JOURNAL OF RESEARCH of the National Bureau of Standards – A. Physics and Chemistry Vol. 74A, No. 5, September-October 1970

A Theoretical Investigation of the Configurations $(3d + 4s)^{*}4p$ in Neutral Cobalt (Co1)*

Charles Roth**

(May 28, 1970)

Experimental levels of the configurations $(3d+4s)^{8}4p$ were compared with corresponding calculated values. On fitting 154 levels by means of 19 free parameters an rms error of only 164 cm⁻¹ was obtained.

Key words: Cobalt; configurations $(3d+4s)^{8}4p$; energy levels; g-factors; interactions between configurations.

1. Introduction

Theoretical investigations of odd configurations $3d^n4p$ for trebly and doubly ionized atoms of the iron group have been published by the author $[1, 2]^{1,2}$. In the calculations of doubly ionized Sc, Ti, and V the configurations $3d^{n-1}4s4p$ were added [3], and for CuII other odd configurations were also included [4].

The configurations $(3d+4s)^{3}4p$ were considered previously for the arc spectrum of titanium by Rohrlich [5], as well as by Smith and Siddall [6]. The configurations $3d^{9}4s4p$ in Cu I were investigated by Martin and Sugar [7]. Wilson [8] derived from a Hartree-Fock procedure a set of radial parameters for Cu I $3d^{9}4s4p$. which predicted satisfactorily the positions of seventeen low levels of Cu I. The configurations $(3d+4s)^n 4p$ were investigated for the arc spectra of calcium, scandium, titanium, vanadium, chromium, manganese, and iron by the author [9-13].

For the configurations $(3d+4s)^{3}4p$ of Ti I, Rohrlich obtained an rms error of 1109 cm⁻¹ before the advent of high-speed computers. He found it necessary to reject several terms which, however, fit very nicely in the recent investigations of Ti I, [6], [9]. Smith and Siddall obtained an rms error of 355 cm^{-1} , whereas in the author's investigation the rms error was further reduced to 261 cm⁻¹. One main reason for this considerable improvement is due to the fact that the author was able to identify experimental levels of the configuration $3d4s^24p$ and thus consider explicitly the interactions of this configuration with the configurations $3d^24s4p$ and $3d^34p$. Secondly, Smith and Siddall restricted their analysis to the electrostatic approxima-

Canada. ¹Figures in brackets indicate literature references at the end of this paper.

² The reader is referred to these papers for an explanation of the method used, notation, and significance of the various parameters. The numerical values of all levels and parameters are in cm⁻¹.

tion, whereas the author included the spin-orbit interactions.

The configurations $(d+s)^{*p}$ comprise 165 terms splitting into 438 levels. In AEL [14], 50 terms splitting into 139 levels are assigned to the configurations $3d^{8}4p + 3d^{7}4s4p$, 8 terms splitting into 19 levels are given without configuration assignments, and in addition, there are 37 undesignated odd levels.

Since only the parameters³ B', C, C', and α vary monotonically from Ca I to Fe I, only the initial values of these parameters were obtained by linear extrapolation. Then, neglecting C and α for ScI we obtain initially:

$$B' = 1,000$$

 $C = 3,660$
 $C' = 3,770$ (1)
 $\alpha' = \alpha = 85$

The initial values of the other parameters were assumed to be equal to the final values for FeI [13].

The initial value for the height of the configuration $3d^{7}4s4p$ can be obtained either from ${}^{6}F_{C, G}$ or ${}^{6}G_{C, G}$ (they differ only by $4F'_2$). Then, from the electrostatic matrix of ⁶F [15],

$${}^{6}\mathrm{F}_{\mathrm{C.~G.}} = A' - 15B' - 3G'_{ds} - 3F'_{2} - G'_{ps} + 12\alpha' = 24180$$

and (2)

$$A' = 50800$$
 (3)

The initial value for the height of $3d^{8}4p$ was obtained from the terms ²D of $3d^{8}4p$. By using the fact that the

^{*}An invited paper. The work described in this paper was supported in part by the National Bureau of Standards and the National Research Council of Canada. **Present address: Department of Mathematics, McGill University, Montreal 110,

 $^{^3}$ Unprimed parameters refer to the configuration $3d^84p,$ primed parameters to $3d^74s4p$ and doubly primed to $3d^64s^24p.$

trace of a matrix equals the sum of its eigenvalues we obtain, [16, 14]

$$3A - 4B + 2C + 4F_{2} + 10G_{3} + 20\alpha = 3d^{8}(a^{3}F)4p \ y^{2}D_{C.G.} + 3d^{8}(^{1}D)4p \ x^{2}D_{C.G.} + 3d^{8}(^{3}P)4p \ x^{2}D_{C.G.} = 126318$$

$$(4)$$

From the previously determined values of the other parameters, we obtain

$$A = 39790$$
 (5)

Racah and Shadmi [17], found that the parameter D'', the difference between the weighted averages of the terms $3d^{n-2}4s^2$ and $3d^{n-1}4s$ in the second spectra of the iron group, was a linear function of the atomic number with a quadratic correction. By assuming that $D''[(d+s)^n p]$ in the first spectra obeys a similar relationship as a function of atomic number, a parabola is drawn to pass through the points determined by D''(Sc I), D''(Ti I) [9] and D''(Fe I) [13], and extrapolated for Co I, (Sc I and Fe I have experimental levels belonging to $3d^{n-2}4s^24p$, whereas in Ti I, eigenfunctions of some of the higher levels to which experimental levels are assigned contain considerable contributions of $3d4s^24p$ so that the standard deviation in A'' was only 234).

