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Let ¥ be an n-dimensional vector space over the complex numbers. Let H be a subgroup of S,
the symmetric group on {1, . . ., m}, and let W=$ V be the tensor product of ¥ with itself m times.

In this note we give an orthogonal direct sum decomposition of W in terms of the system of inequivalent
irreducible characters of H.
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1. Introduction

m
Let ¥V be an n-dimensional vector space over the field of complex numbers. Let W=Q?V be

the tensor product of ¥ with itself m times. For o€Sy, the symmetric group on {1, . . ., m},
define the permutation operator P(c): W— W by P(o)vi® . . . Quu=0vs)® . . . Qug(m),
v1, . . ., vmeV, where §=o 1. Itis easy to check[1] that P (o) is linear and that P (o) P(7) = P(o7),

o, 7€Sm. Any linear combination 7'= E a(o)P(o) is called a symmetry operator and the range
(fSS"I

of T is called a symmetry class of tensors.

In [4],! Weyl expressed W as a direct sum of symmetry classes. The corresponding symmetry
operators were determined from the idempotent generators of the minimal right ideals of the group
ring of S,. In this paper we obtain an orthogonal direct sum decomposition of ¥ into symmetry
classes with respect to the inner product defined below.

Let (,) be an inner product on V. Define an inner product on W by

0® ... Oum, 1 ® . .. Oyw)= [] (xi, y1). xi, yi€l. 1)
i=1
THEOREM 1: Let H be a subgroup of Sy, of order h. Let x1, . . ., Xx be the complete system

of inequivalent irreducible characters on H, with x; having degreer;, i=1, . . ., k. Define

Txi: W— W by
Ty=% > x(@P@), i=L...k

og€H

Let VE(H) be the range of Tx,. Then with respect to the inner product (1), W is the orthogonal
direct sum of the symmetry classes V¥ (H):

k
W =1 VpH). @)

i=1

*This work was done (1968-1969) while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the
National Bureau of Standards, Washington, D.C.

! Figures in brackets indicate the literature references at the end of this paper.
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In section 3, we discuss some of the difficulties involved in constructing a suitable basis for
Vu(H). This problem has been dealt with [1] when x is linear, but little has been done otherwise.
We attempt to show the extent to which the methods of [1] will apply when x is of higher degree.

2. Proof of Theorem 1
To establish (2), it suffices to show that
a. Ty, is hermitian,

b. TXiTXj = aijTXi >
k
2 =identity. 3)

If “*” denotes the adjoint with respect to the inner product (1), then (P(o))*=P (o). Since
xi(o) =xi(c™"), T%;=Tx. We now compute

T ="2 S x(@x@Pe) =23 Pw) S x(o)x(o ).

o, TeH neH oeH
The orthogonality relations for characters [3, p. 16] now imply that

8uhXJ( ) = 8iiTx;-

Til;
Tx, Tx;= 22

i

neH

Let e be the identity in H. Then

HM’*

Ty =35 S 0P

th«r)zx ()xi(a).

ageH

Again, the orthogonality relations imply that

> Tx=3 S P(0)se.sh

aeH

=P(e),

the identity transformation on /. This proves (3).
We note that Weyl’s decomposition of W is orthogonal with respect to the above inner product
only when m=2.

3. Bases for Symmetry Classes

As above, H is a subgroup of S,,, x is an irreducible character on H of degree r, and Tx and
V¥(H) are the associated symmetry operator and symmetry class. If x;® . . . ®x, is a
decomposable tensor in W, set

Txx:® . . . Qxp=21% . . . xxm.
The tensor x;x . . . xxm is called a decomposable element of V*(H). Now if vy, . . .. v,
m
is a basis of V, the set of n™ tensors va, ® .. .Quv,, 1<ai<nis a basis of WZ(?V. Thus

there is a basis

42



of V¥ (H) consisting of decomposable elements. In [1], Marcus and Minc give a construction for

such a basis when x is linear, i.e., r=1. Let I'y,, » be the set of n™ sequences a= (a1, . . ., am),
l<sai<n. We write « ~ B if a”= (o), - . -, @em)) =B for some geH. Clearly “~” is an
equivalence relation on I',,, ,. Choose lexicographically the lowest representative from each class
determined by ~. Call this set of representatives A. For each aeA, let H, be the subgroup of all
oeH such that a” = a. Let A be the set of all weA such that E x(o) #0. If vi, . . ., v is a basis
of V, then the tensors o€ty

vf:v(,,* e e . %D a€eA (4)

Qo

are a linearly independent set in V§(H). Moreover, if x is linear, the tensors (4) are a basis of
Viu(H). (For details, see [1].) Note that A depends only on H and ., and if x is linear v %, = x (o) v* for
all oeH, ael (see [1]). Thus in the linear case one can conveniently determine matrix representa-
tions of certain linear transformations on V% (H). Using these properties, Marcus, Minc and
Newman (see, e.g., [1], [2]) have been able to prove a large class of inequalities for determinants,
permanents, and other multilinear matrix functions. Thus it would be useful to find a basis of
Vi(H) when degree x > 1. The following result demonstrates some obstacles.
THEOREM 2: If vy, . . ., v, is a basis of V, the tensors

v¥, ael (5)
are a basis of V¥ (H) if and only if x is linear. Moreover, if |A| is the cardinality of A then

dim V§(H) = 2|A| (6)

if x is not linear.

Proor. We may assume vy, . . ., v, is an orthonormal basis of V. The procedure in [1] still
applies to show that the tensors (5) are linearly independent. For o, 7eH and «, BeA, we compute

(1}:,,—, v;gkf) == (TX'UHV,H) ® S ® U"(r'(m)’ TX'UﬁTf(l) ® 5 ® vﬂ,ﬁ(m))
== (Txv“o'(l) ® SRR ® v“zr(m)’ vﬁr(l) % ® vﬁT(m )’

because Ty is idempotent hermitian. Hence

m

Wk, v =7 2 x(p ) I Wagyriy v8)

pell

m

g 2 x(p H Yopir (1) vg,).- (7

peH
Since «, Be&, the product in (7) is zero unless a =g and op ' 'eH ..

Thus

(U(r,l) ) 8thZX(P)

peH
op 't e

= Sanz 3 ylorlp): ®)

neH
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*

*
¥ and v, are

Thus we are finished if we can show that for each a € A there is a o € H such that v
linearly independent. Suppose this were false for some a € A. Then

vio=mn(o)vy, oeH, 9
where 1 (o) is a scalar. From (8) and (9).
(o) n(7) vk, v¥) = vk, v}:)

=" x(orp)

neH

= (v:O'T_l’ ‘U:)
=mn(or™) (v}, v}). (10)

Since v¥ # 0, (10) implies that m is a character on H of degree 1. Thus for all ceH

> x(ow) =2 (3, 02)

neH
=2 n(0) (2, )
=n(o) Y x(u). (11)
neH
Multiply both sides of (11) by n(c~!) and sum on o, obtaining

07 > > x(w

o€l peH

=Y nie!) ¥ x(ow)

oeH HeH o

=3 ¥ nloHx(ow). (12)

uneH, oeH

As long as the degree of x is greater than 1, the orthogonality relations imply that the right side of
(12) is zero. This establishes (6) and thus Theorem 2 is proved.
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