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Bounds on a Polynomial*

T. J. Rivlin**

(December 15, 1969)

Methods for computing the maximum and minimum of a polynomial with real coefficients in the
interval [0, 1] are described, and certain bounds are given.
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Introduction
Letp(x)=ao+aix+. . .+ ax" have real coefficients. If / is the interval [0, 1] and
M=max p(x), m=min p(x),
xel xel

we wish to study some methods of approximating m and M relatively easily. Apart from their in-
trinsic interest, such methods would seem to have application in computations using interval
arithmetic in which a basic operation is the determination of the range of a rational function with a
given interval as domain. The restriction of our discussion to the interval / entails no loss of gen-
erality, since any interval [a, b] can be mapped onto I by a linear function of x, and such changes
of variable leave the set of polynomials of degree at most n invariant.

Some estimates of m and M were given by Cargo and Shisha.! They first observe that if n =1

and J={1, . . ., k},

jeJ v

m == jlgl <m<M<m )= .
n p <A> kal Jlal <=m jilJX P\ % - Jlajl (1)
Then they note that p has a representation in Bernstein form, namely,

o ™Y (1 — yni
p(x)—]g) b]<]> (1 —x)n, &)

which leads immediately to the bounds

min b; < m < M < max b;, 3)
JeN JeN

where N={0, . . ., n}.

*An invited paper.
**Present address: IBM Research Center, Yorktown Heights, New York 10598.
1 Cargo, G. T., and Shisha, O., The Bernstein form of a polynomial, J. Res. Nat. Bur. Stand. (U.S.), 70B (Math. Sci.) No. 1, 79-81 (Jan—Mar. 1966).
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The numbers by, . . ., b, are determined by

@

: l

E =0, . .
i=0

., . @)

Our work is intended to be a sequel to the paper of Cargo and Shisha (see footnote 1). In
section 1, we give a sharper result than (1). Section 2 is devoted to a generalization of the repre-
sentation (2) and a subsequent improvement of (3), including estimates of the precision of the
bounds obtained for m and M, which are due, essentially, to S. Bernstein.2 The paper concludes
with section 3, containing some results in the case that the coefficients ao, . . ., a, are complex
numbers.

1. Estimates Using Function Values

THEOREM 1: Suppose 0=to<t; < . .. <ty=1, and dy=max (t;;;—t;), j=0, . . ., k—1,
then, if K={0, . . ., k}
. di ", d "
min p(t-,)—gmax p’®)|<msMs< max p(t,)—!—?max |p"(x)]. (5)
ieK xel xel

PROOF: Suppose p(¢) =M and

lt;i— &l < |ti—€|,i=0, . . ., k,

so that

dy
|t;— €l < =
According to Taylor’s formula, we have

;—&)*

p(t)=p&) + (t;—&p' (&) +——F— 2

p"(m) 6)

where nel. If £=0, 1, the right-most inequality in (5) is trivially true. If 0 < ¢ <1 then p'(£) =0
and (6) implies that

M < max p(tj) + max |p"(n)| < max p(t;) +— max p"(m)].

JjeK Nel 8

(ti—§)* B [ di
2

An entirely analogous argument establishes the lower bound on m in (5).
COROLLARY: If t;=i/k then d,=1/k, and since

max [p"(x)| < 3 (— Djlay]

x€l

(5) now becomes,

mip o) - gkzﬁo Djla| <m <M< max o)+ 8k220—11|a1| )

2 Bernstein, S. N., Collected Works, Vol. I, Translation: AEC-tr-3460, pp. 68—73.
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The improvement of the error estimate in (7) over that in (1) is evident.
If we consider p(x) =x—x? then M = 1/4, which is precisely the upper bound given by (7) with
k=1.

2. The Bernstein Form

Suppose s=0, 1, . . ., k then we have
LEMMA 1:

PRrooF:
xt=x%(x+ (l‘x))""‘:s:j <k S) as+i(1—x) ks~
ZZ ) xf(l—xw:g % (%) wa—xs-
S

Thus, the functions
(I;) x(1—x)k-3,j=0, .. ., k

span the space, Py, of polynomials of degree at most & and are linearly independent. Hence, if

p(x)=ao+. . .+ aux" (a; are arbitrary numbers) and &£ = n then
k k : )
p@=3 b0 (%) w1-x)r ®)
i=o J
where
(1)
J s
b§k) = 2 0 Tl =y o o o 3 9)

with the assumption that a;=0 for s > n.

We call (8) the generalized Bernstein form of p.

THEOREM 2: If p(x)=ao+. . .+ a,x® has real coefficients then for each k = n we have (putting
K={0, .. ., k})

b(k)=mjn b < m < M < max b{)=B(k).

