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Th is paper call s attention to the equ ivalence be twee n two we ll-known ma th e ma t.i ca l ideas : con­
t .. ac ti on mappings (in the sense of Banach) and asy mptoti c s tab ili t. y. The equiva le nce is form a li zed by 
de fin ing a Aow (represe nting the poss ible movements ove r tim e of some sys te m through it s s tat e s pace) 
as a co nt inuou s o ne-pa ra me te r semigroup of operators on a me tri c s pace, and the n showing th at these 
opera to rs a re all contrac tions (in suitab ly re vi se d me tri cs) if and o n ly if the re is a un iform ly asympt.ot­
ic a ll y s tab le equ ili brium point. Gene ra liza t. ions to o.the r ope rator se mi grollps a re a lso given. 
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1 . Introduction 

Our aim is to point out, and to make ex pli cit, the relations hip between two well-known mathe­
matical ideas: contraction mappings (in the se nse of Banac h) and asymptotic s tability . In thi s 
preliminary section we coHect th e relevant de finition s and background material , and s tate our ' 
principal re sults . Th e proofs of these res ults are given in the following sec tion, and various generali ­
zations are give n in the concludin g part. 

Let (X, d) be a me tri c space, and recall that a map/: X ~ X is called a contraction of (X, d) 
if there exists AE( 0, 1) , known as a contraction constant fori, s uc h that 

d(f(x),f( y » ~ Ad(x, y) 

for all x, yd. (Such an / is necessarily continuous.) For present purposes, the Banach Contraction 
Prin ciple can be conveniently s tated as follows: 

THEOREM A: Let f be a contraction of a complete I metric space (X, d). Then there exists gEX 
such that 

(i) f(O =~, 

(ii) f"(x)~~ 

(jii) fn(U) ~ {O 
for each XEX, 

for some neighborhood U of~. 

It is not difficult to see a connection between conditions (i), (ii), and (iii), and the definition of 
asymptotic stability. Thi s connec tion is formalized below. The main tool is the following converse 
to Theorem A, pro ved by the author in [1]: 2 

THEOREM B: Let f be a continuous selfmapping of a metrizable topological space X, which for 
( some ~EX satisfies the three conditions of Theorem A. Then for each AE(O, 1) there exists a metric 

*Presenl address: I BM World Trade Corpora tion , 821 Unit ed Nat ions Plaza, New York, New York lOOn. 

I The co mplet e ness hYI)othes is is inesse nt ia l, but it s o mission wou ld requ ire more co mpli ca ted stateme nts invo lvi ng C(lu ivalent Cauc hy sequences . 
~ Figures in b:rac kc ts indica te th e lit e ra lure references al the end of Ihi s paper. 

115 

382-233 0 - 70 - 4 



dx, which is compatible with the topology of X and can be chosen complete if X admits a complete 
metric, such that f is a contraction of (X, dx) with contraction constant A. 

Now let (X, d) be a metric space, and S a commutative topological semigroup (written addi· 
tively) with zero element. Then a family {Ts:SES} of continuous self·mappings of X (not necessarily 
homeomorphisms) will be called an S-semigroup of operators on X if it obeys 

the semigroup condition 
s, tES; xEX, 

and the continuity condition that for each tES , 

sup {d(Tt(x), Ts(x»:xEX}~O as s~ t. (1.1) 

The semigroup of operators will be called contractive iffor some AE(O, 1) there is a family {ds:sES} 
of metrics of X, each giving the same topology as that of (X, d), such that Ts is a contraction of 
(X, ds ) with contraction constant A for each SES - {O}. (It is natural to ask whether ds can be chosen 
independent of s. Such questions are addressed in [2] and [3].) 

In the motivating situations X is the space of possible "states" of a system whose evolution is 
"stationary" or "autonomous" (in the differential-equation case, x = f(x) rather than x = f(x , t», 
while S is a subsemigroup of the additive semigroup R + of nonnegative real numbers. Thus we have 
the interpretation 

Ts(x) = state of system at time s ~ 0 

if x is its initial state. 

THEOREM 1: For an R + -semigroup {Tt:tER +} of operators on X to be contractive, it suffices (and 
is clearly necessary) that some one T t obeys the three conditions of Theorem A. 

Extensions to more general S will be given in the final section. We turn now to the definition 
of asymptotic stability. In view of the interpretation of Ts (x) given above, it is natural to call ~EX 
an equilibrium state if it is a common fixed point of the semigroup of operators, i.e. , 

for SES. 

For this to be true, it suffices that some T/ have ~ as unique fixed point, since then for any SES 

so that Ts (~) is a fixed point of Tt, implying Ts (~) = ~ as desired. In this connection note that (i) 
and (ii) of Theorem A imply that ~ is the only fixed point off. 

Recall that an equilibrium state ~ is called stable if for each neighborhood V of g there is a 
neighborhood W of g such that 

XEW implies Ts(X )EV for all SES. 

