JOURNAL OF RESEARCH of the National Bureau of Standards B. Mathematical Sciences Vol. 74B, No. 1, January–March 1970

Orthogonal Decompositions of Tensor Spaces*

Stephen Pierce

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(September 23, 1969)

Let V be an n-dimensional vector space over the complex numbers. Let H be a subgroup of S_m , the symmetric group on $\{1, \ldots, m\}$, and let $W = \bigotimes_{1}^{m} V$ be the tensor product of V with itself m times. In this note we give an orthogonal direct sum decomposition of W in terms of the system of inequivalent irreducible characters of H.

AMS Subject Classifications: Primary, 1580; Secondary, 2080.

Key words: Irreducible character; symmetry class of tensors; symmetry operator; tensor product.

1. Introduction

Let V be an n-dimensional vector space over the field of complex numbers. Let $W = \bigotimes_{1}^{\infty} V$ be the tensor product of V with itself m times. For $\sigma \epsilon S_m$, the symmetric group on $\{1, \ldots, m\}$, define the permutation operator $P(\sigma) : W \to W$ by $P(\sigma)v_1 \otimes \ldots \otimes v_m = v_{\theta(1)} \otimes \ldots \otimes v_{\theta(m)}$, $v_1, \ldots, v_m \epsilon V$, where $\theta = \sigma^{-1}$. It is easy to check [1] that $P(\sigma)$ is linear and that $P(\sigma)P(\tau) = P(\sigma\tau)$, $\sigma, \tau \epsilon S_m$. Any linear combination $T = \sum_{\sigma \epsilon S_m} a(\sigma)P(\sigma)$ is called a symmetry operator and the range

of T is called a symmetry class of tensors.

In [4],¹ Weyl expressed W as a direct sum of symmetry classes. The corresponding symmetry operators were determined from the idempotent generators of the minimal right ideals of the group ring of S_m . In this paper we obtain an orthogonal direct sum decomposition of W into symmetry classes with respect to the inner product defined below.

Let (,) be an inner product on V. Define an inner product on W by

$$(x_1 \otimes \ldots \otimes x_m, y_1 \otimes \ldots \otimes y_m) = \prod_{i=1}^m (x_i, y_i), x_i, y_i \epsilon V.$$
(1)

THEOREM 1: Let H be a subgroup of S_m of order h. Let χ_1, \ldots, χ_k be the complete system of inequivalent irreducible characters on H, with χ_i having degree r_i , $i=1, \ldots, k$. Define $T_{\chi_i}: W \to W$ by

$$T_{\chi_i} = \frac{r_i}{h} \sum_{\sigma \in H} \chi_i(\sigma) P(\sigma), \quad i = 1, \dots, k.$$

Let $V_{\chi_i}^m(H)$ be the range of T_{χ_i} . Then with respect to the inner product (1), W is the orthogonal direct sum of the symmetry classes $V_{\chi_i}^m(H)$:

$$\mathbf{W} = \coprod_{i=1}^{k} \mathbf{V}_{\chi_{i}}^{\mathbf{m}}(\mathbf{H}).$$
⁽²⁾

^{*}This work was done (1968-1969) while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards, Washington, D.C.

¹ Figures in brackets indicate the literature references at the end of this paper.

In section 3, we discuss some of the difficulties involved in constructing a suitable basis for $V_{\chi}^{m}(H)$. This problem has been dealt with [1] when χ is linear, but little has been done otherwise. We attempt to show the extent to which the methods of [1] will apply when χ is of higher degree.

2. Proof of Theorem 1

To establish (2), it suffices to show that

a.
$$T_{\chi_i}$$
 is hermitian,
b. $T_{\chi_i}T_{\chi_j} = \delta_{ij}T_{\chi_i}$,
c. $\sum_{i=1}^k T_{\chi_i} = \text{identity.}$ (3)

If "*" denotes the adjoint with respect to the inner product (1), then $(P(\sigma))^* = P(\sigma^{-1})$. Since $\chi_i(\sigma) = \chi_i(\sigma^{-1}), T_{\chi_i}^* = T_{\chi_i}$. We now compute

$$T_{\chi_i}T_{\chi_j} = \frac{r_i r_j}{h^2} \sum_{\sigma, \tau \in H} \chi_i(\sigma) \chi_j(\tau) P(\sigma \tau) = \frac{r_i r_j}{h^2} \sum_{\mu \in H} P(\mu) \sum_{\sigma \in H} \chi_i(\sigma) \chi_j(\sigma^{-1}\mu).$$

The orthogonality relations for characters [3, p. 16] now imply that

$$T_{\chi_i} T_{\chi_j} = \frac{r_i r_j}{h^2} \sum_{\mu \in H} P(\mu) \frac{\delta_{ij} h \chi_j(\mu)}{r_j} = \delta_{ij} T_{\chi_i}.$$

