JOURNAL OF RESEARCH of the National Bureau of Standards—A. Physics and Chemistry Vol. 74A, No. 6, November–December 1970

A Review of Oscillator Strengths for Lines of Cui

Charles H. Corliss

Institute For Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(July 24, 1970)

New determinations of oscillator strengths made by Kock and Richter provide for the first time reference standards which permit the adjustment of five previous sets of measurements to an improved scale of absolute oscillator strengths for lines of Cu I. Critical discussions of the several sets of measurements and a consistent list of values for 272 lines in the region 2024 to 8092 Å are presented.

Key words: Atomic spectra; copper; Cu I; oscillator strengths; spectral lines of Cu I.

1. Introduction

Because of its superior electrical and thermal conductivity, relatively high melting point and strength, and its purity and cheapness in commerce, copper is widely used in electrical apparatus. It frequently serves as electrode material in various kinds of arcs and electrical discharges and its spectrum is on that account frequently observed in the laboratory. A good knowledge of the various physical constants associated with its spectrum leads to understanding of the discharges themselves. Although useful in the laboratory, the spectrum of copper is not well developed in stellar atmospheres, and is at present of limited astrophysical interest. About 20 lines of CuI are observed in the solar spectrum.

The wavelengths and energy levels of the arc spectrum of copper have been thoroughly studied and determined by Shenstone [1948] but knowledge of the oscillator strengths of the lines, which is required if excitation conditions in discharges are to be measured and understood, is rather fragmentary. The reports of measurements are scattered throughout the literature, some of the measurements (my own included) are reduced to oscillator strengths with wrong temperatures, and the quantities reported differ in each report. Nevertheless, much of this data can be evaluated, corrected to proper temperatures, adjusted to an absolute scale, and tabulated in a useful and uniform fashion.

The framework on which this data can be reformed and assembled was provided by Kock and Richter [1966] when they measured 27 Cu I lines over the wavelength range 2618 to 5782 Å and energy level range 30535 to 64472 cm⁻¹. Their data provide lines over a wide enough range of energies to correct for erroneous temperatures used in earlier papers.

2. Published Data

A summary of the data critically reviewed in this paper is given in table 1. All of these measurements were made on relative scales; some were reported on absolute scales.

There are several papers of which the results are not included in this report. The early work at Utrecht by van Lingen [1936] and van den Bold [1945] on the two resonance lines, the six strong green and yellow lines, and the two infrared lines is now mainly of historical interest. Dickerman and Deuel [1964] have measured 12 lines in the blue region with a highcurrent free-burning arc in argon. Their results show serious and unsystematic disagreement with those of Kock and Richter and others. Riemann [1964] measured the six green and yellow lines and the two strong resonance lines in a wall-stabilized arc.

Ostroumenko and Rossikhin [1965] measured nine resonance lines between 2165 and 3274 Å in absorption with a furnace. Their value for the line at 2225 is an order of magnitude too low when compared with that of Slavenas [1966], who measured the same lines by the hook method. The same lines were also measured by Lvov [1970] using the method of atomic absorption in a flame. His value for the line at 2441 is an order of magnitude too high compared to the measurements of the other authors. With those two exceptions, the three sets of data are in good agreement.

An interesting paper by Vujnovic, Ivezic, and Tonejc-Mejaski [1968] included a few calculations according to Bates and Damgaard's coulomb approximation, which were in good agreement with Kock and Richter's experimental results. This prompted us to make further calculations of that kind, which are reported in section 4.

Reference	Date	No. of lines	Wavelength range	Energy level range	Type of experiment	Quantity reported
			Å	cm^{-1}		
Allen	1932	27	4069-5641	62,403-64,472	Arc in air	$I\lambda^4$
Allen and Asaad	1957	133	3247-5432	30,535-75,263	Arc in air	$\log gf$
Meggers, Corliss, and Scribner	1961	46	2024-8092	30,535-71,291	Arc in air	I
Corliss	1963	180	2626-7154	30,535-79,116	Arc in air	Ι
Slavenas	1966	- 9	2165-3274	30,535-46,173	Furnace	f
Corliss	1967	13	2024-2441	40,944-58,691	Arc in air	Ι
Kock and Richter	1968	27	2618-5782	30,535-64,472	Stabilized	A, $\log gf$
					arc in Ar	

TABLE 1. Published data on intensities and oscillator strengths in the first spectrum of copper (Cu I)

2.1. Kock and Richter [1968]

These authors have made the first comprehensive set of measurements of oscillator strengths for lines of Cu I in a light source operating under LTE conditions at accurately specified temperatures and electron densities. The plasma temperatures were determined from the absolute intensity of Ar I lines that have accurately known transition probabilities. The light source was of the wall-stabilized arc design originally developed at the University of Kiel by Maecker [1956]. A great deal of study has been devoted to methods of accurate temperature determination in this arc, both in Germany and in the United States. See, e.g., W. L. Wiese [1968]. The temperature determinations of other experiments discussed subsequently in this review are decidedly inferior and some are now known to be seriously in error.

Kock and Richter included among the 27 lines they measured the three lines which depopulate the $4p \ ^2P_{3/2}$ upper level of the strong resonance line at 3247 Å. The lifetime of this level has been recently determined by three independent experiments; Levin and Budick [1966], Ney [1966] and Cunningham and Link [1967]. The value 7.1 ns is within the uncertainty of all three measurements and has been adopted by Kock and Richter to put their relative values on an absolute scale. The data reported in this review have been adjusted to their scale.

