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This paper calls attention to the equivalence between two well-known mathematical ideas: con-
traction mappings (in the sense of Banach) and asymptotic stability. The equivalence is formalized by
defining a flow (representing the possible movements over time of some system through its state space)
as a continuous one-parameter semigroup of operators on a metric space, and then showing that these
operators are all contractions (in suitably revised metrics) if and only if there is a uniformly asymptot-
ically stable equilibrium point. Generalizations to other operator semigroups are also given.
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1. Introduction

Our aim is to point out, and to make explicit, the relationship between two well-known mathe-
matical ideas: contraction mappings (in the sense of Banach) and asymptotic stability. In this
preliminary section we collect the relevant definitions and background material, and state our-
principal results. The proofs of these results are given in the following section, and various generali-

zations are given in the concluding part.
Let (X, d) be a metric space, and recall that a map f: X — X is called a contraction of (X, d)

if there exists Ae(0, 1), known as a contraction constant for f, such that
d(f(x), f(y)) < Nd(x, y)

for all x, yeX. (Such an f'is necessarily continuous.) For present purposes, the Banach Contraction

Principle can be conveniently stated as follows:
THEOREM A: Let f be a contraction of a complete * metric space (X, d). Then there exists £€X

such that
i) f(&)=¢,
@) () — & for each xeX,
i) f(U) — {¢} Sfor some neighborhood U of &.

It is not difficult to see a connection between conditions (i), (ii), and (iii), and the definition of
asymptotic stability. This connection is formalized below. The main tool is the following converse

to Theorem A, proved by the author in [1]: 2
THEOREM B: Let f be a continuous self-mapping of a metrizable topological space X, which for
some £€X satisfies the three conditions of Theorem A. Then for each \e(0, 1) there exists a metric

*Present address: IBM World Trade Corporation, 821 United Nations Plaza, New York, New York 10017.
! The completeness hypothesis is inessential, but its omission would require more complicated statements involving equivalent Cauchy sequences.

2 Figures in brackets indicate the literature references at the end of this paper.
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da, which is compatible with the topology of X and can be chosen complete if X admits a complete
metric, such that f is a contraction of (X, d\) with contraction constant \.

Now let (X, d) be a metric space, and S a commutative topological semigroup (written addi-
tively) with zero element. Then a family {7:seS} of continuous self-mappings of X (not necessarily
homeomorphisms) will be called an S-semigroup of operators on X if it obeys

To(x) =x xeX,
the semigroup condition

To(Ti(x)) = Tsse(x) s, teS; xeX,

and the continuity condition that for each teS,
sup {d(T¢(x), Ts(x)):xeX}—0 as s—1t. (1.1)

The semigroup of operators will be called contractive if for some \e(0, 1) there is a family {d:seS}
of metrics of X, each giving the same topology as that of (X, d), such that T is a contraction of
(X, ds) with contraction constant \ for each seS — {0}. (It is natural to ask whether d; can be chosen
independent of s. Such questions are addressed in [2] and [3].)

In the motivating situations X is the space of possible “states’ of a system whose evolution is
“stationary” or “autonomous’ (in the differential-equation case, x=/f(x) rather than x=f(x, t)),
while S is a subsemigroup of the additive semigroup R* of nonnegative real numbers. Thus we have
the interpretation

Ts(x) = state of system at time s = 0

if x is its initial state.

THEOREM 1: For an R*-semigroup {T::teR*} of operators on X to be contractive, it suffices (and
is clearly necessary) that some one T, obeys the three conditions of Theorem A.

Extensions to more general S will be given in the final section. We turn now to the definition
of asymptotic stability. In view of the interpretation of Ts(x) given above, it is natural to call &eX
an equilibrium state if it is a common fixed point of the semigroup of operators, i.e.,

Ty (&) =¢ for seS.

For this to be true, it suffices that some T; have ¢ as unique fixed point, since then for any seS

Ts(&)=Ts(T(&)) =Ts+:(&) =T15(€) =T1(Ts(§))

so that T(¢) is a fixed point of Ty, implying T5(¢) = ¢ as desired. In this connection note that (i)
and (ii) of Theorem A imply that £ is the only fixed point of f.

Recall that an equilibrium state ¢ is called stable if for each neighborhood V' of ¢ there is a
neighborhood W of ¢ such that

xeW implies Ts(x)eV for all seS.

For the case SCR*, the stable equilibrium state ¢ is called asymptotically stable if there is a
neighborhood U of ¢ such that

xeU implies T(x) — & as s—> o,
and is called uniformly asymptotically stable if U can be so chosen that

T,(U) = {¢} as s .
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The relation between this concept and that of a contraction mapping is given in the second of our
principal results:

THEOREM 2: The equilibrium state ¢ of an R*-semigroup of operators is uniformly asymptot-
ically stable if and only if ¢ has a neighborhood Xy C X such that the restriction of the semigroup
to Xy is a contractive semigroup.

