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It is shown that the number of n-tuples (xo, xi, . . ., x4-1) of nonnegative integers such that

n-1
> xi=n,

i=0

n-1
E ix = 0 mod n,

i=0

is given by
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1. Introduction

In 1952 M. Hall, Jr. proved the following theorem! (see footnote 1): If G is a finite abelian
group of order n with elements a;, as, . . ., an,and ¢1, c2, . . ., cyaren (not necessarily distinct)

elements of G, then there exists a permutation o of {1, 2, . . ., n} such that the differences

Qo(1)— A1, Ay(2)—A2s . - -5 Ag(n)— An AT€ C1, C2, . . ., Cy in some order, if and only if

Ci_—‘O. (l)

The necessity of (1) is trivial, and Hall gives an elegant proof that condition (1) implies the existence
of such a permutation o. If G is the cyclic group of order n, then Hall’s theorem may be rephrased
in terms of congruences as follows: Let xo, x1, . . ., x»—1 be n nonnegative integers with

n—1

E BEV== A

i=0
Then there is a permutation o of {1, 2, . . ., n} such that
o(i)—i=k (mod n)

has exactly x; solutions in i, 1 <i < n, for each k=0, 1 .,n—1if and only if

Oxo+1x;+. . .+ (n—1)xy—1 =0 (mod n). (2)

*Partially supported by N.S.F. Grant No. GP-7073.
**Present address: Department of Mathematics, University of Wisconsin, Madison, Wis. 53706.

' M. Hall, Jr., A Combinatorial Problem on Abelian Groups, Proc. A. M. S. 584 — 587 (1952).
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The purpose of this note is to count the number of solutions of (2) in nonnegative integers x; with
n—1

E x;=n. An application to the permanent of a circulant is given.

i=0

2. Main Result

The motivation having been given, we may now state and prove our main result.
THEOREM: Let n be a positive integer. Let F(n) be the number of n-tuples (xo, X1, . . ., X;_1)

satisfying:
x;=0,G=0,1, ..., n—1),

el |
Sx=n.

i=0

n—1
Eixi =0 (mod n).

(#)+(0)

where the summation extends over all positive integers d dividing n, and where ¢ is Euler’s function.
PRrROOF: The proof uses generating functions. Define

Then
|
F(n)—n E

d/n

falw, 2)=[(A—2)(1—wz) . .. (1—w"1z)]-".
Then

fulw, z)=< $ y-)(i wkzk) o (E wk(H)zk»

k=0 k=0 k=0

and it is clear that F'(n) is the sum of the coefficients of z"w"!, 0 <t <n—1, in f,,(w, z). Write

faw,2)=3 Bez*  (Be=Bi(n, w)).
k=0
Then because

fn+1(w9 Z) f"(w, Z) ’

1—w"z
and
fuolw,wz)=[(1—wz) (1 —w?z) ... (1—w"z)]"!,
we obtain
S (w, wz) = (1—2) fus1 (w, Z)— Fro —= fu(w, 7).

Thus

i B;\w"z"— 1 ny 2 B;\z"

= 1—w Z25=0
so that

0 o0 0 0
2 Biwkzk— 2 Btz = 2 Bzt — 2 By zk+1,
k=0 k=0 k=0 k=0
Hence for k=1,

Brw"* —Bj_qw"* 1= B — By,
or
l_wn+k—1

B =
k =y

Bk—l (k?l)
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Thus since By=1,

k 1_wn+r—1
Ly e (k=0),
rl:ll I
an empty product being 1. Therefore

falw, )= S [T |5,

i r
iUy 1w

and F(n) is the sum of the coefficients of w", 0 <t<n—1,in

n

1 _w)H—r—l n—1 1 _,wn+r
&n(w) = H =

—apT —_— T
s 1=w e g A

n—1

Now, g.(w) is a polynomial in w of degree z {n+r—r}=n(n—1), and has nonnegative coefhi-
r=1

cients (since f, (w, z) has nonnegative coefficients). Since

n, if n divides &
N
L:{Z:l

0, otherwise
we have

nF(n)= 3 &0,

£:0r=1
the summations extending over all nth roots of unity.

Suppose now that { is a primitive dth root of unity, where d|n. Since

n+r

lim =
e A=

l_lU" e

, if d divides r

1, otherwise
we have that

n

1n-f—sd: 25_1
LI sd n
r=0 mod d (_l

Therefore, since there are ¢ (d) nth roots of unity which are primitive dth roots of unity,

gn(é): H duad 8 T

Isrsn-1 r 8

T ?1_1
F(n)=2 (121;1 n ¢ (d)
d
=2 )e (i)
n & d Y\d/)"
This proves the theorem.

3. An Application
Let 4= [a;;] be an n X n matrix. If o is a permutation of {1, 2,

., n} then
A1g(1)A25(2) - - --Ang(n)
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is called a diagonal product of A. The permanent of A, denoted by per (4), is the sum of the diagonal
products of 4. Thus

per (A)zz A1o(1)A25(2) « + « Ano(n),

(o8

the summation extending over all permutations of {1, 2, . . ., n}. Suppose A4 is the n by n circulant

a ay . . « AQu—1
aAp—1 Q@ . . . Ap—2
a a ... Q

Then the diagonal product aic()@2e(2) . . . @ne(n) equals aZta®1 . . . atn-1 where xi is the
number of integers i, 1 <i < n, such that (i) —i =k (mod n).
By Hall’s theorem, if xo, x1, . . ., x,—; are integers satisfying the hypothesis of the theorem,

then afoaft . . . aFr;1 is a diagonal product of the circulant A. Thus we have the following
corollary.

COROLLARY: The number of formally distinct diagonal products of an n by n circulant is

given by
1 2d—1 n
n % ( d ) ¢ <d>

Some other results on the permanent of a circulant are given by the authors in the reference
below.2

(Paper 74B1-315)

2 R. A. Brualdi and M. Newman, Some Theorems on the Permanent, J. Res. Nat. Bur. Stand. (U.S.), 69B (Math. Sci.) No. 3, 159-163 (July—Oct. 1965).

40



	jresv74Bn1p_37
	jresv74Bn1p_38
	jresv74Bn1p_39
	jresv74Bn1p_40