Kock and Richter's data are listed in table 3 in the column headed KR. A typographical error in their value for the line at 4480.35 Å has been corrected. The values they gave for the two strong lines near 8000 Å they calculated with Bates and Damgaard's coulomb approximation.

2.2. Allen [1932]

The first quantitative intensity measurements in Cu I were made in 1932 by C. W. Allen at Canberra in the course of a study of the behavior of the relative intensity of the sharp and diffuse lines arising from the $5s \ ^4D$ term which lies above the first ionization potential of Cu I. The $\ ^4D_{5/2}$ and $\ ^4D_{3/2}$ levels are broad and decay mainly by autoionization. Allen measured the relative intensities of all 27 lines of the $\ ^4P^\circ - 5s \ ^4D$, $\ ^4p \ ^4P^\circ - 5s \ ^4D$, and $\ ^4p \ ^4D^\circ - 5s \ ^4D$ multiplets at various currents from 1 to 19 A in a free-burning copper arc in air at atmospheric pressure. He found that the broad lines

increased in intensity relative to the sharp ones as the current was increased but that the ratio reached a constant value for currents above 12 A. These limiting relative intensities were in fair agreement with Russell's multiplet sum rules. At small currents (or at low electron densities) the broad lines disappear.

Of the 27 lines in these three multiplets, 8 have been measured by Kock and Richter. A least squares fit of a straight line to the plot $\log I\lambda^3/gf(KR)$ versus E (upper) for these eight transitions provided the relationship by which oscillator strengths were calculated from Allen's intensities. The standard deviation of the points from the fitted line was ¹ 0.18 dex (\pm 50 percent). These results are listed in table 3 in the column headed CWA.

2.3. Meggers, Corliss, and Scribner [1961]

In order to provide quantitative intensity data on a uniform scale for thousands of spectral lines of the metallic elements, Meggers, Corliss, and Scribner at NBS diluted each of 70 elements to the extent of one atom of each element in 1000 atoms of copper and observed the spectra radiated from a 10-A free-burning arc in air between electrodes of the copper. To observe the corresponding data for copper, silver was used as the electrode material. The intensities of the copper lines in the silver arc were brought onto the same scale as the lines of the other elements by including atoms of Au and Zn in the silver electrodes. At the time that the work was done, no method of calibrating the intensity scale below 2500 Å was available. Subsequently, Corliss [1967] applied a calibration to the lines below 2500 Å.

Of the 27 Cu I lines reported by Kock and Richter, 20 are found in these NBS Intensity Tables. To correlate the two sets of data we have plotted as open circles in figure 1, log $(I\lambda^3)_{MCS}/gf_{KR}$ versus upper energy level for 18 of the lines. The two strong resonance lines at 3247 and 3274 Å have been omitted because of the possibility of systematic error in their intensity. They do not, however, deviate markedly from the least squares fitted line in the figure. The standard deviation of all the points in figure 1 from the line is 0.22 dex (±66%). Values of log *gf* were calculated from the intensities of the 46 Cu I lines in the NBS Intensity Tables by using the line in figure 1. They are reported in the column headed MCS in table 3.

 $^{^{1}}$ 0.18 dex = 10^{0.18}.

FIGURE 1. Log ratio of intensity of copper lines in 10-ampere arcs times λ^3 to Kock and Richter's gf-values versus upper energy level.

Open circles are for copper diluted 1/1000 in silver and crosses are for pure copper electrodes. Intensities from the silver arc have been multiplied by 1000.

2.4. Corliss [1962b]

To reduce the observations of Meggers, Corliss, and Scribner to a true scale of relative intensities, numerous lines of CuI were selected to serve as reference standards of intensity. The relative power radiated by these lines was measured by comparison with a ribbon filament lamp and with a calibrated hydrogen continuum. The measurements were made by the methods of heterochromatic photographic photometry and are described in the NBS Tables. From 2 to 24 determinations were made on each of 207 lines of Cu I. The average number of determinations per line was 9 and the standard deviation of an individual determination is about 3 percent. The results for 180 lines were reported by Corliss [1962], who also calculated *gf*-values from the intensities using an arc temperature of 5100 K and a normalization function from Corliss and Bozman [1962]. Huber and Tobey [1968] and subsequently others have shown that this normalization function should in fact be a constant. Since this function changed more than two orders of magnitude between 50000 and 75000 cm⁻¹ and since Cu I is peculiar among the metallic atoms in that most of its lines originate at those high energies, Corliss' derived gf-values for Cu I are seriously in error.

The work of Kock and Richter provides an opportunity for an accurate reduction of Corliss' intensities to oscillator strengths. The intensity scale of the NBS Tables should be identical with that of Corliss [1962b] except for a factor 1000 arising from the dilution. The intensities from MCS were therefore multiplied by 1000 before plotting in figure 1. Four lines from Corliss' [1962b] list that are also in Kock and Richter are plotted as crosses in figure 1. It is remarkable that these four points fall accurately on the least squares line. We have, therefore, calculated gf-values from Corliss' [1962b] intensities with the same relationship used for MCS. Several lines reported by Corliss which arise from broad levels as noted by Shenstone are now omitted. The remaining 163 lines are found in table 3 in the column headed C.