In many applications & will necessarily have a compact neighborhood (e.g., when X is a finite-
dimensional Euclidean space). It will be apparent from the proofs that for such cases the continuity
condition (1.1) can be weakened to a requirement that, for each compact subset C of X and each
teS,

sup {d(T¢(x), Ts(x)):xeC}—0 as s—t.

2. Proofs of Theorems 1 and 2

Throughout this section {7s:seR*} is an R*-semigroup of operators on metric space (X, d),
and for xeX and r > 0 we set
S(x, r)={y:yeX, d(x, y) <r}.

The proofs of theorems 1 and 2 both use the following lemma.
LEMMA: Let £€X be an equilibrium state. For each t > 0 and m > 0, there is a 8 > 0 such that

Ts(S(¢,8)) CS(&, 1) forO0<s<ut.

Proor: If not, there is a t > 0, an n > 0, a positive sequence §, —> 0, and associated sequences
of points x,€S (£, 8,) and of numbers s(n)e[0, ¢] such that

Ts-(n)(xn)e/\/ _S(§7 7)) .
By passing to a subsequence if necessary, we may suppose that s(n) — se[0, ¢t]. Then

(l(f, Ts(n)(xn) ) = (I(T\(f) ) T.\'(—\’n) ) an (1(7;('\':1) ’ ’11.\-(1:)(—\’") Ik

The limit as n— of the first term on the right vanishes because x,— ¢, while the continuity of the
semigroup of operators ensures the same for the second term. So we have a contradiction, com-
pleting the indirect proof of the lemma.

For the proof of Theorem 1, it suffices (by Theorem B) to assume that some 7} obeys conditions
(i), (ii), and (iii) of Theorem A, and to show that any T (s > 0) does the same. It was shown below
the statement of Theorem 1 that T satisfies (i), with the same fixed point & as for 7. Note thatt > 0,
since Ty cannot satisfy (ii) . . . except for the trivial case X = {£} when the theorem is true anyhow.

Condition (ii) for T is verified by applying the lemma in the following way: Consider any xeX
and any m > 0. By (ii) for T, we can choose N > 0 so large that

d(Ty(x), €) <8, forn=N,
where & is related to t and ) as in the lemma. Next choose M > 0 so large that
ms = Nt form = M.

Then for m = M we have
ms=nt+o (n=N,0<o0<1t),
so that by the lemma
Ts(S(¢,8)) C S m),
while

Tsm(x) T T.s'm(X) = Trr(Tll(x)) ET"(S(g’ 5))’
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hence form = M =M (n), T (x) €S(&, ), proving (ii).
To prove (iii) for T, consider any n > 0, let § be related to ¢ and 7 as in the lemma, and (since
(iii) holds for Ty) let U be a neighborhood of ¢ such that T#(U)—{¢}. Choose N >0 so large that

Te(U) C S(¢, 0) forn =N,

and M so large that ms > Nt for m = M. Then for m = M we can proceed as above to
prove T¢(U) C S(¢, m), completing the proof.

We turn now to the first half of the proof of Theorem 2. Assuming the existence of a neighbor-
hood Xy of the equilibrium state ¢ such that the restriction of the semigroup to X is contractive, we
wish to show that ¢ is uniformly asymptotically stable.

Let V' be any neighborhood of &, consider any ¢t > 0, and choose n > 0 such that

S(&,m) CV N Xo.

Then choose 8 related to ¢ and 7 as in the lemma, implying 8 < 7. There is a metric d; on Xy, yielding
the same topology as d, such that 7/|X, is a contraction on (Xy, d;). Thus there is a A > 0 such that

W = {y:yeXo, di(y, &) < A} C S(¢, 8)
and also such that T;(W) C W. Then for any s = 0, written

s=nt+ao (n=0,0<o0c<t),
we have

Ts(W)=T(Tp(W)) C To(W) C Ts(S(£,8)) C S, m) CV,

proving that ¢ is stable.
Moreover, there is a neighborhood U of ¢ (independent of V) such that U C X,, T:(U) C Xo,
and T(U) — {&}. Given V, choose m and § as above. Pick N > 0 so large that

IFEDREES (ER0) forn=N.
Then any s = Nt can be written

s=nt+o (n=N,0<s0<1t)
so that
L)y =T (T2 ())& T (S (£5:8) Jo L :BLE, m)y i€V,

Hence Ti(U)—{&} as s—>o, implying that ¢ is uniformly asymptotically stable.
For the converse half of Theorem 2, assume ¢ is a uniformly asymptotically stable equilibrium
state, and define
Xo = {x:xeX, Ts(x)—>¢ as s—> o},

The definition of asymptotic stability ensures that X, contains a neighborhood of £, and so is itself
such a neighborhood. The semigroup property implies that 75(X,) C X, for each seR*, so that
{Ts|Xo:s€R*} is an R+-semigroup of operators on Xj.

