I' of genus 1 (alternatively, of level 6) have been completely described
in [5]. Any such subgroup G lies between I'" and I'” and may be described uniquely by the triplet
of integers (p, m, d), where p>0,0<m<d—1, m*+m+1=0 mod d. G is of index 6dp2in I’
and consists of all words w of I'" satisfying

eq(w) =0 mod p, ey(w) = meq(w) mod dp,

where e, (w), ey(w) are the respective exponent sums in a and b of w.
We also let G, be the intersection of all normal subgroups of I' containing

{ay) 2k, (20 s (evn ) Bl
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Going over to the representation of I' as LF (2, Z), we define the principal congruence sub-

group I'(n) as the totality of elements (a Z) €l” such that
c

a—=di="-=lEmodin; b=c=0 mod n.

2. The Results

We now state the principal results obtained. Throughout this section G is a normal subgroup
of I' of index w, level n, genus g, and having ¢ parabolic classes.

(1) Suppose that w is square-free. Then either G=T", I'2, T'3, or I'(2), or else G is of genus 1
and every prime divisor of u/6 is =1 mod 3.

(2) Define f(u) as 1 if there is a normal subgroup G of index w with solvable quotient group
I'/G, and 0 otherwise. Then

K> oo e

i S F(w)=0.

(3) Let p be a prime, p =—1 mod 3, and suppose that p > r. Then there is no normal sub-
group of I' of index pr.

(4) If I'/G is nilpotent then it is abelian, and G must be T, T'2, '3, or I'"".

(5) Let p be a prime, p =1 mod 12. Then there are no normal subgroups of I" having 2p
parabolic classes.

(6) Let p be a prime >84, p =—1 mod 3; and let n be any positive integer. Then there are
no normal subgroups of I' of genus 1+ p™.

(7) Let p be a prime >5, and suppose that u=6p2. Then G must be one of the following groups:
groups:

@ T(2)rr(2)'.

() (G2, @ 1)

(i) (1, mq, p?), (1, m2, p?), where p =1 mod 3 and m,, ms are the solutions of m2+m—+1=0

mod p2.
Thus
N(6p?) =3+ (p/3), p prime,p > 5.

(8) Let p be a prime > 11. Then N(12p2) =0.

(9) Let p be a prime > 11. Then the only normal subgroup of T of index 12p3 is ['(3)P1'(3)".
(10) N(72)=2, N(78)=2, N(84) =0, N(90) =0.
(11) There is just one normal subgroup of I' of genus 2: namely G4, ».
(12) The normal subgroups of I' with ¢ parabolic clasese, t <5, are the following:

=l g Il 1P 08, 1P

t =2 : none.

t=3:1(2), (1, 1, 3).
t=4:(2,0,1),1(3), Gs, 4.

t =15 : none.

3. Some Remarks

Perhaps the most striking results are the first two. A generalization of (2) with a precise
estimate for the density function is in course of publication ([2]). As for (1), we note that if G is any

122



finite group of square-free order generated by elements x, y such that x>=y*=1, then (xy)5= 1.
This is so since the second commutator subgroup G” is necessarily {1} (p. 148 of [3]), and

a = xyxy%G', b= xy*xyeG’,
(xy)® = ab-la1beG".

The result (1) is now an easy consequence.
The other results are of varying degrees of difficulty, but generally present no special problems.
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