By substituting into eqs (8) and (9) of reference [12] the final values of the parameters for Fe I [13], and adding $-10G_1''-35G_3''$ to eq (9) (see ref. [12]) since the matrices of d^6s^2p , i.e., d^6p , on tape are those calculated by Ishidzu and Obi [18], who did not use the convention that for the case of an almost complete shell and an electron outside the shell, one subtracts from the energy matrix the interaction of the outer electron with the closed shell (see section 3, [19]), we obtain

$$D''(Fe) = 36420$$
 (6)

By using the values of D''(Ti) and D''(Sc) given by eqs (11) and (14) of reference [10], with the above value for D''(Fe) to obtain the parabola through these three points, and extrapolating

$$D''(Co) = 42410$$
 (7)

From eqs (8) and (9) of reference [12] and again adding $-10G_1''-35G_3''$ to eq (9), reference [12], we obtain

$$A'' = 87980 \tag{8}$$

2. Discussion and Results

Although the configuration $3d^64s^24p$ is very high, it markedly influences the results. In the calculations of $3d^84p + 3d^74s4p$ the rms error was 209 cm⁻¹, whereas the inclusion of $3d^64s^24p$ reduced the rms error in the uniform treatment⁴ to 164 cm⁻¹. Furthermore, the terms obtained from $(4F)^{+1}P^5$ had very high deviations when considering only $3d^84p + 3d^74s4p$. In particular, in $3d^84p + 3d^74s4p$ the mean deviation of the term ${}^{4}F({}^{1}P)x {}^{4}D$ was -643, whereas with the three configurations the mean deviation was only -50. This great improvement can be attributed to the fact that when $(3d + 4s) {}^{8}4p$ was considered G'_{ps} assumed a much higher value $(7038 \pm 56 \text{ cm}^{-1} \text{ versus } 6571 \pm 62 \text{ cm}^{-1})$.

The experimental data for CoI are not sufficient to permit A'', the height of $3d^64s^24p$, to change freely. Thus in the final variation the value of A'' was held fixed at 85220 so that with the final values of the parameters, D'' should approximately equal its original value of 42410. The final parameters in the uniform treatment , are given in table 1.

TABLE 1. Parameters for Co I $(3d+4s)^{8}4p$ (in units of cm^{-1})

Parameter	Initial Value	Final Value
A	39790	39264 ± 122
A'	50800	50677 ± 69
A"	87980	85220 (Fixed)
В	740	833 ± 8
Β'	1000	956 ± 6
<i>B</i> ″	1260	1079 (Arith. Progress.)
С	3660	3744 ± 63
C'	3770	3875 ± 18
<i>C</i> ″	3880	4006 (Arith. Progress.)
$G'_{ds} = G$	1540	1607 ± 33
F_2	170	218 ± 10
F_2'	300	303 ± 7
F_2''	430	388 (Arith. Progress.)
G_1	200	196 ± 9
G'_1	240	199 ± 7
G_1''	280	202 (Arith. Progress.)
$G_3 = G'_3 = G''_3$	20	14 ± 2
G'_{ps}	7120	7038 ± 56
$\alpha = \alpha' = \alpha''$	85	71 ± 3
H = H'	85	72 ± 6
J = J'	1180	1245 ± 50
Κ	2460	2331 ± 55
<i>K'</i>	3352	3223 (Fixed Diff.)
$\zeta_d = \zeta'_d = \zeta''_d$	410	517 ± 17
$\zeta_p = \zeta'_p = \zeta''_p$	200	236 ± 53
rms error		164.2 cm^{-1}

The comparison of the experimental and calculated values of the levels and g-factors obtained from the final least-squares of the uniform treatment is given in table A of the Appendix. The calculated values, percentage compositions, and g-factors of all the 258 predicted levels of $3d^84p + 3d^74s4p$ are given in table A. The 25 lowest levels of $3d^64s^24p$, based on $3d^6({}^5D)$ are also quoted. However, the latter values as well as those higher levels of $3d^84p + 3d^74s4p$ must be considered as only approximate.

⁴ The parameters A, A', G'_{ds} and G'_{ps} are allowed to change freely. The parameters B, C, F_2 , and G_1 are in arithmetic progression. The parameters G_3, α, ζ_d , and ζ_p are kept equal, and for the parameters of the interactions between configurations H' is kept equal to H, J' to J, G to G'_{ds} and K' = K + 892 (fixed difference).

⁵ See the appendix of this paper for the theoretical term designations.

Of the unclassified odd levels only the levels 1°, 2°, 3°, 7°, 10°, 11°, 12°, 15°, and 23° were included. Besides the 28 unclassified odd levels, the following 13 levels were also neglected in the least-squares:

1. The level $3d^{8}(^{3}P)4p: y^{2}S_{1/2}$

- 2. The level $3d^{8}({}^{3}P)4p$: $x {}^{2}P_{1/2}$
- 3. The level $3d^{8}({}^{3}P)4p$: $w^{2}P_{1/2}$
- 4. The four levels of $3d^{7}4s({}^{3}\text{D})4p$: $s^{4}\text{D}$
- 5. The level $t^{2}F_{7/2}$:
- 6. The level $s {}^{2}F_{5/2}$:
- 7. The four levels of $v {}^{4}\text{F}$

It is evident from table A that one of the terms y^2S and x^2S cannot be assigned to a corresponding theoretical term ²S. The theoretical term ²S, calculated at 48010, contains contributions with the same assignments as y^2S and x^2S , and the experimental values of the two terms are very close. However, x^2S was accepted since the correspondence between the calculated and experimental g-factors is better for x^2S than for y^2S .

The levels of the term ${}^{4}P({}^{3}P){}^{2}P$ are calculated at 48966 and 48453. Thus, when the experimental level $x {}^{2}P_{3/2}$ is assigned to ${}^{4}P({}^{3}P){}^{2}P_{3/2}$, the deviation is only – 119. However, the level $x {}^{2}P_{1/2}$, which is given as uncertain in AEL, would yield a deviation of around – 800, which is incompatible with the results for the other levels. Furthermore, the level $w {}^{2}S$, which cannot be assigned to a theoretical level ${}^{2}S$, fits with a deviation of only – 128 when assigned to ${}^{4}P({}^{3}P){}^{2}P_{1/2}$. Although the agreement between the experimental and calculated g-factors is not very good here, it should be noted that the experimental g-factor of 1.50 for $w {}^{2}S$ is given as uncertain in AEL.

The theoretical term ²P following ⁴P(³P)²P in height, is the term ²P(³P)²P to which the levels of v ²P correspond. Thus, the experimental levels of w ²P cannot be assigned to a theoretical term ²P. The level w ²P_{3/2} is assigned to the previously vacant theoretical level ²P(³P)²D_{3/2} yielding a deviation of only -60. The experimental g-factor of 1.099 corresponds to the calculated value of 0.991. The only theoretical level to which w ²P_{1/2} could conceivably be assigned is ²P(³P)²S. However, as the resulting deviation would then be greater than 600, and since the agreement between the experimental g-factor of 1.365 and the calculated g-factor of 1.882 is also very poor, the level w ²P_{1/2} was not inserted into the least-squares.

