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Let [be an entire function satisfying for some integer p and some constant C 

N({2"/ )IIP ~ ((2"/ /P)IIP L Jo [(jI(re i8 )/ PdO ;;. C . L Jo fUl(re i9 ) 
)'=:0 )=N+l 

for s uffi ciently large r. Then [is of exponential type. Conversely, (1) is satis fi ed whenever [is periodic 
of exponential type. Similar conditions on the maximum moduli MJ(j) (r) yield the same result. The 
analogous condition on I[WI is also discussed. 
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1. Introduction 

An entire function, f(z), has a Taylor expansion about any point a in the complex plane of 
the form 

'" fez) = 2: a,,(z-a)" 
;= 0 

Since this series is absolutely convergent everywhere in the plane, lanl must approach zero 
as n approaches infinity. Consequently, there exists for each a, an index n(a) for which lanl is a 
maximal coefficient. B. Lepson [3]1 raised the question of characterizing entire functions for 
whidi n (a) is bounded in a. 2 In the sequel we shall consider certain interesting variations of 
Lepson's problem. Though some of the results of this paper can also be obtained from the Wiman· 
Valiron theory, we shall use a more elementary arid direct method which seems of interest in itself. 

2. Preliminaries 

We begin by defining the notion of bounded index and the related properties that we shall 
consider in the sequel. 

DEFINITION 1: An entire function IS said to be of bounded index if and only if, there exists 
an integer N, such that for all z 

_ max {IJi(z)lli!}>IP(z)IU!; 
1- 0, 1,2, .. . N 

(1) 

j=o, 1,2,3 ... , where fO)(z) denotes fez). 
The bounded index condition is closely related to the condition that for some integer N ~ 0, 

some C > 0, 

N 

2: Ifo (z) Iii ! ~ Clfil (z) IU!; j = N + 1, N + 2, 
i= O 

* An invited paper. 
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I Figures in hrackets indicate the literature references at the end of this pape r. 

2 Since the co mpletion of this paper a number of papers have appeared on this proble m. e.g., 14, 5] 
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We concern ourselves with a slight variation of (2); namely that for some integer N ~ 0, some 
C > 0, some ro > 0 and all z with Izl > ro, 

N 00 

L IfO(z) Iii! > C L Ifj)(z) Ilj!. (3) 
i=O j=N+l 

We also consider those variations of (3) obtained by replacing Ifo (z) I by 

p any positive integer, and by Mf(i)(r), the maximum ·modulus of fil on Izl = r, respectively. In 

order to simplify notation we let 0 (If I , a, b), O( L ' p, a , b) and O(Mf, a, b) denote 

b 

L Ifil(z) Iii!, 
j=a 

and 

respectively. 

b (f21T 
~a 0 

b L My) (r)/j! 
j =a 

., 
] . 

We shall show in the sequel that entire functions satisfying condition (3) or any of the condi· 
tions obtained from it by the substitutions suggested above are functions of exponential type. 

3. Entire Functions Satisfying (3) and Related Properties 

THEOREM 1. Let f be entire and C be a positive constant. If for i = 0, 1, 2, 
one of the following for all z with Izl sufficiently large: 

(a) 0(1{(l)1, 0, N) > CO(if~i)I, N + 1, (0) 

(b) 0 ( I (i), p, 0, N ) > C 0 ( I (i), p, N + 1, 00 ) 

for some positive integer p, 

(c) O(Mr<ij, 0, N) > CO(Mr(iJ, N + 1, (0), 

then f is of exponential type. 

., N, f satisfies 

PROOF: For convenience we choose C = 1. The proof for other C is similar. For any arbitrary 
entire F and any complex number A, we have, 

00 FUl (A) 
F(z) = L -.-, - (z-AV 

j = O J. 

Let n be any integer, a and g complex numbers with I g 1= 1. Choosing A = (n -1) g + a, z = ng + a 
and F = .fil we obtain 

Ifil (a+ ng) I :;;; O( Ifil(a + (n-1)g) 1,0, (0), (4) 

for i=O, 1,2, .... 
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Assume that hypothesis (a) holds. Then (4) yields 

Ij(;)(a + n() I :s; 2 O(IJW(a+ (n-l)() I, 0, N); 

i = O, 1,2, ... , N. 