For the case S C. R +, the stable equilibrium state g is called asymptotically stable if there is a 
neighborhood U of ~ such that 

XEU implies Ts(x) ~ ~ as s ~ co, 

and is called uniformly asymptotically stable if U can be so chosen that 

TsCU) ~ {g} as s~ co. 
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The relation between this concept and that of a contraction mapping is given in the second of our 
principal results: 

THEOREM 2: The equilibrium state t of an R +-semigroup of operators is uniformly asymptot­
icaLLy stable if and only if t has a neighborhood Xo C X such that the restriction of the semigrolLp 

to Xo is a contractive semigroup. 
In man y appli cations t will necessarily have a compact neighborhood (e.g., when X is a finite­

dime nsional Eucl idean space). It will be apparent from the proofs that for such cases the continuity 
conditi on (1.1) can be weakened to a requirement that, for each compact subset C of X and each 
u S, 

as s ---7 t. 

2. Proofs of Theorems 1 and 2 

Throughout this section {T.,:sER +} is an R +-semigroup of operators on metric space (X, d), 
and for xEX and r > ° we set 

Sex, r) = { y: yEX , d(x , y) :,,;; r}. 

The proofs of theorems 1 and 2 both use the following lemma. 
LEMMA: Let ~EX be an equilibrium state. For each t > ° and 7J > 0, there is a 8 > ° such that 

for ° ~ s :,,;; t. 

PROOF: If not , there is at > 0, an 7J > 0, a positive sequence 8 11 ---7 0, and associated seq ue nces 
of points XnES(g, 8,,) and of numbers s(n)E[O, t] suc h that 

By passing to a subseq ue nce if necessary, we may suppose that sen) ---7sE[o , t]. Then 

d(~,Ts(,,)(xlI)) :,,;; d( Ts(t) , Ts(Xn)) + d(Ts(x lI) , TS(II )(xlI )). 

The limit as n---7oo of the firs t term on the r ight vani hes because XII---7 ~ , while the continuity of th e 
semigroup of operators e ns ures the same for the second term. So we have a contradiction, com­
pleting the indirect proof of the lemm a. 

For the proof of Theorem 1, it suffices (by Theore m B) to assume that some Tt obeys co nditions 
(i), (ii), and (iii) of Theorem A, and to show that any Ts (s > 0) does the same. It was shown below 
the state ment of Theore m 1 that Ts sati sfies (i), with the same fixed point ~ as for T,. Note that t > 0, 
since To cannot satisfy (ii) ... exce pt for the trivial case X = {O whe n the theorem is true anyhow. 

Condition (ii) for Ts is verified by applying the lemma in the following way: Consider any xEX 
and any Tj > O. By (ii) for Tl , we can choose N> 0 so large that 

d(T;'(x) , g) < 8, for n;3 N, 

where 8 is related to t and Tj as in the lemma. Next choose M > 0 so large that 

The n for m ;3 M we have 

so th at by th e lemma 

while 

ms ;3 N t for m ;3 M. 

ms =nt +a (n ;3 N,O :";; a < t), 

Tln(X) = Tsm(x) = Tu(Tl'(x)) ETu(S(g, 8)), 
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hence for m ~ M = M (YJ), Tin (x) ES (g, YJ) , proving (ii). 
To prove (iii) for Ts, consider any YJ > 0, let 0 be related to t and YJ as in the lemma, and (since 

(iii) holds for Tt) le t U be a ne ighborhood of g s uch that T;' (U)-7{ o. Choose N > ° so large that 

T/'(U) ~ S(~, 8) for n ~ N , 

and M so large that ms > Nt for m ~ M. Then for m ~ M we can proceed as above to 
prove Til/(U) ~ S(~, YJ ), completing the proof. 

We turn now to the first half of the proof of Theorem 2. Assuming the existe nce of a neighbor· 
hood Xo of the eq uilib rium state g such that the restriction of th e semigroup to Xo is contractive, we 
wish to show that ~ is uniformly asymptotically s ta ble. 

Let V be a ny neighborhood of g, consider any t > 0, and choose YJ > ° s uch that 

S(g, YJ) ~ V n Xo. 

Then choose 0 related to t and YJ as in the lem ma, implying 0 ~ YJ. There is a metric d, onXo, yielding 
the same topology as d, s uch that T,IXu is a contraction on (Xu, dt ). Thus there is a ~ > 0 such that 

and also such that T/ (W) ~ W. Then for any s ~ 0, writte n 

s = nt + (T (n ~ 0, 0 ~ (T < t), 
we have 

proving that g is stable. 
Moreover, there is a neighborhood U of g (independent of V) such that U ~ Xo, T/(U) ~ Xo, 

and T;' (U) -7 {o. Given V, choose YJ an d 0 as above. Pick N > ° so large that 

T/'(U) ~ S(g, 0) for n ~N. 

Then any s ~ Nt can be written 

s=nt+(T (n ~ N, ° ~ (T < t) 
so that 

Hence T,,(U)-7{O as s-7 OO , implying that g is uniformly asymptotically stable. 
For the converse half of Theorem 2, assume g is a uniformly asymptotically stable equilibrium 

state, and define 
Xu= {x:xEX, Ts(x)-7g as S-7oo}. 