It is immediately evident from table A that the experimental levels of *s* ⁴D have no corresponding vacant theoretical levels to which they could be assigned.

The levels of the term $A^2 D(^3P)^2 F$ are calculated at 52491 and 52784. Thus, it is evident that the experimental levels $t \, ^2F_{5/2}$ and $s \, ^2F_{7/2}$ should be grouped together and assigned to the theoretical term $A^2 D(^3P)^2 F$. The resulting deviations are 305 and 320 with excellent agreement between the experimental and calculated *g*-factors of both levels. The two remaining levels $t \, ^2F_{7/2}$ and $s \, ^2F_{5/2}$, both of which are given as uncertain in AEL, have no corresponding theoretical levels to which they could be assigned.

The experimental levels v ⁴F cannot be assigned to a theoretical term ⁴F. Conceivably, the levels v ⁴F_{3/2,5/2,7/2} could be fitted to the theoretical levels ⁴P(¹P)⁴D_{3/2,5/2,7/2} and the level v ⁴F_{9/2} could be assigned to ²H(³P)²H_{9/2}. Besides the danger of performing changes in term designations for such high levels, it is important to note that in the paper of Russell, King, and Moore [20], these levels are considered as doubtful.

The following table indicates how the nine unclassified odd levels were assigned:

 TABLE 2. Unclassified Odd Levels of Coll

Level	Assignment	Deviation	Observed g-Factor	Calculated g-Factor
$1^{\circ}_{7/2}$ $2^{\circ}_{5/2}$ $3^{\circ}_{7/2}$ $7^{\circ}_{5/2}$ $11^{\circ}_{5/2}$ $12^{\circ}_{5/2}$ $15^{\circ}_{7/2}$ $23^{\circ}_{7/2}$	${}^{4}P({}^{3}P){}^{6}P_{7/2}$ ${}^{4}P({}^{3}P){}^{6}P_{5/2}$ ${}^{2}G({}^{3}P){}^{4}H_{7/2}$ ${}^{2}P({}^{3}P){}^{2}D_{5/2}$ ${}^{4}ZD({}^{3}P){}^{4}F_{7/2}$ ${}^{4}ZD({}^{3}P){}^{4}F_{5/2}$ ${}^{2}H({}^{3}P){}^{4}H_{7/2}$ ${}^{4}ZD({}^{3}P){}^{2}P_{-1}$	$205 \\ 165 \\ -1 \\ -218 \\ 58 \\ -7 \\ 87 \\ -48 \\ 190$	1.40 1.863 1.260 1.079 0.569	1.709 1.866 0.680 1.163 1.257 1.107 0.680 0.690

The unclassified levels 4° , 5° , 8° , 13° , 14° , 16° , 17° , 18° , 19° , 20° , 21° , and 22° have no corresponding theoretical levels to which they could be assigned.

For the level 6° the *J*-value is questioned. For *J* equal to 9/2 the level $6^{\circ}_{7/2?}$ could be assigned to either ${}^{2}H({}^{3}P){}^{4}I_{9/2}$ or ${}^{2}H({}^{3}P){}^{4}G_{9/2}$.

The level 9° probably should be assigned to $A^2D({}^{3}P){}^{4}F_{9/2}$ to complete with 10°, 11°, and 12° the term $A^2D({}^{3}P){}^{4}F$. However, unlike the levels 10°, 11°, and 12°, the level 9° is given as uncertain in AEL, and there is no experimental g-factor to confirm this assignment. Furthermore, the levels 10°, 11°, and 12° have combinations with levels of 9 even terms, whereas 9° is based on combinations with the levels of only 2 even terms [20]. Although the level 9° was not included in the least-squares calculations, it is inserted in parentheses adjacent to the calculated value of $A^2D({}^{3}P){}^{4}F_{9/2}$ in table A.

The following changes in assignment were performed:

1.	AEL $3d^{7}4s(a {}^{5}P)4pz {}^{4}P \longrightarrow$	$(^{3}P)^{4}P$
2.	${}^{2}G({}^{3}P){}^{2}F \longleftrightarrow$	$(^{1}D)^{2}F$
3.	AEL $3d^{8}(^{3}P)4py^{4}P \longrightarrow$	${}^{2}P({}^{3}P){}^{4}P$
4.	AEL $3d^{7}4s(^{3}P)4px ^{4}P_{3/2} \longrightarrow$	$(^{3}P)^{4}S_{3/2}$
5.	AEL $3d^8(^{3}P)4pv ^{4}D_{3/2} \longrightarrow$	${}^{4}P({}^{3}P){}^{4}P_{3/2}$
6.	AEL $3d^{7}4s(^{3}P)4py^{4}S_{3/2} \longrightarrow$	$(^{3}P)^{4}D_{3/2}$
7.	AEL $3d^{7}4s(^{3}P)4pv^{2}D_{3/2} \longrightarrow$	$(^{3}P)^{2}D_{3/2}$
8.	AEL $3d^8(^{3}P)4pw^2D_{3/2} \longrightarrow$	${}^{4}\mathrm{P}({}^{3}\mathrm{P}){}^{2}\mathrm{D}_{3/2}$
9.	AEL $3d^{7}4s(^{3}P)4py^{2}P \longrightarrow$	$(^{3}P)^{2}P$
10.	AEL $3d^{7}4s(^{3}P)4px^{2}S$ \longrightarrow	$(^{3}P)^{2}S$
11.	AEL $v {}^{2}F_{5/2,7/2}$	2H(3P)4G5/2,7/2
12.	AEL $3d^{8}(^{3}P)4px ^{4}S \longrightarrow$	${}^{2}P({}^{3}P){}^{4}S$