Allen and Asaad at the University of London Observatory measured oscillator strengths for numerous spectra by the method of dilution in copper electrodes, and in the course of their work they also measured oscillator strengths for about 130 Cu I lines. A few of the stronger lines were affected by selfabsorption, but the remaining measurements seem to be of good quality. Unfortunately, the measurements were reduced with an arc temperature of 4300 K which was based primarily on oscillator strengths measured by R. B. King in an absorption furnace. It now seems, v. Garz and Kock [1969], that these early values are subject to systematic errors dependent on excitation potential. This same source of error affected the subsequent work of Corliss [1962a], who determined the temperature of his copper arc with numerous sets of furnace *f*-values. He derived a temperature of 5100 K, but the present comparison with the data of Kock and Richter in figure 1 shows that the correct value is more nearly 7000 K.

With this in mind, a readjustment of Allen and Asaad's results to the temperature scale of Kock and Richter has been made. There are 10 lines in common to the two lists, but eight of these arise from the $5s \, ^4D$ term. To make a readjustment to the new temperature scale, a wider range of energy levels is required. It is preferable, therefore, to adjust Allen and Asaad's values with 63 lines in common with Corliss' list. These span a range of 35000 cm⁻¹ and provide a useful relationship for removing Allen and Asaad's systematic error. A linear least squares fit was made to a plot of log (AA/C) versus upper energy level. The standard deviation of the residuals is 0.11 dex (±30%). The corrected values are listed in table 3 in the column headed AA.

2.6. Slavenas [1966]

Slavenas measured relative oscillator strengths for nine resonance lines of Cu I by the hook method, using a vacuum furnace for his absorption cell. His values have been adjusted to the absolute scale adopted by Kock and Richter for the lines at 3247 and 3274 Å and are reported in the column headed S in table 3.

3. Absolute Scale

A thorough summary of recent determinations of absolute values for Cu I 3247 Å is given by Bell and Tubbs [1970]. Inspection of the 11 values determined since 1957 in their table 1 leaves little doubt that at present the best *f*-value for 3247 Å is 0.43 corresponding to log gf = -0.07. This is in excellent agreement with the value -0.05 adopted by Kock and Richter.

4. Coulomb Approximation

The success of Kock and Richter and of Vujnovic, Ivezic, and Tonejc-Mejaski in calculating good values for several Cu I lines by the method of Bates and Damgaard [1949] prompted me to apply that method to 19 of the lines measured by Kock and Richter. The results are given in table 2 and compared with the measured values. It is seen that, with the exception of the three lines involving the metastable $3d^{9}4s^{2}{}^{2}D$ term, the two sets of values show some agreement.

TABLE 2.Values of log gf from the coulomb approxi-
mation (CA) compared with measured values
(KR).

Wave- length	Configurations and T	erms	CA	KR
$3247.54 \\ 3273.96$	$3d^{10}({}^{1}\mathrm{S})4s {}^{2}\mathrm{S}_{1/2} - 3d^{10}({}^{1}\mathrm{S})4p {}^{2}\mathrm{S}_{1/2} -$	${}^{2}\mathrm{P}^{\circ}_{3/2}$ ${}^{2}\mathrm{P}^{\circ}_{1/2}$	$ \begin{array}{r} -0.01 \\ -0.32 \end{array} $	$-0.05 \\ -0.35$
$\begin{array}{c} 2961.16\\ 3063.41\\ 2824.37\end{array}$	$3d^94s^2$ $^2\mathrm{D}_{5/2}-3d^94s(^3\mathrm{D})4p$ $^2\mathrm{D}_{3/2}-$ $^2\mathrm{D}_{5/2}-$	${}^{2}F_{7/2}^{\circ}$ ${}^{2}P_{3/2}^{\circ}$ ${}^{2}D_{5/2}^{\circ}$	$0.09 \\ -1.08 \\ 0.14$	$-1.40 \\ -2.06 \\ -1.25$
5218.20 5220.07 5153.23	$3d^{10}{}^{(1}\mathrm{S})4p{}^{2}\mathrm{P}^{\circ}_{3/2}-3d^{10}{}^{(1}\mathrm{S})4d$ ${}^{2}\mathrm{P}^{\circ}_{3/2}-2\mathrm{P}^{\circ}_{1/2}-$	$^{2}\mathrm{D}_{5/2} \\ ^{2}\mathrm{D}_{3/2} \\ ^{2}\mathrm{D}_{3/2} \\$	$0.30 \\ -0.65 \\ 0.04$	$0.27 \\ -0.61 \\ -0.01$
4530.78 4480.35	$3d^{10}({}^{1}\mathrm{S})4p{}^{2}\mathrm{P}^{\circ}_{3/2}-3d^{10}({}^{1}\mathrm{S})6s$ ${}^{2}\mathrm{P}^{\circ}_{3/2}-$	${}^{2}S_{1/2} \\ {}^{2}S_{1/2}$	-1.38 - 1.68	$-1.28 \\ -1.74$
4062.64 4022.63	$3d^{10}({}^{1}\mathrm{S})4p{}^{2}\mathrm{P}^{\circ}_{3/2}-3d^{10}({}^{1}\mathrm{S})5d{}^{2}\mathrm{P}^{\circ}_{1/2}-$	${}^{2}D_{5/2} \\ {}^{2}D_{3/2}$	$-0.35 \\ -0.61$	$-0.50 \\ -0.73$
4275.11 4248.96	$3d^94s({}^3\mathrm{D})4p{}^4\mathrm{P}^{\circ}_{5/2}-3d^94s({}^3\mathrm{D})5s{}^4\mathrm{P}^{\circ}_{1/2}-$	${}^{4}D_{7/2} \\ {}^{4}D_{1/2}$	$-0.35 \\ -1.04$	$-0.12 \\ -0.99$
4651.12 4704.59 4586.97 4539.70	$\begin{array}{c} 3d^{9}4s(^{3}\mathrm{D})4p \ {}^{4}\mathrm{F}^{9}_{/2}-3d^{9}4s(^{3}\mathrm{D})5s \\ {}^{4}\mathrm{F}^{9}_{/2}- \\ {}^{4}\mathrm{F}^{9}_{/2}- \\ {}^{4}\mathrm{F}^{9}_{/2}- \\ {}^{4}\mathrm{F}^{9}_{/2}- \end{array}$	${}^{4}D_{7/2}$ ${}^{4}D_{7/2}$ ${}^{4}D_{5/2}$ ${}^{4}D_{3/2}$	$ \begin{array}{r} -0.18 \\ -1.11 \\ -0.38 \\ -0.51 \end{array} $	-0.01 -0.83 -0.22 -0.69
4509.37	${}^{4}\mathrm{F}^{\circ}_{3/2}$ –	$^{4}\text{D}_{1/2}$	-0.69	0.77