Let e be the identity in H. Then

$$\sum_{i=1}^{k} T_{\chi_{i}} = \sum_{i=1}^{k} \frac{r_{i}}{h} \sum_{\sigma \in \mathcal{H}} \chi_{i}(\sigma) P(\sigma)$$
$$= \frac{1}{h} \sum_{\sigma \in \mathcal{H}} P(\sigma) \sum_{i=1}^{k} \chi_{i}(e) \chi_{i}(\sigma).$$

Again, the orthogonality relations imply that

$$\sum_{i=1}^{k} T_{\chi_i} = \frac{1}{h} \sum_{\sigma \in H} P(\sigma) \delta_{e,\sigma} h$$
$$= P(e),$$

the identity transformation on W. This proves (3).

We note that Weyl's decomposition of W is orthogonal with respect to the above inner product only when m=2.

3. Bases for Symmetry Classes

As above, H is a subgroup of S_m , χ is an irreducible character on H of degree r, and T_{χ} and $V_{\chi}^m(H)$ are the associated symmetry operator and symmetry class. If $x_1 \otimes \ldots \otimes x_m$ is a decomposable tensor in W, set

$$T_{\chi}x_1 \otimes \ldots \otimes x_m = x_{1*} \ldots * x_m.$$

The tensor $x_{1*} \ldots * x_m$ is called a decomposable element of $V_{\chi}^m(H)$. Now if v_1, \ldots, v_n is a basis of V, the set of n^m tensors $v_{\alpha_1} \otimes \ldots \otimes v_{\alpha_m}$, $1 \le \alpha_i \le n$ is a basis of $W = \bigotimes_{i=1}^m V$. Thus there is a basis

of $V_{\chi}^{m}(H)$ consisting of decomposable elements. In [1], Marcus and Minc give a construction for such a basis when χ is linear, i.e., r = 1. Let $\Gamma_{m,n}$ be the set of n^{m} sequences $\alpha = (\alpha_{1}, \ldots, \alpha_{m})$, $1 \leq \alpha_{i} \leq n$. We write $\alpha \sim \beta$ if $\alpha^{\sigma} = (\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(m)}) = \beta$ for some $\sigma \epsilon H$. Clearly "~" is an equivalence relation on $\Gamma_{m,n}$. Choose lexicographically the lowest representative from each class determined by ~. Call this set of representatives Δ . For each $\alpha \epsilon \Delta$, let H_{α} be the subgroup of all $\sigma \epsilon H$ such that $\alpha^{\sigma} = \alpha$. Let $\overline{\Delta}$ be the set of all $\alpha \epsilon \Delta$ such that $\sum_{\sigma \epsilon H_{\alpha}} \chi(\sigma) \neq 0$. If v_{1}, \ldots, v_{i} is a basis of V, then the tensors

$$v_{\alpha}^{*} = v_{\alpha_{1}*} \dots v_{\alpha_{m}}, \alpha \epsilon \overline{\Delta}$$

$$\tag{4}$$

are a linearly independent set in $V_{\chi}^{m}(H)$. Moreover, if χ is linear, the tensors (4) are a basis of $V_{\chi}^{m}(H)$. (For details, see [1].) Note that $\overline{\Delta}$ depends only on H and χ , and if χ is linear $v_{\alpha\sigma}^{*} = \chi(\sigma)v_{\alpha}^{*}$ for all $\sigma \epsilon H$, $\alpha \epsilon \overline{\Delta}$ (see [1]). Thus in the linear case one can conveniently determine matrix representations of certain linear transformations on $V_{\chi}^{m}(H)$. Using these properties, Marcus, Minc and Newman (see, e.g., [1], [2]) have been able to prove a large class of inequalities for determinants, permanents, and other multilinear matrix functions. Thus it would be useful to find a basis of $V_{\chi}^{m}(H)$ when degree $\chi > 1$. The following result demonstrates some obstacles.

THEOREM 2: If v_1, \ldots, v_n is a basis of V, the tensors

$$\mathbf{v}^*_{\alpha}, \, \alpha \epsilon \bar{\Delta}$$
 (5)

are a basis of $V_{\chi}^{m}(H)$ if and only if χ is linear. Moreover, if $|\overline{\Delta}|$ is the cardinality of $\overline{\Delta}$ then

$$\dim V_X^m(H) \ge 2|\Delta| \tag{6}$$

if χ is not linear.