13.	AEL $3d^{7}4s(^{3}P)4pt ^{4}D \longrightarrow$	$A^2D(^3P)^4D$
14.	AEL $w^2 S_{1/2}$	${}^{4}\mathrm{P}({}^{3}\mathrm{\dot{P}}){}^{2}\mathrm{\dot{P}}_{1/2}$
15.	AEL $3d^8({}^{3}P)4px {}^{2}P_{3/2} \longrightarrow$	${}^{4}\mathrm{P}({}^{3}\mathrm{P}){}^{2}\mathrm{P}_{3/2}$
16.	AEL $3d^{7}4s(^{3}P)4pw^{2}P_{3/2} \longrightarrow$	${}^{2}\mathrm{P}({}^{3}\mathrm{P}){}^{2}\mathrm{D}_{3/2}$
17.	$^{2}H(^{3}P)^{2}G \longleftrightarrow$	$({}^{1}\mathbf{G}){}^{2}\mathbf{G}$
18.	AEL $3d^74s(^{3}\text{H})4px ^{2}\text{H}_{9/2,11/2} \longrightarrow$	$^{2}\mathrm{H}(^{3}\mathrm{P})^{4}\mathrm{H}_{9/2,11/2}$

Although in most changes of assignment the theoretical eigenfunctions are mixed strongly, in the changes 1, 2, 3, 9, 10, 12, 13, and 15 the compositions of the theoretical levels contain only small contributions of the experimental assignments (see table A).

The experimental g-factor of y^4 S is 1.273. Since the theoretical g-factor of ⁴S is 2.000, y^4 S could be assigned to a theoretical term ⁴S if the latter would have significant contributions of terms with low theoretical g-factors (such as ⁴F_{3/2}, ²D_{3/2}). However, this is not so in the present case and thus after several variations it was ascertained that the best agreement in the values and g-factors of the levels ⁴P(³P)⁴P, (³P)⁴D and (³P)⁴S is obtained after performing the changes 4, 5, and 6.

The grouping of the levels of w^2D and v^2D as given in AEL, is incongruous with the calculated values of the levels of $({}^{3}P)w^2D$ and ${}^{4}P({}^{3}P)v^2D$. Thus, the changes 7 and 8 were performed.

The levels of $v^2 F$ cannot be assigned to a theoretical term ²F. However, when the two levels of $v^2 F$ are assigned to the two lowest levels of ${}^{2}H({}^{3}P){}^{4}G$, not only is there excellent agreement between the experimental and calculated values of the levels (for each level the deviation is only - 24), but there is also a close correspondence between the experimental and calculated g-factors (the experimental g-factors of 0.619 and 1.173 correspond to the calculated values of 0.619 and 1.008, respectively). This change is indicated by 11.

The changes 14 and 16 were discussed previously.

The change 18 is similar to change 11. Although there is no corresponding theoretical term ²H to which the levels of x ²H could be assigned, there is excellent agreement between the calculated and experimental values of the levels and g-factors when the levels $x^{2}H$ are assigned to the theoretical levels ${}^{2}H({}^{3}P){}^{4}H_{9/2, 11/2}$. To the theoretical level ${}^{2}H({}^{3}P){}^{4}H_{7/2}$, the level $15_{7/2}^{0}$ (based on 10 combinations with even levels, [20]), is assigned to yield a deviation of only – 48.

Below the limit of the experimental levels inserted, there are 21 theoretical levels with no corresponding experimental levels. The lowest of these is the level ⁴P(³P)⁶S calculated at 34642.

With very few exceptions the agreement between the experimental and calculated g-factors is excellent.

Appendix

Table A. Observed and Calculated Levels and g-Factors

In the column "Name" the calculated designation of the term is given. Whenever the terms of the parent d^n have different seniorities these are denoted by the letters A and B, the lower calculated term being designated by A. The terms of d^7sp are denoted by $d^7v_1S_1L_1(sp^{1,3}P)SL$. The terms of d^8p are differentiated from those of d^6s^2p by using a star for the latter terms.

The entries in the columns "J", "Obs. Level (cm^{-1}) ", "Calc. Level (cm^{-1}) ", "Obs. g-Factor" and "Calc. g-Factor" are self-evident. In the column "Percentage", for each calculated level either the three highest contributions or all those contributions exceeding five percent are given.

Whenever the experimental and calculated term designations differ, the experimental designation is entered in the column "AEL" using the notation of C. E. Moore, [14]. In many instances the exchanges involve complete terms rather than isolated levels. Unless specified otherwise, the entries in the column "AEL" pertain to exchanges in terms.

The column "O–C" gives the difference between the observed and calculated values of the levels.

The entries are in increasing energy of the calculated levels.

Name	I	Percentage	AEL		Obs. Level	Calc. Level	0-С	Obs.	Calc.
	5		Config.	Desig.	(cm ⁻¹)	(cm ⁻¹)		g-Factor	g-Factor
${}^{4}F({}^{3}P){}^{6}F$	1/2	99	3d ⁷ 4s (a ⁵ F)4p	<i>z</i> ⁶ F	25233	25240	-7	-0.622	-0.631
	3/2	95			25041	25061	-20	1.118	1.080
	5/2	$90 + 7^{4}F(^{3}P)^{6}D$			24733	24775	- 42	1.336	1.328
	7/2	$84 + 12^4 F(^3P)^6D$			24326	24397	-71	1.436	1.412
	9/2	$78 + 18^4 F(^3P)^6D$			23856	23961	-105	1.481	1.452
	11/2	97			23612	23635	- 23	1.466	1.451
${}^{4}F({}^{3}P){}^{6}D$	1/2	94	$3d^74s(a {}^5\mathrm{F})4p$	<i>z</i> ⁶ D	26250	26404	-154	3.286	3.297
	3/2	91			26063	26210	-147	1.812	1.810
	5/2	$87 + 6^4 F(^3P)^6 F$			25740	25881	-141	1.612	1.615
	7/2	$83 + 11^{4} F(^{3}P)^{6}F$			25269	25407	-138	1.550	1.555
	9/2	$78 + 17^{4}F(^{3}P)^{6}F$			24628	24770	-142	1.569	1.529

