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Let V be an n-dimensional vector space over the complex numbers. Let H be a subgroup of Sm, 
the symmetric group on {I, _ . _, m}, and let W = fib V be the tensor product of V with itself m times_ 

1 

In this note we give an orthogonal direct sum decomposition of W in terms of the system of inequivale nt 
irreducible characters of H. 
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1. Introduction 
III 

Let V be an n-dimensional vector space over the field of complex numbers_ Let W = IZi V be 
I 

the tensor product of V with itself m times_ For (TESIll , the symmetric group on {I , _ .. , m}, 
define the permutation operator P(a): W~ W by P(a)vl lZi _ . _ IZi v",=vo( I ) 1Zi _ __ Q9 VO(m), 

VI, • •• , VmEV, where 0 = a - I - It is easy to check [1] that P (a) is linear and that P( a)P (T) = peaT), 
a, reSm_ Any linear combination T= 2: a(a)P(a) is called a symmetry operator and the range 

UES m 

of T is called a symmetry class of tensors _ 
In [4],1 Weyl expressed Was a direct sum of symmetry classes_ The corresponding symmetry 

operators were determined from the idempotent generators of the minimal right ideals of the group 
ring of S In . In this paper we obtain an orthogonal direct sum decomposition of W into symmetry 
classes with respect to the inner product defined below. 

Let ( , ) be an inner product on V. Define an inner product on W by 

>Ii 

(xl lZi . _ . IZi xm, yl lZi __ . IZi Ym) = IT (Xi, Yi) , Xi , YiEV. 
i = 1 

(1) 

THEOREM 1: Let H be a subgroup of Sm of order h_ Let XI , _ .. , Xk be the complete system 
of inequivalent irreducible characters on H, with Xi having degree ri , i = 1, _ .. , k. Define 
TXi:W~Wby 

i= 1, _ . _, k. 

Let V~ (H) be the range of T Xi _ Then with respect to the inner product (1), W ~s the orthogonal 
direct sum of the symmetry classes V~ (H): 

k 

W = .1 V~(H)_ 
I 

(2) 
i = t 

*This work was done (1968- 1969) while the author. was a National Acade my of Sciences-National Research Council Postdoctoral Research Associate at the 
Na tional Bureau of Standards. Washington. D.C. 

L Figures in brackets indica te th e lilera lUre refe rence s a l the end of th is pape r. 
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In section 3, we discuss some of the difficulties involved in constructing a suitable basis for 
V~'(H). This problem has been dealt with [1] when X is linear, but little has been done otherwise. 

We attempt to show the extent to which the methods of [1] will apply when X is of higher degree. 

2. Proof of Theorem 

To establish (2), it suffices to show that 

a. TXi is hermitian, 

k 

c. 2: Txi=identity. 
i=l 

(3) 

If "*,, denotes the adjointwith respect to the inner product (1), then (P(IT))*=P(IT - l ). Since 
Xi(IT) =Xi(IT- I) , T:i=Txi• We now compute 

T Xi TXj = r~:j 2: Xi(IT)Xi( T)P( ITT) = r~j 2: P(p.,) 2: Xi (IT )Xi(IT - lp.,). 
fT, HH I-LEH UEH' 

The orthogonality relations for characters [3, p. 16] now imply that 

Let e be the identity in H. Then 

Again, the orthogonality relations imply that 

=P(e) , 

the identity transformation on W. This proves (3). 
We note that Weyt's decomposition of W is orthogonal with respect to the above inner product 

only when m = 2. 

3. Bases for Symmetry Classes 

As above, H is a subgroup of S"" X is an irreducible character on H of degree r, and Tx and 
V~' (H) are the associated symmetry operator and symmetry class. If Xl @ . . . @x", is a 
decomposable tensor in W, set 

TXX1 @ ... @X",=XI* ... *xm. 

The tensor Xu ... *Xm is called a decomposable element of V;'(H). Now if VI , • . . , Vn 

IS a basis of V, the set of nm tensors Val @ ... (3) Va m , 1 ~ (Xi ~ n is a basis of W = ~ V. Thus 
there is a basis 1 
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of V~' (H) consis ting of decomposable elements. In [1] , Marcus and Minc give a construction for 

s uch a basis when X is Unear, i.e., r= 1. Let f"" n be the set of nlll sequences a= (ai, . .. , am), 
l :S; ai :S; n. We write a - {3 if a" = (a"(I ), ... , a ,,(m»)= {3 for some (YEH. Clearly " - " is an 
eq uivalence relation on fill , 1/. ' C hoose lexicographically the lowest representative from each class 
determined by - . CaU this se t of representatives ~. For each aE~, let H {)( be the subgroup of all 
(TEH suc h th at a" = a. Le t ~ be th e e t of a ll aE~ s uc h that 2: X (0-) 0/= O. If v" . . . , v, is a bas is 
of V, the n the te nsors ,,<II ()( 

V:; = V{)( I * *V U Hl , ctEL\ (4) 

are a linearly independent set in V~' (H). Moreover, if X is linear, the tensors (4) are a basis of 

n'(H). (For details, see [1].) Note that ~ depends only on H and X, and if X is linear v:" = X(o- )v: for 
aU o-EH , aE~ (see [1]). Thus in the linear case one can conveniently determine matrix representa· 
tions of certain linear transformations on V~' (H). Using these properties, Marcus, Minc and 

ewman (see, e.g., [1] , [2]) have been able to prove a large class of inequalities for determinants , 
permanents, and other multilinear matrix functions. Thus it would be useful to find a basis of 
V~'(H) when degree X > 1. The following result demonstrates some obstacles. 

THEOREM 2: If VI, ••. , Vn is a basis of V, the tensors 

(5) 

are a basis of V~ (H) if and onLy if X is Linear. Moreover, if I~I is the cardinaLity of ~ then 

dim n ' (H ) ~ 21~1 (6) 

if X is not Linear. 

PROOF. W e may assume v" . . . , Vn is an orthonormal basis of V. The procedure in [1] still 
applies to show that the tensors (5) are linearly independent. For 0- , TEH and a, {3E~ , we compute 

(v Z(T, V;7) = (Txvau - o) @ .. . @ v OU-(m)' T xvf!;. _(I ) @ ... @ vf!;.-(m) ) 

= (Txv OU (I ) @ . .. @ v""(m) ' V/37 (I ) @ .. @ V/37 (m»)' 

because Tx is ide mpotent hermitian. He nce 

S ince a, {3E~ , the product in (7) is zero unless a = (3 and o-p - IT - IEH u . 

Thus 

(V : " , V;7 ) =o{)(, /3 ~ 2: X(p) 
p< H 

u p- LT- l £N a 

=O", /3~ 2: X((TT - IIL )' 
J.LEN a 
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Thus we are finished if we can show that for each a E .:l there is a (T E H such that v: and Va*rr are 

linearly independent. Suppose this were false for some a E ~. Then 

(9) 

where 'Y/ ((T) is a scalar. From (8) and (9). 

= 'Y/(CT7.-1 ) (v:, v:). (10) 

Since v: # 0, (10) implies that'Y/ is a character on H of degree 1. Thus for all (TEH 

='Y/(CT) L X(u). (11) 
Il.fHa 

Multiply both sides of (11) by 'Y/ (CT - 1) and sum on CT, obtaining 

= L 'Y/(CT - 1) L X (CT/L) 
(TEH l·uH a 

= L L 'Y/(CT - 1)x(CT/L). (12) 
fJ.EHa a-EH 

As long as the degree of X is greater than 1, the orthogonality relations imply that the right side of 
(12) is zero. This establishes (6) and thus Theorem 2 is proved. 
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