Choose any ¢t > 0. The definition of X, ensures that 7;|X, satisfies conditions (i) and (ii) of
Theorem A, so only (iii) need be verified. The uniform asymptotic stability of & ensures the existence
of a neighborhood U (in Xy, and hence in X) of £ such that T5(U) — {£&} as s — o, and hence in par-
ticular such that 77(U) =T, (U) — {&}. So (iii) also holds, and an appeal to Theorem B completes
the proof of Theorem 2.
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3. Remarks and Generalizations

Our first group of remarks pertain to extending Theorem 1 from S=R+* to other semigroups.
We begin with the discrete case, i.e., S is algebraically arbitrary but has the discrete topology
(more precisely, the topology of S is irrelevant). The simplest instance is that in which S is the
semigroup I+ of nonnegative integers, a situation arising for example in connection with sampled-
data systems. The next theorem generalizes a result, for S=1*, proved in [1] as a simple corollary
to Theorem B. Its statement uses the fact that the definition of “contractive,” introduced earlier
only for semigroups of operators on (X, d), is equally applicable to any family of self-mappings
of (X, d).

THEOREM 3: The semigroup {Ts:seS} of operators is contractive if and only if there is a
generating subset T of S such that {T,:teT} is contractive.

Proor: The “only if”’ direction is obvious; just take 7=S. Suppose now that {T;:teT} is
contractive, where T generates S. Consider any seS —{0}. Since T is a generating set, we have

s=t(MEe@) 0 R t(m)
where each t(j)eT'—{0}. Thus, with composition of operators written multiplicatively, we have
Ts:Tr(l)Tr(z) S Tt(m)-

Each Ty;) has a unique fixed point, and since they commute they have the same fixed point &.
Thus T has ¢ as fixed point, and so satisfies condition (i) of Theorem A.

To each Ty there corresponds a neighborhood Uj of ¢ such that Tjf,) (U;) = {&}. As shown
in the proof of Theorem B in [1], U; can be assumed chosen so that 7;(U;) C Uj. Let

m
U= U; and note that, by commutativity,
1

I amdite iy oy ool s

Also, let V' be any neighborhood of &.

Consider any xeX. Choose N so large that, for 1 <j < m,

(@) Ty;(Up) CcUNVCU, forn=N,
(b) Thmy(x)eU NV C Upn-, forn = N.
Then forn=N,
I8tyelpy Ty ol XUAYFY © . 0 C Ty AU R CUOVCF,

proving that T¢(x)—¢.

If N is chosen so large that (a) holds for 1 <j < m, then the same inclusions show that
T#(U) C V forn = N, so that T¢(U)—{¢} and an application of Theorem B completes the proof.

For the case S=1*, where T can be taken to have a single element, there is clearly an analog
of Theorem 2 relating contractiveness to uniform asymptotic stability.

The next case treated is essentially an amalgam of the discrete situation and the case S= R*.

THEOREM 4: Let S be a convex cone, with 0 as apex, in a real topological vector space. Then an
S-semigroup {T : seS } of operators is contractive if and only if there is a subset T of S such that
{T, : teT}is contractive and each se€S is a nonnegative finite linear combination of members of T.

Proor: As before, the choice T=S proves the *
with the specified properties. Consider any seS —{0}: we have

‘only if””. Now suppose there is a subset T’

s=ait(l)+ " . . +tant(m)
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where ajeR*—{0} and ¢(j) €T for 1 <j < m. Define a subset = of S by
2={ct(1)+ .. .+cnt(m):0<¢;<1 for 1<j<m},

so that 0eX and X is sequentially compact. From this compactness it is easy to verify the following
analog of the lemma proved in Section 2: For any > 0 there is a § > 0 such that

A @SS, ) for all g€,

where ¢ is the equilibrium state.
For each integer n >0, let n(j) be the largest integer not greater than na;, so that n—
implies n(j) = < for1 <j< m. Then

To=Ton T - - TH,

where o (n)e2.
Choose neighborhoods U; of ¢ such that T7; (U;) = {¢}, Ti;)(Uj) C Uj, and U; C S(€, 3).
Then the proof of Theorem 3 is readily modified to show, for any > 0, that for any xeX,

T} (x)eTo(S(€, 8)) C S(£, m)

for all large enough n, and that for U= ﬁ U;,
1
T3(U) C To)(S(&, 8)) C S(€, m)

for all large enough n. This and an application of Theorem B complete the proof.
There is no exploration of analogous extensions of Theorem 2, since the author has not found
an intuitively satisfying interpretation of the concept s— ® so essential in stability considerations.
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