5. Results

The results of this review are tabulated in table 3. The wavelengths, estimated intensities and energy levels of the lines are taken from Shenstone [1948]. In the intensity column, R indicates lines easily reversed or self-absorbed in the arc and H, HH, or HHH indicates the degree of broadening depending on the nature of the upper levels. The next five columns contain the various sets of data reduced to the scale of Kock and Richter as discussed in section 2. The last column gives a value which, in my judgment, is the best. In many cases it is the only value, in some cases it is Kock and Richter's value, in some cases the mean value, and in a few cases a weighted mean.

The uncertainty assigned by Kock and Richter to their results lies between 12 and 20 percent. The comparisons made in section 2 of this paper suggest that the uncertainty of the remaining values cannot be less than 30 to 66 percent.

TABLE 3. Values	of l	og gf	for	lines	of	Cu I.
-----------------	------	-------	-----	-------	----	-------

Wave- length	Intensity Estimate	Energy Levels	KR	S	MCS	С	AA	Best
Å		cm ⁻¹						
2024 335	2008	0_49383			_0 48			_0 49
2024.000	500R	11203-57949			-0.40			-0.48
2100.000	1700R	11203-57949		0 77	-0.17		1.14.11	-0.17
2100.095	1 SOOR	0-46173		-0.11	-0.92		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	-0.84
21/8.944	1600R	0-45879		-0.57	-0.83			-0.70
2101.720	ITOUR	0-43821		-0.77	-1.00			-0.89
2199.583	1700R	11203-56651			-0.12			-0.12
2199.752	1300R	13245-58691			-0.04			-0.04
2214.581	1600R	11203-56344			-0.38			-0.38
2225.697	2100R	0-44916		-1.10	-1.48			-1.29
2227.775	1600R	1324558119			0.03			0.03
0070 004	05005	11007 50070						
2230.084	2500R	11203-56030		0.05	-0.06			-0.06
2244.265	2300R			-2.05	0 67			-2.05
2293.842	2500R	11203-54784		0.75	-0.77			
2441.637	TUOUR	0-40944		-2.35	-2.55		- 3. ·	-2.44
2492.146	2000R	0-40114		-1.91	-1.87			-1.89
2618.366	2500R	11203-49383	-0.90		-0.92			-0.90
2626.678	10H	40944-79003				-1.10		-1.10
2630.001	20H	39019-77031				-1.05		-1.05
2634.933	30H	39019-76959				-1.01		-1.01
2645.303	20H	40114-77905		·		-1.47	4 <u>1</u> 1	-1.47
2649.840	30H	40114-77841	1 70			-1.31		-1.31
2766.371	2500R	13245-49383	-1.36		-1.55			-1.36
2824.370	1250R	11203-46598	-1.25		-0.98	1 07		-1.25
2846.478	15	40944-76064				-1.97		-1.97
2858.225	50H	39019-73995				-1.18		-1.18
2858.734	200	11203-46173				-3.48		-3.48
2882.934	1500	11203-45879			-2.02			-2.02
2890.84	50H	44406-78988				-1.06		-1.06
2891.64	30H	44544-79116				-1.11	· · · ·	-1.11
2931.699	10H	40944-75044				-2.16		-2.16
2933.060	20	39019-73103	1 10		1 70	-1.90		-1.90
2961.165	2500R	11203-44963	-1.40		-1.38	0.00		-1.40
2978.295	30H	43514-77080				-0.92		-0.92
2979.380	25H	43514-77068			0.00	-0.99		-0.99
2991.364	2000	13245-46598			-2.00		1 1 1 6 . 1	-2.00
2998.384	150	11203-44544				-3.84		-3.84
3010.838	2000	11203-44406			-1.95		영상 그 가지 않	-1.95
3012.005	250	40114-73305				-1.11		-1.11
3014.848	30H	41153-74313	Surat Serve			-1.49		-1.49
3021.544	300H	40909-73995				-0.97		-0.97
3022 608	3004	39019-72093		- 1 - 3		-1 16		-1 16
3030 258	10H	40114-73105				-1 69		-1 69
3036 101	2500	13245-46173			-1 84	1.00		-1.84
3044 028	20H	41153-73995			1.01	-1.67		-1.67
3052.554	15H	41563-74313				-1.98		-1.98
7007 411	0500	17045 45050	0.00		0.07			0.00
3063.411	2500	13245-45879	-2.06		-2.03	1 00		-2.06
3008.906	100	13245-45821				-4.20		-4.20
3073.798	1400	11203-43726				-2.88		-2.08
3000.132	120	40344-73316			2 11	-1.13		-1.15
5055.965	1 1000	11200-40014	a sur a sur a s		-2.44	12 - 13 - 14 - 14 - 14 - 14 - 14 - 14 - 14		-2.44