One observes that for i :s; N 

N 

O( lfill, 0, N) = 2: Ifi+j)(z) llj ! 
j = O 

_ N If i +j ) (z) I (j + i) ! 
-2: ("+1)' ., 

j =o) • ). 

:s; ~ Ifll;z) I (2N)N 
1= 0 l. 

:s; 2. ~ If I; ;z) I (2N)N = 2N+tNNO (If I, 0, N). 

Equations (5) and (6) yield 

O(lf(a + n()I , 0, N):s; (N+1)2 N+1NNO (If(a + (n - 1)t) l, 0, N) . 

Letting A= (N+1)2N+ 1NN and using (7) recursively we have 

O( lf(a+ nOI , 0, N) < AnO(lf(a) l, 0, N). 

For la l < 1, we get 
O( lf(a+ nO 1,0, N) < CAn, C constant. 

Lettingz = a+n(, r =lzl we get 

If(z) 1< CA2T. 

Hence, f must be of exponential type. 
If (c) is assumed instead of (a) the argument is almost identical to the one above. 
If (b) is assumed instead of (a), then letting Mp(r) (or Mp(r, f)) denote 

we have as before 

One readily sees, by means of Cauchy's formula that for R > r> ° 

(5) 

(7) 

(8) 

(9) 

Furthermore it is easy to verify that Mp(R) (see Hardy [1]) is continuous and increases 
faster than any power of r whenever f is transcendental. 
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Letting R = log ~p(R) + r and applying a lemma of Bore [2 pp. 374-376], we get for some 

E > 0 that 

outside a set of r of finite measure. One can easily show however that if there exists an infinite 
sequence r1l such that 

M ( ) > e" I"" C f r" e ,,,~ 00, 

then there exists a set of r of infinite measure with the same property. Thus Mf(r) < C)..2r for 
sufficiently large r and our proof is complete. 

4. The Converse of Theorem 1 

In general the converse of Theorem 1 is not true, since one can easily find functions of order 

., ( z )" zero which do not satisfy (a). For example f= Do 1- n" . We do , however, have the following 

related theorem. 

THEOREM 2: A periodic function of exponential type satisfies (b) and (c) for sufficiently large 
rand i=O, 1,2, ... , N. 

PROOF: We prove (b). The proof for (c) is similar. Any such function g may be written as 

n 
g(z) = L [aj(e ijz + e- ijz ) + bj(eijz-e -ijz ) ] + C. 

j = 1 

Without any loss of generality we may assume that C=O. 
For g(K) we have: 

" g(K)(Z) = L (ij)K[aj(eijz + (-I)Ke-ijz ) + Me uz + (-I)K +le - ijz ) ] 

j = 1 

(10) 

(11) 

Now log Mp(r) is a convex function of log rand Mp(r) grows faster than any power of r (see 
Hardy [1]). Furthermore , one may assume without any loss of generality that Mp(l) = 1. Using 
these facts one can easily verify by means of the three circles theorem, that for any constant 
C and any E > 0 

(12) 

Thus, by (12), for any C, Mp(r, g,,(z)) > CMp(r , gj(z)) and consequently for any 8 > o. 

Mp(r,g(z)) > (l-8)M p(r,g,,(z))=(l-8)M p (r,g, (z)) 

for sufficiently large r. 
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Similarly (11) and (12) yield 

for j even and for j odd 

where 

MjJ(r, gU; (z)) "'" '~; (1- o)MjJ(r, g2), 
J. 

Using these inequalities , one computes for any integer N, WhICh we may assume to be even 
without any loss of generality, 

(13) 

for sufficiently large Izl = r. 
On the other hand (12) also yields 

for sufficiently large Izl = r. 
Thus , choosing N sufficiently larger than n our conclusion follows for g. It is clear that it 

follows for g(i), i= 1,2, ... , as well with N fixed. 
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