TABLE A. Observed and calculated levels of Co I $(3d+4s)^84p$

TABLE A. Observed and calculated levels of Co I $(3d+4s)^84p$ – Continued

Name	I	Percentage	AEL		Obs. Level	Calc.	0-0	Obs.	Calc.
Traine	J	refeelinge	Config.	Desig.	(cm^{-1})	(cm^{-1})	U U	g-Factor	g-Factor
${}^{4}F({}^{3}P){}^{6}G$	3/2 5/2 7/2 9/2 11/2 13/2	97 95 94 94 94 96 100	3d ⁷ 4s(a ⁵ F)4p	<i>z</i> ⁶ G	26598 26450 26232 25938 25569 25139	26425 26273 26049 25749 25375 24941	173 177 183 189 194 198	$\begin{array}{c} 0.006 \\ 0.876 \\ 1.150 \\ 1.281 \\ 1.354 \\ 1.40 \end{array}$	0.042 0.882 1.156 1.278 1.344 1.384
${}^{4}F({}^{3}P){}^{4}F$	3/2 5/2 7/2 9/2	$\begin{array}{c} 85+13({}^3\mathrm{F}){}^4\mathrm{F}\\ 82+13({}^3\mathrm{F}){}^4\mathrm{F}\\ 80+13({}^3\mathrm{F}){}^4\mathrm{F}\\ 82+15({}^3\mathrm{F}){}^4\mathrm{F} \end{array}$	3d74s(a ⁵ F)4p	<i>z</i> ⁴ F	29563 29216 28777 28346	29561 29217 28779 28328	2 - 1 - 2 18	$\begin{array}{c} 0.410 \\ 1.033 \\ 1.247 \\ 1.330 \end{array}$	0.408 1.026 1.234 1.331
${}^{4}F({}^{3}P){}^{4}G$	5/2 7/2 9/2 11/2	94 91 90 95	3d ⁷ 4s(a ⁵ F)4p	<i>z</i> ⁴ G	30103 29735 29270 28845	30044 29680 29219 28765	59 55 51 80	0.577 0.995 1.175 1.276	0.583 0.991 1.175 1.273
${}^{4}F({}^{3}P){}^{4}D$	1/2 3/2 5/2 7/2	$\begin{array}{l} 65+31(^3{\rm F})^4{\rm D}\\ 62+33(^3{\rm F})^4{\rm D}\\ 57+36(^3{\rm F})^4{\rm D}\\ 53+42(^3{\rm F})^4{\rm D} \end{array}$	3d ⁷ 4s(a ⁵ F)4p	<i>z</i> ⁴ D	30743 30444 29949 29295	30790 30482 29969 29289	-47 - 38 - 20 6	-0.006 1.192 1.359 1.425	0.003 1.192 1.362 1.425
${}^{4}F({}^{3}P){}^{2}G$	7/2 9/2	$\begin{array}{l} 41+29(^3F)^4F+11(^3F)^2G\\ 47+29(^3F)^4G+13(^3F)^4F \end{array}$	3d ⁷ 4s(b ³ F)4p	<i>z</i> ² G	32733 31700	32850 31822	-117 -122	0.899 1.126	0.990 1.121
${}^{4}F({}^{3}P){}^{2}F$	5/2 7/2	$\begin{array}{c} 71+26({}^3\mathrm{F}){}^2\mathrm{F}\\ 66+28({}^3\mathrm{F}){}^2\mathrm{F} \end{array}$	$3d^74s(b^3\mathrm{F})4p$	$z^{2}F$	32782 31871	32962 32061	-180 - 190	$0.870 \\ 1.177$	$0.863 \\ 1.153$
$({}^{3}F){}^{4}D$	1/2 3/2 5/2 7/2	$\begin{array}{l} 59+36^{4}F^{(1}P)^{4}D\\ 56+37^{4}F^{(1}P)^{4}D\\ 51+41^{4}F^{(1}P)^{4}D\\ 46+45^{4}F^{(1}P)^{4}D \end{array}$			33449 33151 32654 32028	33533 33209 32680 31982	-84 - 58 - 26 - 44	0.012 1.195 1.366 1.395	0.003 1.193 1.364 1.416
$({}^{3}F){}^{4}G$	5/2 7/2 9/2 11/2	$\begin{array}{c} 52+30(^{3}F)^{4}F\\ 34+31(^{3}F)^{2}G+11(^{3}F)^{4}F\\ 53+28(^{3}F)^{2}G+8^{4}F(^{3}P)^{2}G\\ 94 \end{array}$			33674 33173 32465 32431	33608 33185 32414 32296	66 - 12 51 135	0.704 1.039 1.154 1.287	0.777 1.040 1.171 1.273
${}^{4}F({}^{3}P){}^{2}D$	3/2 5/2	$\begin{array}{l} 53+37(^{3}F)^{2}D\\ 53+42(^{3}F)^{2}D \end{array}$	$3d^74s(b^3\mathrm{F})4p$	<i>z</i> ² D	34352 33463	34423 33497	-71 - 34	0.787 1.186	0.781 1.198
$(^{3}F)^{4}F$	3/2 5/2 7/2 9/2	$\begin{array}{l} 67+24^{4}F(^{1}P)^{4}F\\ 38+42(^{3}F)^{4}G\\ 25+33(^{3}F)^{4}G+24^{4}F(^{3}P)^{2}G\\ 51+22^{4}F(^{1}P)^{4}F+14^{4}F(^{3}P)^{2}G \end{array}$			34196 33946 33467 32842	34205 33937 33445 32791	-9 9 22 51	0.430 0.900 1.155 1.313	0.430 0.824 1.055 1.278
$({}^{3}F){}^{2}G$	7/2 9/2	$\begin{array}{l} 50+21(^3F)^4G+21^4F(^3P)^2G\\ 56+27^4F(^3P)^2G+11(^3F)^4G \end{array}$			$34134 \\ 33440$	34179 33420	$-45 \\ 20$	$0.917 \\ 1.165$	$0.921 \\ 1.159$
${}^{4}P({}^{3}P){}^{6}S$	5/2	99				34642			1.998
$(^{3}F)^{2}F$	5/2 7/2	$\begin{array}{l} 53+18(^3F)^2D+16^4F(^3P)^2F\\ 61+25^4F(^3P)^2F \end{array}$			$36330 \\ 35451$	36250 35236	80 215	0.892 1.145	$\begin{array}{c} 0.948 \\ 1.144 \end{array}$
$({}^{3}F){}^{2}D$	3/2 5/2	$\begin{array}{l} 53+40^{4}F(^{3}P)^{2}D\\ 35+36^{4}F(^{3}P)^{2}D \end{array}$			36875 36092	36923 36049	-48 43	0.794 1.186	$0.805 \\ 1.118$