		THDE O. Futueo o	<i>, 100 pr joi</i>	tinco oj a	an some	maca		
Wave- length	Intensity Estimate	Energy Levels	KR	S	MCS	С	AA	*Best
Å		cm ⁻¹						
3099 928	1250	39019-71268				-0.53		-0.53
3113 499	50	30010-711200				-1 57		-1.57
3120 435	504	40114-72151				-1.48		_1 48
3126 109	14004	30010_70008				-0.35		_0 35
3120.109	1400H	39019-70990				-0.35		-0.35
5120.701	650H	40114-12001				-0.71		-0.71
3140.312	400H	39019-70853				-0.99		-0.99
3142.444	750H	40114-71927			,	-0.57		-0.57
3146.821	450H	40114-71883				-0.83		-0.83
3148.333	3	41563-73316				-1.98		-1.98
3149.508	30	41563-73305				-1.61		-1.61
3156.629	450	13245-44916				-3.27		-3.27
3160.047	25	41563-73199	S			-1.59		-1.59
3169.681	500H	41563-73103			1	-0.69		-0.69
3171.663	5H	44544-76064			1 00	-1.66		-1.66
3194.099	1500	13245-44544	-2.02		-1.80			-2.02
3208 231	1400	13245-44406			-2.31			-2.31
3223 435	400H	42302-73316			~~~-	-0.89		-0.89
3224 664	450H	42302-73305				-0.80		-0.80
3231 178	650H	41153-72093				-0.63		-0.63
3233 899	450H	41153-72067				-1 11		-1 11
0200.000	10001	11100 12001						
3235.713	650H	42302-73199				-0.38		-0.38
3243.164	1500H	41153-71979				-0.15		-0.15
3247.540	10000R	0-30784	-0.05	-0.05	-0.22			-0.05
3268.278	650H	41563-72151			1990 - 1997 - 19	-0.67		-0.67
3273.957	10000R	0-30535	-0.35	-0.36	-0.53			-0.35
3279 815	2000	13245-43726			_2 14			-2 14
3219.010	14004	11563 72017			-2.14	_0 27		-2.14 -0.27
3200 541	15004	41000-712017				_0.19		_0 19
3290.341	1254	40909-71291				-1 25		-1.25
3292.393	650	11203-41563				-3.22		-3 22
0202.021		11200 41000				0.22		0.22
3307.948	2500H	40909-71131			0.64			0.64
3317.218	750	41153-71291				-0.49		-0.49
3319.682	150	41153-71268				-0.68	-0.64	-0.66
3329.636	225	41153–71178				-1.05	-1.04	-1.04
3335.215	400	41153–71128				-1.04	-1.02	-1.03
3337 845	1500	11203_41153	_2 29		-2 10		-2 68	-2 29
3319 279	1500	11200-41100	-2.25		-2.10	_0 73	-0.52	-0.62
3349.219	450H	42302-72104				-0.75	-0.02	-0.02
3304.414	7504	42302-72104				0.54	-0.50	-0.50
3303.342	7500	41155-70000				-0.54	-0.30	-0.00
3313.012	304	41060-11116				-1.52	-1.42	-1.47
3381.421	200H	41563-71128				-0.86	-0.62	-0.74
3384.80	15H	41563-71098					-1.47	-1.47
3392.016	8H	43726-73199				-1.87		-1.87
3396.324	10H	41563-70998				-1.79	-1.98	-1.88
3413.343	200H	45821-75109				-0.92		-0.92
3420 166	OU	45970 75100					_1 49	_1 49
3420.100	8H 7U	30535 50647					-1.40	_3 30
3435.912	5U	16173 75967					-1 41	-1 41
3400.043	250	13245 40300				-3 60	-1.41	-3 60
3440.007	750	11203 40114				-3 31	_3 50	-3.40
5451.650	150	11200-40114				-0.01	-0.00	-0.40

TABLE 3.	Values of	log of for	lines of Cu	I. – Continued
----------	-----------	------------	-------------	----------------

