JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 74B, No. 2, April–June 1970

Normal Subgroups of the Modular Group*

Leon Greenberg** and Morris Newman

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(July 2, 1969)

A number of results on the normal subgroup structure of the classical modular group is announced. A typical result is that a normal subgroup of square-free index is necessarily of genus 1, apart from 4 exceptions.

Key words: Genus; index; modular group; normal subgroups.

1. Introduction

In this note we summarize the results of some work on the normal subgroups of the classical modular group Γ , which is a continuation of the work begun in [1]¹ and [4]. We may regard Γ as the free product of a cyclic group of order 2 and a cyclic group of order 3; $\Gamma = \{x\} * \{y\}, x^2 = y^3 = 1$. The number of normal subgroups of Γ of index μ will be denoted by $N(\mu)$. If G is any subgroup of Γ , G' will denote its commutator subgroup, and G^p the fully invariant subgroup of G generated by the pth powers of the elements of G. The *level* of G is the least positive integer n such that $(x\gamma)^n \epsilon G$. If G is a normal subgroup of index $\mu \ge 6$ and n is its level, then the genus of G is given by

$$g = 1 + \mu (n-6)/12n$$
,

and the number of parabolic classes of G by

 $t = \mu/n$.

Except for the groups Γ , Γ^2 , or Γ^3 , the index of a normal subgroup is a multiple of 6.

The commutator subgroup Γ' of Γ is a free group of rank 2, freely generated by

$$a = xyxy^2, \qquad b = xy^2xy.$$

The normal subgroups of Γ of genus 1 (alternatively, of level 6) have been completely described in [5]. Any such subgroup G lies between Γ' and Γ'' and may be described uniquely by the triplet of integers (p, m, d), where p > 0, $0 \le m \le d-1$, $m^2 + m + 1 \equiv 0 \mod d$. G is of index $6dp^2$ in Γ and consists of all words w of Γ' satisfying

$$e_a(w) \equiv 0 \mod p$$
, $e_b(w) \equiv me_a(w) \mod dp$,

where $e_a(w)$, $e_b(w)$ are the respective exponent sums in a and b of w.

We also let $G_{k,m}$ be the intersection of all normal subgroups of Γ containing

 $(xy)^{mk}$, $(yx)^{k}(xy)^{-k}$.

^{*}This paper was written while the first author held NSF Grant CP8919.

^{**}Present address University of Maryland, College Park, Md. 30740.

¹ Figures in brackets indicate the literature references at the end of this paper.

Going over to the representation of Γ as LF(2, Z), we define the principal congruence subgroup $\Gamma(n)$ as the totality of elements $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \epsilon \Gamma$ such that

$$a \equiv d \equiv \pm 1 \mod n$$
, $b \equiv c \equiv 0 \mod n$.

2. The Results

We now state the principal results obtained. Throughout this section G is a normal subgroup of Γ of index μ , level n, genus g, and having t parabolic classes.

(1) Suppose that μ is square-free. Then either $G = \Gamma$, Γ^2 , Γ^3 , or $\Gamma(2)$, or else G is of genus 1 and every prime divisor of $\mu/6$ is $\equiv 1 \mod 3$.

(2) Define $f(\mu)$ as 1 if there is a normal subgroup G of index μ with solvable quotient group Γ/G , and 0 otherwise. Then

$$\lim_{x\to\infty}\frac{1}{x}\sum_{\mu\leqslant x}f(\mu)=0.$$

(3) Let p be a prime, $p \equiv -1 \mod 3$, and suppose that p > r. Then there is no normal subgroup of Γ of index pr.

(4) If Γ/G is nilpotent then it is abelian, and G must be Γ , Γ^2 , Γ^3 , or Γ' .

(5) Let p be a prime, $p \equiv 1 \mod 12$. Then there are no normal subgroups of Γ having 2p parabolic classes.

(6) Let p be a prime > 84, $p \equiv -1 \mod 3$; and let n be any positive integer. Then there are no normal subgroups of Γ of genus $1+p^n$.

(7) Let p be a prime >5, and suppose that $\mu = 6p^2$. Then G must be one of the following groups: groups:

(i) $\Gamma(2) {}^{p}\Gamma(2)'$.

(ii) (p, 0, 1).

(iii) $(1, m_1, p^2), (1, m_2, p^2)$, where $p \equiv 1 \mod 3$ and m_1, m_2 are the solutions of $m^2 + m + 1 \equiv 0 \mod p^2$.

Thus

$$N(6p^2) = 3 + (p/3), p \text{ prime}, p > 5.$$

(8) Let p be a prime > 11. Then $N(12p^2) = 0$.

(9) Let p be a prime > 11. Then the only normal subgroup of Γ of index $12p^3$ is $\Gamma(3)^p\Gamma(3)'$.

(10) N(72) = 2, N(78) = 2, N(84) = 0, N(90) = 0.

(11) There is just one normal subgroup of Γ of genus 2: namely $G_{4,2}$.

(12) The normal subgroups of Γ with t parabolic classes, $t \leq 5$, are the following:

$$t = 1 : \Gamma, \Gamma^{2}, \Gamma^{3}, \Gamma'.$$

$$t = 2 : \text{none.}$$

$$t = 3 : \Gamma(2), (1, 1, 3).$$

$$t = 4 : (2, 0, 1), \Gamma(3), G_{3, 4}$$

$$t = 5 : \text{none.}$$

3. Some Remarks

Perhaps the most striking results are the first two. A generalization of (2) with a precise estimate for the density function is in course of publication ([2]). As for (1), we note that if G is any

finite group of square-free order generated by elements x, y such that $x^2 = y^3 = 1$, then $(xy)^6 = 1$. This is so since the second commutator subgroup G'' is necessarily {1} (p. 148 of [3]), and

$$a = xyxy^{2}\epsilon G', \quad b = xy^{2}xy\epsilon G',$$
$$(xy)^{6} = ab^{-1}a^{-1}b\epsilon G''.$$

The result (1) is now an easy consequence.

The other results are of varying degrees of difficulty, but generally present no special problems.

4. References

[1] Greenberg, Leon, Note on normal subgroups of the modular group, Proc. Amer. Math. Soc. 17, 1195-1198 (1966).

[2] Greenberg, Leon, and Newman, Morris, Some results on solvable groups, Arch. Math. (to appear).

[3] Hall, Marshall, The Theory of Groups (The Macmillan Company, New York, 1959).

- [4] Newman, Morris, Classification of normal subgroups of the modular group, Trans. Amer. Math. Soc. 126, 267-277 (1967).
- [5] Newman, Morris, A complete description of the normal subgroups of genus one of the modular group, Amer. J. Math. 86, 17-24 (1964).

(Paper 74B2-324)