Name	J	Percentage	AEL		Obs.	Calc.	0-0	Obs	Cale
i tume		reiteinuge	Config.	Desig.	(cm^{-1})	(cm ⁻¹)		g-Factor	g-Factor
4P(3P)6D	1/2	94				39184			3.314
.(.).	3/2	92				39093			1.846
	5/2	92				38991			1.655
	7/2	92				38902			1.583
	9/2	96				38847			1.555
${}^4\mathrm{P}({}^3\mathrm{P}){}^4\mathrm{S}$	3/2	$74 + 10({}^{3}P){}^{4}S$	$3d^74s(a {}^5\mathrm{P})4p$	<i>z</i> ⁴ S	40622	40240	382	2.017	1.918
${}^4F({}^1P){}^4D$	1/2	$62 + 24(^{3}P)^{4}D$	$3d^74s(b^3\mathrm{F})4p$	<i>x</i> ⁴ D	41102	41141	- 39	0.026	0.012
	3/2	$62 + 23(^{3}P)^{4}D$			40828	40863	- 35	1.240	1.204
	5/2	$63 + 21(^{3}P)^{4}D$			40346	40395	- 49	1.370	1.369
	7/2	$65 + 18(^{3}P)^{4}D$			39649	39726	-77	1.428	1.428
${}^4P({}^3P){}^6P$	3/2	$90 + 6^4 P(^3P)^4 S$				40992		-	2.291
	5/2	93		20	41105	40940	165	1.863	1.866
	7/2	97		10	41041	40836	205	1.40	1.709
${}^4F({}^1P){}^4F$	3/2	$61 + 27^2 G(^3P)^4F$	3d ⁷ 4s(b ³ F)4p	<i>x</i> ⁴ F	42797	42396	401	0.406	0.408
	5/2	$59 + 24^{2}G(^{3}P)^{4}F$			42434	42046	388	1.024	1.052
	7/2	$63 + 23^2 G(^3P)^4F$			41918	41571	347	1.248	1.234
	9/2	$66 + 19^2 \mathrm{G}(^3\mathrm{P})^4\mathrm{F}$			41226	40917	309	1.319	1.330
$(^{3}P)^{4}P$	1/2	$66 + 14^2 P(^{3}P)^{4}P + 11^{4}P(^{3}P)^{4}P$	3d ⁷ 4s(a ⁵ P)4p	<i>z</i> ⁴ P	41970	42048	- 78	2.51	2.520
	3/2	$64 + 12^4 P(^3P)^4 P + 9^2 P(^3P)^4 P$			41983	41972	11	1.732	1.665
	5/2	$65 + 12^4 P(^3P)^4 P + 9^2 P(^3P)^4 P$			41969	41932	37	1.627	1.548
${}^4F({}^1P){}^4G$	5/2	93	3d ⁷ 4s(b ³ F)4p	x 4G	43200	43350	- 150	0.649	0.581
	7/2	92			42811	42962	- 151	1.004	0.988
	9/2	93			42269	42439	-170	1.169	1.174
	11/2	95			41529	41747	- 218	1.291	1.272
$^{2}G(^{3}P)^{4}H$	7/2	95		30	42988	42989	-1		0.680
	9/2	90				42775			0.977
	11/2	92				42632			1.135
	13/2	98				42565			1.229
$(^{1}D)^{2}P$	1/2	$42 + 25({}^3P){}^2P + 7{}^2P({}^3P){}^2P$			43130	43084	46	0.727	0.846
	3/2	$31 + 23(^{1}D)^{2}D + 22^{4}P(^{3}P)^{4}D$			43538	43544	-6	1.120	1.175
${}^{4}\mathrm{P}({}^{3}\mathrm{P}){}^{4}\mathrm{D}$	1/2	$75 + 9^2 P(^3P)^4 D$	3d74s(a 5P)4p	w ⁴ D	43436	43444	-8	0.169	0.101
	3/2	$58 + 9(^{1}D)^{2}D$			43264	43298	-34	1.191	1.186
	5/2	$46 + 28(^{1}D)^{2}F$			43243	43218	25	1.101	1.168
	7/2	$88 + 3(^{1}D)^{2}F$			43399	43346	53	1.334	1.417
$({}^{1}D){}^{2}F$	5/2	$37 + 36^4 P ({}^3P)^4 D + 10^2 G ({}^3P)^2 F$	3d74s(3G)4p	<i>x</i> ² F	43426	43371	55	1.119	1.108
	7/2	$45 + 20^2 G(^3P)^4F + 16^2 G(^3P)^2F$			43555	43602	-47	1.229	1.174
$({}^{1}D){}^{2}D$	3/2	$40 + 33 (^1\mathrm{D})^2\mathrm{P} + 5 (^3\mathrm{P})^2\mathrm{P}$			43911	43957	- 46	1.127	1.070
	5/2	$52 + 20^2 G(^3P)^4 F$			43922	44113	- 191	1.230	1.147
${}^4\mathrm{P}({}^3\mathrm{P}){}^2\mathrm{S}$	1/2	$61 + 21(^{3}P)^{2}S$	$3d^74s(^3P)4p$	z^2S	44455	44185	270	2.10	1.908
$^2G(^3P)^4F$	3/2	$68 + 18^4 F ({}^1P)^4 F + 7 ({}^3F)^4 F$	3d74s(3G)4p	<i>w</i> ⁴ F	44556	44745	- 189	0.415	0.412
	5/2	$29 + 23^2G(^3P)^4G + 23(^1D)^2D$			44202	44333	-131	0.950	0.970
	7/2	$39 + 23(^{1}D)^{2}F + 11^{2}G(^{3}P)^{4}G$			43848	43979	- 131	1.197	1.183
	9/2	$71 + 15^{4}F(^{1}P)^{4}F + 5(^{3}F)^{4}F$			43295	43523	-228	1.295	1.318

TABLE A. C	D bserved and	calculated	levels a	of CoI	(3d + 4)	$s)^{8}4p -$	Continued
------------	----------------------	------------	----------	--------	----------	--------------	-----------