TABLE 3. Values of log gf for lines of Cu I. - Continued

		THE OF T ATACT O) to (p.) o.					
Wave- length	Intensity Estimate	Energy Levels	KR	S	MCS	С	AA	Best
Å 3459.428 3463.499 3472.141 3474.578 3475.999	25H 5HH 200H 5 750H	cm^{-1} 44406-73305 30784-59647 44406-73199 44544-73316 44544-73305				-1.44 -1.08 -1.78 -0.42	1.48 -2.65 -1.02 -1.94	-1.46 -2.65 -1.05 -1.86 -0.42
3481.614 3483.761 3487.566 3488.858 3498.063	5 1250H 60H 100H 125H	30535-59249 44406-73103 46598-75263 44544-73199 43514-72093				-0.27 -1.22 -1.25	-1.67 -1.21 -1.24 -1.22	-1.67 -0.27 -1.21 -1.23 -1.24
3500.324 3507.407 3512.121 3517.039 3520.031	50H 5H 650H 100H 500	44544-73105 43514-72017 43514-71979 43726-72151 44916-73316				-1.28 -1.67 -0.48 -1.25 -0.54	-0.94 -1.42	-1.28 -1.67 -0.48 -1.34 -0.54
3524.231 3527.482 3530.383 3533.746 3544.963	1250 500 2000 500 125H	43726-72093 43726-72067 13245-41563 43726-72017 43726-71927				-0.31 -0.65 -2.60 -0.66 -1.11	-0.71 -2.67 -0.57 -1.12	-0.31 -0.68 -2.64 -0.62 -1.12
3546.433 3566.131 3594.023 3599.132 3602.032	15H 5HH 30 1400 1400	44916-73105 30535-58568 11203-39019 43514-71291 43514-71268			0.40 0.40	-1.52 -4.22	-1.54 -2.31 -4.31 -0.38	-1.53 -2.31 -4.26 0.40 0.40
3609.295 3610.809 3613.761 3614.218 3620.352	200 200 600 200 225	13245-40944 44406-72093 43514-71178 44406-72067 43514-71128				-3.84 -1.03 -0.62 -0.96 -1.06	-1.04 -0.62 -1.04 -1.15	-3.84 -1.04 -0.62 -1.00 -1.10
3621.245 3624.236 3627.32 3629.771 3632.558	600 100 125HH 10 50	44544-72151 43514-71098 44544-72104 43726-71268 44406-71927				-0.61 -1.77	-0.62 -1.12 -0.68 -1.23	-0.62 -1.12 -0.68 -1.77 -1.23
3635.916 3641.693 3645.232 3648.383 3650.855	250 50 250 125 5	45821-73316 43726-71178 45879-73305 43726-71128 44544-71927				-0.78 -1.23 -0.94 -1.29	-0.77 -1.30 -1.00 -1.40 -1.66	-0.78 -1.26 -0.97 -1.35 -1.66
3652.34 3655.859 3656.785 3659.353	100H 600H 125H 125H	43726-71098 43514-70860 44544-71883 45879-73199				-0.78 -1.13 -1.03	-0.58 -0.92 -1.24 -1.11	-0.58 -0.85 -1.18 -1.07
3665.735 3671.953 3687.438 3695.358 3699.097	125H 100H 400 8H 10H	43726-70998 45879-73105 30784-57895 44963-72017 46173-73199				-1.31 -1.12 -1.65 -1.55	-1.43 -1.14 -0.82 -2.03 -1.72	-1.37 -1.13 -0.82 -1.65 -1.64