PROOF. We may assume v_1, \ldots, v_n is an orthonormal basis of V. The procedure in [1] still applies to show that the tensors (5) are linearly independent. For σ , $\tau \epsilon H$ and α , $\beta \epsilon \overline{\Delta}$, we compute

$$(v_{\alpha\sigma}^*, v_{\beta\tau}^*) = (T_{\chi} v_{\alpha_{\sigma^{-}(1)}} \otimes \ldots \otimes v_{\alpha_{\sigma^{-}(m)}}, T_{\chi} v_{\beta_{\tau^{-}(1)}} \otimes \ldots \otimes v_{\beta_{\tau^{-}(m)}})$$
$$= (T_{\chi} v_{\alpha_{\sigma^{-}(1)}} \otimes \ldots \otimes v_{\alpha_{\sigma^{-}(m)}}, v_{\beta_{\tau^{-}(1)}} \otimes \ldots \otimes v_{\beta_{\tau^{-}(m)}}),$$

because T_{χ} is idempotent hermitian. Hence

$$(v_{\alpha}^{*}, v_{\beta^{\tau}}^{*}) = \frac{r}{h} \sum_{\rho \in H} \chi(\rho) \prod_{t=1}^{m} (v_{\alpha_{\sigma \rho^{-1}(t)}}, v_{\beta_{\tau(t)}})$$
$$= \frac{r}{h} \sum_{\rho \in H} \chi(\rho) \prod_{t=1}^{m} (v_{\alpha_{\sigma \rho^{-1}\tau^{-1}(t)}}, v_{\beta_{t}}).$$
(7)

Since α , $\beta \epsilon \Delta$, the product in (7) is zero unless $\alpha = \beta$ and $\sigma \rho^{-1} \tau^{-1} \epsilon H_{\alpha}$.

Thus

$$(v_{\alpha\sigma}^*, v_{\beta\tau}^*) = \delta_{\alpha,\beta} \frac{r}{h} \sum_{\substack{\rho \in H \\ \sigma \rho^{-1}\tau^{-1} \in H_{\alpha}}} \chi(\rho)$$

$$= \delta_{\alpha,\beta} \frac{r}{h} \sum_{\mu \in H_{\alpha}} \chi(\sigma \tau^{-1} \mu).$$

 $(\mathbf{8})$

Thus we are finished if we can show that for each $\alpha \in \overline{\Delta}$ there is a $\sigma \in H$ such that v_{α}^* and $v_{\alpha\sigma}^*$ are linearly independent. Suppose this were false for some $\alpha \in \overline{\Delta}$. Then

$$v_{\alpha\sigma}^* = \eta(\sigma) v_{\alpha}^*, \, \sigma \epsilon H, \tag{9}$$

where $\eta(\sigma)$ is a scalar. From (8) and (9).

$$\eta(\sigma) \overline{\eta(\tau)} (v_{\alpha}^{*}, v_{\alpha}^{*}) = (v_{\alpha\sigma}^{*}, v_{\alpha\tau}^{*})$$

$$= \frac{r}{h} \sum_{\mu \in H_{\alpha}} \chi(\sigma \tau^{-1} \mu)$$

$$= (v_{\alpha\sigma\tau^{-1}}^{*}, v_{\alpha}^{*})$$

$$= \eta(\sigma \tau^{-1}) (v_{\alpha}^{*}, v_{\alpha}^{*}). \qquad (10)$$

Since $v_{\alpha}^* \neq 0$, (10) implies that η is a character on H of degree 1. Thus for all $\sigma \epsilon H$

$$\sum_{\boldsymbol{\epsilon} \in H_{\alpha}} \chi(\sigma \mu) = \frac{h}{r} (v_{\alpha\sigma}^{*}, v_{\alpha}^{*})$$
$$= \frac{h}{r} \eta(\sigma) (v_{\alpha}^{*}, v_{\alpha}^{*})$$
$$= \eta(\sigma) \sum_{\mu \in H_{\alpha}} \chi(u).$$
(11)

Multiply both sides of (11) by $\eta(\sigma^{-1})$ and sum on σ , obtaining

$$0 \neq \sum_{\sigma \in H} \sum_{\mu \in H_{\alpha}} \chi(\mu)$$

= $\sum_{\sigma \in H} \eta(\sigma^{-1}) \sum_{\mu \in H_{\alpha}} \chi(\sigma\mu)$
= $\sum_{\mu \in H_{\alpha}} \sum_{\sigma \in H} \eta(\sigma^{-1})\chi(\sigma\mu).$ (12)

As long as the degree of χ is greater than 1, the orthogonality relations imply that the right side of (12) is zero. This establishes (6) and thus Theorem 2 is proved.

4. References

[1] Marcus, M., and Minc, H., Generalized matrix functions, Trans. AMS, 4, 316-329 (1965).

[2] Marcus, M., and Newman, M., Inequalities for the permanent function, Ann. of Math. 75, 47-62 (1962).

[3] Newman, M., Matrix representations of groups, Nat. Bur. Stand. (U.S.), Appl. Math. Sci. 65 pages (any 1990).
 [4] Weyl, H., Der Zusammenhang zwischen der symmetrischen und der linearen Gruppe, Ann. of Math. 30, 499-516 (1929).

(Paper 74B1-316)