Name	J	Percentage	AEL		Obs. Level	Calc. Level	0-С	Obs.	Calc.
	0		Config.	Desig.	(cm^{-1})	(cm ⁻¹)		g-Factor	g-Factor
$^{2}G(^{3}P)^{4}G$	5/2 7/2	$69 + 19^{2}G(^{3}P)^{4}F$ 77 + 11 ² G(^{3}P)^{4}F	$3d^74s({}^3\mathrm{G})4p$	<i>w</i> ⁴ G	44568 44394	44561 44343	7 51	0.676 1.004	0.703 1.013
	9/2 11/2	$85 + 5^{2}G(^{3}P)^{4}F$ 93			44183 43952:	$\begin{array}{c} 44100\\ 43851 \end{array}$	83 101	1.163 1.279	1.169 1.266
$^{2}P(^{3}P)^{4}P$	1/2 3/2 5/2	$\begin{array}{c} 44+40^4P(^1P)^4P\\ 37+40^4P(^1P)^4P\\ 33+42^4P(^1P)^4P \end{array}$	3d ⁸ (³ P)4p	<i>y</i> ⁴P	44858 44658 44480	45215 44948 44708	-357 -290 -228	2.371 1.674 1.557	2.523 1.680 1.565
$^{2}G(^{3}P)^{2}H$	9/2 11/2	87 90	3d ⁷ 4s(³ G)4p	<i>x</i> ² H	45111 45540	44988 45380	123 160	0.897 1.097	0.907 1.091
(³ P) ² D	3/2 5/2	$\begin{array}{l} 72+7({}^1\mathrm{D}){}^2\mathrm{D}+6{}^4\mathrm{P}({}^3\mathrm{P}){}^2\mathrm{D}\\ 70+8{}^4\mathrm{P}({}^3\mathrm{P}){}^2\mathrm{D} \end{array}$	$\frac{3d^74s(^3\mathrm{P})4p}{3d^8(^3\mathrm{P})4p}$	$v {}^{2}\mathrm{D}$ $w {}^{2}\mathrm{D}$	46186 45688	46017 45397	169 291	1.218 1.219	$0.853 \\ 1.170$
$(^{3}P)^{4}S$	3/2	$32 + 25^4 P ({}^3P)^4 S + 13 ({}^3P)^2 P$	$3d^74s(^3P)4p$	<i>x</i> ⁴ P	45905	45906	-1	1.674	1.794
⁴ P(³ P) ⁴ P	1/2 3/2 5/2	$\begin{array}{l} 44+22(^{3}\mathrm{P})^{4}\mathrm{P}+15^{2}\mathrm{P}(^{3}\mathrm{P})^{4}\mathrm{P}\\ 30+18(^{3}\mathrm{P})^{4}\mathrm{P}+16^{2}\mathrm{P}(^{3}\mathrm{P})^{4}\mathrm{P}\\ 30+24^{2}\mathrm{P}(^{3}\mathrm{P})^{4}\mathrm{P}+16(^{3}\mathrm{P})^{4}\mathrm{P} \end{array}$	$3d^74s({}^3\mathrm{P})4p$ $3d^8({}^3\mathrm{P})4p$ $3d^74s({}^3\mathrm{P})4p$	x ⁴ P v ⁴ D x ⁴ P	45957 46260 46003	45864 46151 46168	93 109 - 165	2.522 1.508 1.543	2.613 1.714 1.566
$^{2}G(^{3}P)^{2}G$	7/2 9/2	$\begin{array}{l} 79+10^{2}\mathrm{H}(^{3}\mathrm{P})^{2}\mathrm{G}\\ 80+10^{2}\mathrm{H}(^{3}\mathrm{P})^{2}\mathrm{G} \end{array}$	3d ⁷ 4s(³ G)4p	<i>x</i> ² G	45767 46032	45931 46211	- 164 - 179	0.898 1.131	0.896 1.113
(³ P) ⁴ D	1/2 3/2 5/2 7/2	$\begin{array}{l} 27+21A^2D(^3P)^4D+17^2P(^3P)^4D\\ 14+16(^3P)^2P+12(^1D)^2P\\ 28+25^2P(^3P)^4D+11^4F(^1P)^4D\\ 44+22^2P(^3P)^4D+11^4F(^1P)^4D \end{array}$	$3d^74s(^3P)4p$	y ⁴ S	46502 46563 46330 45971	46489 46654 46485 46229	13 - 91 - 155 - 258	$\begin{array}{c} 0.161 \\ 1.273 \\ 1.365 \\ 1.424 \end{array}$	$0.149 \\ 1.200 \\ 1.361 \\ 1.406$
${}^{4}\mathrm{P}({}^{3}\mathrm{P}){}^{2}\mathrm{D}$	3/2 5/2	$\begin{array}{l} 61+14^2P(^3P)^2D+7(^3P)^4D\\ 45+20^2G(^3P)^2F+9(^3P)^4D \end{array}$	$3d^{8}(^{3}\mathrm{P})4p$ $3d^{7}4s(^{3}\mathrm{P})4p$	$w^2 D v^2 D$	46455 46672	46803 46695	$-348 \\ -23$	0.869 1.233	$0.893 \\ 1.130$
$^{2}G(^{3}P)^{2}F$	5/2 7/2	$\begin{array}{l} 33+22^4P(^3P)^2D+14(^1D)^2F\\ 36+31^2P(^3P)^4D+11(^1D)^2F \end{array}$	$3d^{8}(^{1}\mathrm{D})4p$	<i>w</i> ² F	47129 47225	46944 47062	185 163	0.858 1.229	$\begin{array}{c} 0.971 \\ 1.310 \end{array}$
$(^{3}P)^{2}P$	1/2 3/2	$\begin{array}{l} 46+30({}^1D){}^2P+10{}^4P({}^3P){}^2P\\ 27+12({}^1D){}^2P+9({}^3P){}^4D \end{array}$	3d ⁷ 4s(³ P)4p	y²P	47091 46685	47215 46471	-124 214	0.656 1.352	0.671 1.394
${}^{2}P({}^{3}P){}^{4}D$	1/2 3/2 5/2 7/2	$\begin{array}{l} 37+21(^3P)^2S+20(^3P)^4D\\ 47+18(^3P)^4D+10A^2D(^3P)^4F\\ 45+13^4P(^3P)^2D+11(^3P)^4D\\ 26+23A^2D(^3P)^4D+21^2G(^3P)^2F \end{array}$		u ⁴ D	47905 47612 47394 46873	48010 47554 47365 46806	- 105 58 29 67	$\begin{array}{c} 0.016 \\ 1.122 \\ 1.324 \\ 1.352 \end{array}$	0.691 1.105 1.319 1.394
${}^{2}\mathrm{H}({}^{3}\mathrm{P}){}^{4}\mathrm{I}$	9/2 11/2 13/2 15/2	94 94 97 100				48081 47874 47717 47613			0.739 0.968 1.108 1.200
$(^{3}P)^{2}S$	1/2	$35 + 26^2 P ({}^3P)^4 D + 15^4 P ({}^3P)^2 S$	$3d^{7}4s(^{3}P)4p$	x^2S	48026	48010	16	1.699	1.193
$^{2}H(^{3}P)^{4}G \\$	5/2 7/2 9/2 11/2	$\begin{array}{c} 81+7^2{\rm G}(^3{\rm P})^2{\rm F}\\ 84+4^2{\rm G}(^3{\rm P})^2{\rm F}\\ 92\\ 95\end{array}$		<i>v</i> ² F <i>v</i> ² F	48616: 48317	48640 48341 47996 47626	-24 - 24	0.619 1.173	0.619 1.008 1.171 1.272