TABLE 3.	Values	of log	gf for	lines	of	Cu	I.
			U U		~		

Wave- length	Intensity Estimate	Energy Levels	KŖ	.CWA	MCS	С	AA	Best
Å 3700.536 3712.009 3720.771 3721.666 3734.180	250H 30H 150 8H 200H	cm ⁻¹ 44963-71979 46173-73105 13245-40114 44406-71268 44406-71178				-0.92 -1.27 -3.99 -1.78 -1.14	-1.22 -4.03 -1.69 -1.11	-0.92 -1.24 -4.01 -1.74 -1.12
3741.242 3745.356 3759.492 3764.837 3771.904	450H 20H 60 5H 100H	44406-71128 44406-71098 44406-70998 44544-71098 46598-73103		х.		-0.89 -1.30 -1.04	-0.90 -1.11 -1.46 -1.76 -0.99	-0.90 -1.11 -1.38 -1.76 -1.02
3780.045 3797.245 3799.88 3800.502 3805.232	5H 8 10H 30H 100H	44406-70853 44963-71291 44544-70853 44963-71268 45879-72151				-1.68 -1.34 -1.11	-1.90 -1.81 -1.49 -1.36	-1.90 -1.81 -1.58 -1.35 -1.11
3811.95 3813.542 3817.490 3820.884 3825.047	8HH 10 5 60 100H	45879-72104 44963-71178 45879-72067 44963-71128 30535-56671				-1.69 -1.27	-1.39 -1.63 -1.93 -1.84 -1.84	-1.39 -1.66 -1.93 -1.27 -1.84
3837.976 3860.472 3881.714 3888.40 3921.267	5 600 5 4H 5	45879–71927 44963–70860 46173–71927 46173–71883 46598–72093				-1.91 -0.67 -1.76 -1.43	-1.98 -0.60 -1.87 -1.40	-1.94 -0.64 -1.76 -1.87 -1.42
3925.274 3933.027 3946.938 3951.616 3964.16	8 5 3 2 5H	46598-72067 46598-72017 46598-71927 45879-71178 45879-71098				-1.36 -1.65 -1.88 -2.30	-1.29 -1.81 -1.70	-1.33 -1.65 -1.84 -2.30 -1.70
3975.7 3979.954 3993.692 3998.018 4003.028	5HHH 5 0 3 15	40114-65260 45879-70998 45821-70853 46173-71178 45879-70853				-2.11 -2.46 -2.13 -1.43	-1.73 -2.19 -1.45	-1.73 -2.15 -2.46 -2.13 -1.44
4010.836 4015.8 4022.629 4027.026 4050.617	8H 10HHH 1250 10 20H	46173-71098 30535-55429 30535-55388 46173-70998 46173-70853	-0.73		-1.13	-1.42 -1.45	-1.93 -2.49 -1.59	-1.93 -2.49 -0.73 -1.42 -1.52
4052.380 4062.641 4069.53 4073.224 4075.572	2 2000 6НН 20ННН 50	46598-71268 30784-55391 39019-63585 40114-64657 46598-71128	-0.50	-2.59		-1.39 -0.96	-1.78 -1.59 -1.00	-1.78 -0.50 -2.59 -1.59 -0.98
4080.534 4104.218 4111.4 4121.74 4123.287	15H 25 3HHH 10 30H	46598-71098 40114-64472 40944-65260 46598-70853 43726-67971		-1.95		-1.75 -1.55	-1.12 -1.62 -1.71 -1.54 -1.32	-1.12 -1.77 -1.71 -1.54 -1.32

TABLE 3.	Values of	log gf for lines	<i>of</i> Cu I.−0	Continued
----------	-----------	------------------	-------------------	-----------

		TABLE 5. Values of	j tog gi jo	T times of C	u 1. – Com	mucu		
Wave- length	Intensity Estimate	Energy Levels	KR	CWA	MCS	С	AA	Best
Å		cm^{-1}	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
4177.758 4230.9 4242.26 4248.956 4259.401	100НН 5ННН 30Н 150 150ННН	39019-62948 43514-67142 44406-67971 40944-64472 40114-63585	-0.99	-1.30 -1.12 -1.19		-1.00	-1.05 -1.57 -1.45 -0.92	-1.18 -1.57 -1.45 -0.99 -1.19
4275.107 4328.68 4336.00 4354.74 4378.20	950 20HH 10H 10HHH 550HH	39019-62403 41563-64657 44916-67971 42302-65260 40114-62948	-0.12	-0.39	-0.11		-0.37 -1.79 -1.77 -1.55 -0.44	-0.12 -1.79 -1.77 -1.55 -0.53
4415.54 4480.350 4507.35 4509.374 4525.112	200HH 500 200HHH 400 40H	40944–63585 30535–52849 44963–67142 42302–64472 45879–67971	-1.74 -0.77	-1.03 -0.76		-1.81 -0.75	-0.78 -1.53 -0.34 -0.68 -1.25	-0.90 -1.74 -0.34 -0.77 -1.25
4530.785 4539.695 4586.97 4642.58 4651.124	800 800HH 1300HH 150HHH 2000	30784-52849 41563-63585 41153-62948 43726-65260 40909-62403	-1.28 -0.69 -0.22 -0.01	-0.46 -0.27 -0.09	-1.20 0.30		-0.50 -0.19 -0.81 0.04	-1.28 -0.69 -0.22 -0.81 -0.01
4674.72 4697.490 4704.594 4767.49 4776.22	500НН 350НН 450 75ННН 20НН	41563-62948 42302-63585 41153-62403 46173-67142 43726-64657	-0.83	-0.71 -0.86 -0.76		-0.81	-0.56 -0.86 -0.60 -0.81 -1.59	-0.64 -0.86 -0.83 -0.81 -1.59
4797.042 4842.290 4866.10 5016.611 5034.36	20 25H 75HHH 400 100HH	41563-62403 42302-62948 46598-67142 44544-64472 43726-63585		-2.07 -1.84 -0.79		-2.07 -0.99	-1.68 -0.49 -0.81 -0.86	-2.07 -1.76 -0.49 -0.86 -0.86
5076.173 5105.541 5111.913 5144.120 5153.235	100HH 1500 300 550H 2000	44963-64657 11203-30784 44916-64472 43514-62948 30535-49935	-1.51 -0.01	-0.98 -0.69	-1.73 -0.29	-1.19	-0.55 -0.94 -0.64	-0.55 -1.51 -1.04 -0.66 -0.01
5200.87 5212.780 5218.202 5220.070 5250.52	500H 140H 2500 500 500HH	43726-62948 44406-63585 30784-49942 30784-49935 44544-63585	0.27 -0.61	-1.29 -0.75	0.40 -0.38		-0.77	-0.77 -1.29 0.27 -0.61 -0.74
5292.517 5352.666 5354.95 5360.030 5376.867	1650 300 250HH 200 5	43514-62403 43726-62403 44916-63585 45821-64472 45879-64472	-0.44	-0.23 -1.02	0.16	-1.67 -1.70 -2.29	-0.16 -1.09	-0.44 -1.67 -1.06 -1.70 -2.29
5391.62 5432.05 5463.138 5554.935 5700.240	450HH 250HH 150 100 1500	44406-62948 44544-62948 46173-64472 44406-62403 13245-30784	-2.34	-0.81 -1.06 -1.48	-2.18	-1.86 -1.78	-0.69 -0.93	-0.75 -1.00 -1.86 -1.63 -2.34