PROOF: In view of (8) for each xel, p(x) is a convex combination of b§*), . . ., b¥¥).
Following S. Bernstein, we can bound the discrepancies B(k) —M and m—b(k) as follows.
We recall that if f(x) is defined on I

Bi(f: %) =§k“j(%> (’J‘) (1 —x) ¥,
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Suppose 0 <s < n. Then Bx(x*; x) —x°€Px and hence

Bi (x5 x) —xs= i dj(s) (f) 2 (1—2x)k—d,

Jj=0
THEOREM 3: I[f k=n=1

— 2
8j(s)s%;j=0,...,k;s=0,...,n. (10)

PROOF. Since Bx(1; x) =1 and Bx (x; x) = x we have
8;(0) =8;(1) =0, j=0, . . ., k.
Henceforth, we assume s = 2.

HOo<j<s.
In view of Lemma 1, we have

5)=(2)

N

<s;l)ss<s;1)2$(3—kl)2'

Gi)2<s<j

8],(5):<l)s_j!(k—s)!_(j)s_j(j—l) L i leey

k G—s)k! \k) k(k—=1) ... (k—(s—1))

Applying the mean value theorem to (1—x)%~!, we obtain

= —1 = 2
1—(1—3 .1)8 e
j j

hence

<(s—1)2 ls_1<(s_1)2
Sla)y= (k) e (11)

REMARK: If k= 2, (10) can be improved slightly to
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since:
W Ifj<s,

: <(S_1)2.l< Iy (s—1)2
8(s) == k\(l k) T

) Ifssj<k,

and so (11) can be restricted to j < k leading to

8;(s) < (S_kw.(k—l)ss (8—1)2'<k—1).

k k k
THEOREM 4: If p(x)=ao+ . . . +a,x", and k =n=1 then for j=0, . . ., k
J
(1) -o=o 13)
satisfies
A
18 <1 (14)
where
A=Y (s=1)*|a,. (15)
8=2
If k=2, then
k—1 .
'ajlsA k2 ,_)ZO,. o o k.
k k\ . )
PROOF: Since Bi(p; x) —p(x) = 2 8j<j> x93 (1 —x)*=3, while in view of Theorem 3
j=o
k K k\ . )
Bulpix) —p()=3 3 ady(s) ) w1 =0,
Jj=08=0
then
k
8=, asdy(s).
8=0
and the Theorem follows from (10) and (12).
COROLLARY: If ag, . . ., a, are real, then
B(k)—Msé;m—b(k)s-‘Ai. (16)
k k
51
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Ifk=2

k—1 k—1
s m—b(k) SAS

Bk)—M <A

17)

Thus, B(k) converges to M as k— «, and to determine how large we need to choose k in order
to be a given distance away from M, we need only consult (16) or (17) (analogously for b(k) and m).

Cargo and Shisha (see footnote 1) give a difference table method for calculating b{™, . .

., b{W; which

can be used equally well to find 6%, . . ., b (b= ao; bF =ao+. . .+ an, always).

REMARK: Once a k has been chosen and the numbers b(j’” ordered according to size, it may

be possible to improve on B(k) as an estimate for M, by means of a final correction. Suppose

B(k)=b®, i #0, k,

and

max bk = pk) < k),
g 7 ! !

Put
k ) A
pj(x)=(j) X (1—x)k=3,j=0,. . ., k

then 0 < p;(x) <1 for all xel, and

p() =pi(b+ (1=pi()) 3 (1) S,

=, j/ 1=pilx)
G
Since
pj(x) .
1—pi(x)
and
k
pj(x)
E 1 =1,

we conclude from (18) that
p(x) < pi() B+ (1= palx) ) = (B0 — bR pi(x) + biP.
Since pi(x) assumes its maximum on I at x=1i/k, we obtain, finally,
ﬂ4$p%i>ﬂ?+(]-p«é)>ﬁ?<3%l

An analogous result holds for m.
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3. The Complex Case

Suppose the coefficients ag, . . ., a, are complex numbers. Let C be the convex hull of
p(I)={p(x) : xel}, and let Ci be the convex hull of {6, . . ., b}, Then in view of (8), we have,
for each k=n

C C Cy.
We have
LEMMA 2: For each k =n
Ck+1 C Cy.
PROOF: It is an easy consequence of (9) that b¥ =ao, b¥=a¢+ . . . +a, and
J J .
(k+1) — SN (k) « 1=
b (1 k+l)bf +k+1bj_l,j 1, ..., k.
Thus
biteCy, j=0, . . ., kt+1
and the lemma follows.
Note that C and Cx, k=n, n+1,. . . are each compact sets in the plane, and that
cc A C. 19)
Indeed,
THEOREM 5:
C= o Cy.
PROOF. Suppose there exists
Z€E ﬁ Ck

and z¢C. Since C is compact, dist (z, C) =d >0. Choose k= n so large that (4/k) <d. Now,
there exist Ao, . . ., g satisfying A; =0, Z\; =1 such that

k
ZZZ Ajb(jk),
J=0

hence, in view of (13) and (14)

and

<d. (20)




But

\ .

> Ajp(’—) eC,
: k

Jj=0

and (20) contradicts dist (z, C) =d, thus proving the theorem.
Note that the same proof shows that

dist (Ck, C) =

NN

(Paper 74B1-318)
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