The definition of asymptotic s tability ensures that Xo contains a neighborhood of~, and so is itself 
suc h a neighborhood. The semigroup property implies that Ts(Xo) ~ Xo for eac h sER +, so that 
{TsIXo:SER +} is an R +-semigroup of operators on Xo. 

Choose any t > o. The definition of Xu ensures that T,IXo satisfies conditions (i) and (ii) of 
Theorem A, so only (iii) need be verified. The uniform asymptotic stability of g ensures the existence 
of a neighborhood U (in Xo, and hence in X) of g such that Ts( U) -7 {g} as s -700, and hence in par­
ticular such that T;'(U) = TntCU) -7 {O. SO (iii) also holds, and an appeal to Theorem B completes 

the proof of Theorem 2. 
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3. Remarks and General izations 

Our firs t gro u p of re ma rks pertain to ex te nding Theorem 1 from S = R + to oth er se m igrou ps. 
We begin with the discrete case, i. e., S is algebraically arbitrary but has the discrete topology 
(more precisely, the topology of S is irreleva nt). The simplest instance is that in whic h S is the 
se migroup [ + of nonnega tive integers, a situ ation ari sing for example in connection with sampled­
data systems. The next theore m genera]jzes a res ult, for S = [ +, proved in [1] as a sim pIe corollary 
to Theorem B. Its s ta te me nt uses the fact th at the definition of "contractive ," introduced earlie r 
only for semigroups of operators o n (X, d) , is equally applicable to any family of self-m appings 
of (X , d). 

THEOREM 3: The semigroup {Ts : SES} of operators is contractive if and only if there is a 
generating subset T of S such that {Tt : tET} is contractive. 

PROOF: Th e "only if" direction is obvious; just take T = S . Suppose now that {Tt :t ET} is 
contrac tive , where T ge nerates S. Consider any SES - {O}. Sin ce T is a generating set, we have 

s = t(l) +t(2) + . . . + t (m) 

where eac h t(j)ET- {O}. Thus, with co mposition of ope rators written multiplicatively, we ha ve 

Each T/ w has a unique fixed point , and sin ce they co mmute they have the same fixed point ~. 
Thus T8 has ~ as fixed point , and so sati s fi es condition (i) of Theore m A. 

To each T/ (j) there corres ponds a neighborh ood Uj of ~ s uch th at ~ ('j) (Uj ) --? {~ } . As shown 
in the proof of Theore m B in [1] , Uj can be ass um ed c hosen so that Tt(j) (Uj ) (;::; Uj • Let 
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U= (I Uj and note that , by co mllluta tivity, 

Also, le t V be any neighborhood of ~ . 

Con sider any xEX. Choose N so large th at , for 1 ~ j ~ m, 

fo r n ;;': N, 

fo r n ;;': N. 

Th e n for n ;;,: N , 

proving that TJ'(x)--?g. 
If N is chosen so large that (a) holds for 1 ~ j ~ m, then the same inclusion s show that 

Ti' (U) (;::; V for n ;;,: N, so that TJ' (U)--? {~} and an application of Theorem B completes the proof. 
For the case S = [+ , where T can be taken to have a single element , there is clearly an analog 

of Theorem 2 relating contractiveness to uniform asymptotic stability. 
The next case treated is essenti ally an amalgam of the dis crete situation and the case S = R+. 
THEOREM 4: Let S be a convex cone, with 0 as apex, in a real topo logical vector space. Then an 

S-semigroup {Ts : SES } of operators is contractive if and only if there is a subset T of S such that 
{Tt : tET} is contractive and each SES is a nonnegative finit e linear combination of members of T. 

PROOF: As before, the choi ce T = S proves the "o nly jf" . Now s uppose the re is a s ubse t T 
with the specified properti es. Con sider a ny SES - {O}; we have 

s=alt(l ) + ... +amt( m ) 
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where ajER+ -{O} and t(j)ET for 1 ~j~ m. Define a subset L of S by 

for 1 ~j~ m}, 

so that OEL and L is sequentially compact. From this compactness it is easy to verify the following J 
analog of the lemma proved in Section 2: For any YJ > 0 there is a 0 > 0 such that 

for all 

where ~ is the eq uilibrium state . 
For each integer n > 0, le t n (j) be the larges t integer not greater than naj, so that n ~ 00 

implies n (j) ~ 00 for 1 ~ j ~ m. Then 

where a(n)EL. 
Choose neighborhoods Vj of ~ such that T!(j) (Vj ) ~ {~}, T/(j) (Vj) ~ Vj, and Vj C S(~, 0). 

Then the proof of Theore m 3 is readily modified to show, for any YJ > 0, that for any xEX, 

m 
for all large enough n, and that for V = n Vj , 

for all large enough n. This and an application of Theore m B complete the proof. 
There is no exploration of analogous extensions of Theorem 2, since the author has not found 

an intuitively satisfying interpretation of the concept s -4 00 so essential in stability considerations. 
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