Wave-	Intensity	Energy	KR	CWA	MCS	С	AA	Best
length	Estimate	Levels	init	C with	mas	ų	7111	Dest
Å		cm^{-1}						
5732.325	75	44963-62403				-1.82		-1.82
5782.132	1500	13245-30535	-1.78		-1.59			-1.78
6223.66	4	56030-72093				-1.33		-1.33
6325.45	5	46598-62403				-2.22		-2.22
6474.20	10	56651-72093				-1.17		-1.17
6485.18	5	56651-72067				-1.34		-1.34
6506.14	0	56651-72017				-1.95		-1.95
6544.51	1	56651-71927				-1.75		-1.75
6550.98	1	56030-71291				-1.86		-1.86
6583.54	OH	58119-73305				-1.66		-1.66
6599.68	ОН	56030-71178				-1.95		-1.95
6621.61	30H	56030-71128				-1.00		-1.00
6629.67	5H	58119-73199				-1.52		-1.52
6672.23	10	58119-73103				-0.91		-0.91
6741.42	100	56030-70860				-0.47		-0.47
6881.94	10	56651-71178				-1.52		-1.52
6890.90	10	57419-71927				-1.45		-1.45
6905.94	100	56651-71128				-0.78		-0.78
6968.34	5	56651-70998				-1.84		-1.84
7154.29	5	58119–72093		× 1		-1.64		-1.64
7933.130	1500	30535-43137	-0.60		-0.34			-0.47
8092.634	2000	30784-43137	-0.30		-0.02			-0.16

TABLE 3. Values of log of for lines of Cu I. - Continued

6. References

Allen, C. W. (1932), Phys. Rev. 39, 55.

- Allen, C. W., and Asaad, A. S. (1957), Mon. Not. Roy. Astron. Soc. 117, 36.
- Bates, D. R., and Damgaard, A. (1949), Phil. Trans. Roy. Soc. (London) 242A, 101.
- Bell, G. D., and Tubbs, E. F. (1970), Astrophys. J. 159, 1093.
- Corliss, C. H. (1962a), J. Res. Nat. Bur. Stand. (U.S.), 66A (Phys. and Chem.), No. 1 (Jan.-Feb. 1962), 5.
- Corliss, C. H. (1962b), J. Res. Nat. Bur. Stand. (U.S.), 66A (Phys. and Chem.), No. 6 (Nov.-Dec. 1962), 497.
- Corliss, C. H. (1967) Revision of the NBS Tables of Spectral-Line Intensities below 2450Å. Nat. Bur. Stand. (U.S.), Monogr. 32 Supplement. U.S. Govt. Printing Office, Washington, D.C.
- Corliss, C. H., and Bozman, W. R. (1962), Experimental Transition Probabilities for Spectral Lines of Seventy Elements. Nat. Bur. Stand. (U.S.), Monogr. 53. U.S. Govt. Printing Office, Washington, D.C.
- Cunningham, P., and Link, J. K. (1967), J. Opt. Soc. Am. 57, 1000.
- Dickerman, P. J., and Deuel, R. W. (1964), J. Quant. Spectros. Radiat. Transfer. 4, 807.
- Garz, T., and Kock, M. (1969), Astron. Astrophys. 2, 274.

Huber, M., and Tobey, F. L. (1968), Astrophys. J. 152, 609.

Kock, M., and Richter, J. (1968), Z. Astrophysik 69, 180.

- Levin, L. A., and Budick, B. (1966), Bull. Am. Phys. Soc. 11, 455.
- Lvov, I. V. (1970) Optika i Spektroskopiya 28, 18.
- Maecker, H. (1956), Z. Naturforsch. 11a, 457.
- Meggers, W. F., Corliss, C. H., and Scribner, B. F. (1961), Tables of Spectral-Line Intensities, Nat. Bur. Stand. (U.S.), Monogr. 32. U.S. Govt. Printing Office, Washington, D.C.
- Ney, J. (1966), Z. Physik 196, 53.
- Ostroumenko, P. P., and Rossikhin, V. S. (1965), Opt. and Spectros. 19, 365.
- Riemann, M. (1964), Z. Physik 179, 38.
- Shenstone, A. G. (1948), Phil. Trans. Roy. Soc. (London) **241A**, 297. Slavenas, I. Y. Y. (1966), Opt. and Spectros. **20**, 264.
- van den Bold, H. J. (1945), Thesis, Utrecht.
- Van Lingen, D. (1936), Physica 3, 977.
- Vujnovic, V., Ivezic, T., and Tonejc-Mejaski, A. (1968), Fourth Yugoslavian Symposium on Physics of Ionized Gases.
- Wiese, W. L. (1968), Ch. 10, Methods of Experimental Physics, Vol. 7B (Academic Press, New York, N.Y.).

(Paper 74A6-641)