TABLE A. Observed and calculated levels of CoI $(3d+4s)^84p-Continued$

Name J		Percentage	AEL		Obs. Level	Calc. Level	0-С	Obs.	Calc.
Tume	5	I choomago	Config.	Desig.	(cm ⁻¹)	(cm ⁻¹)		g-Factor	g-Factor
$A^2D(^3P)^4D$	1/2 3/2 5/2 7/2	$\begin{array}{c} 52+16(^{3}P)^{4}D\\ 21+22^{2}P(^{3}P)^{4}S+12(^{3}P)^{4}D\\ 52+19(^{3}P)^{4}D\\ 51+18(^{3}P)^{4}D \end{array}$	3d ⁷ 4s(³ P)4p	t ⁴ D	48572 48546 48444 48217	48893 48742 48796 48573	-321 -196 -352 -356	$\begin{array}{c} 0.452 \\ 1.050 \\ 1.340 \\ 1.211 \end{array}$	0.198 1.254 1.339 1.386
${}^4P({}^3P){}^2P$	1/2 3/2	$\begin{array}{l} 69+12^{2}P(^{3}P)^{2}S+10(^{3}P)^{2}P\\ 40+15^{2}P(^{3}P)^{4}S+11A^{2}D(^{3}P)^{4}D \end{array}$	$3d^8(^3\mathrm{P})4p$	$w^{2}S$ $x^{2}P$	48838 48334	48966 48453	- 128 - 119	1.50: 1.436	$0.840 \\ 1.369$
$^{2}\mathrm{P}(^{3}\mathrm{P})^{4}\mathrm{S}$	3/2	$48 + 26A^2D(^3P)^4D + 8(^3P)^4D$	$3d^8(^3P)4p$	x 4S	48754	48946	-192	1.728	1.623
$^{2}P(^{3}P)^{2}D$	3/2 5/2	$\begin{array}{l} 29+34{}^{4}P({}^{3}P){}^{2}P+24A{}^{2}D({}^{3}P){}^{4}F\\ 32+34A{}^{2}D({}^{3}P){}^{4}F+10{}^{2}P({}^{3}P){}^{4}D \end{array}$	3d74s(3P)4p	w ² P 7 ⁰	49025 48829	49085 49047	$-60 \\ -218$	1.099	$0.991 \\ 1.163$
$A^2D(^3P)^4F$	3/2 5/2 7/2 9/2	$\begin{array}{c} 50+15^2 P(^3 P)^2 D+11 A^2 D(^3 P)^2 D\\ 43+24^2 P(^3 P)^2 D\\ 75+6^2 P(^3 P)^4 D\\ 98\end{array}$		12° 11° 10° 9°	50105 49847 49484 (49198:)	50018 49854 49426 49108	87 - 7 58 (90)	0.569 1.079 1.260	0.680 1.107 1.257 1.333
$^{2}H(^{3}P)^{2}I \\$	11/2 13/2	90 $67 + 31^{2} H(^{3}P)^{4} H$				50080 50435			$0.936 \\ 1.126$
$({}^{1}G){}^{2}H$	9/2 11/2	$81 + 9^{2}H(^{3}P)^{2}H$ $69 + 17^{2}H(^{3}P)^{2}H$			50211 50376	50124 50389	87 	0.899 1.091	0.915 1.085
$^{2}\mathrm{P}(^{3}\mathrm{P})^{2}\mathrm{S}$	1/2	$68 + 13^4 P(^3P)^2 P$				50417			1.882
$({}^{1}\mathrm{G}){}^{2}\mathrm{G}$	7/2 9/2	$\begin{array}{c} 38+37^{2}\mathrm{H}(^{3}\mathrm{P})^{2}\mathrm{G}\\ 40+38^{2}\mathrm{H}(^{3}\mathrm{P})^{2}\mathrm{G} \end{array}$	3d ⁷ 4s(³ H)4p	w ² G	50611 50593	50556 50616	55 - 23	0.82 1.10	0.908 1.095
$({}^{1}\mathrm{G}){}^{2}\mathrm{F}$	5/2 7/2	$\begin{array}{l} 57+17 \mathbf{A}^2 \mathbf{D}(^3 \mathbf{P})^2 \mathbf{F} \\ 60+12 \mathbf{A}^2 \mathbf{D}(^3 \mathbf{P})^2 \mathbf{F}+8^2 G(^3 \mathbf{P})^2 \mathbf{F} \end{array}$			50712 50579	50771 50693	-59 -114	0.905 1.125	0.909 1.120
$^{2}\mathrm{P}(^{3}\mathrm{P})^{2}\mathrm{P}$	1/2 3/2	$71 + 13A^{2}D(^{3}P)^{4}D$ $53 + 15A^{2}D(^{3}P)^{4}D$		v ²₽	50945 50925	50972 50861	$-27 \\ 64$	$0.732 \\ 1.340$	$0.707 \\ 1.331$
$^{2}\mathrm{H}(^{3}\mathrm{P})^{4}\mathrm{H}$	7/2 9/2 11/2 13/2	$\begin{array}{l} 89+5({}^{1}\mathrm{G}){}^{2}\mathrm{G}\\ 86+5({}^{1}\mathrm{G}){}^{2}\mathrm{G}\\ 86+11({}^{1}\mathrm{G}){}^{2}\mathrm{H}\\ 68+30{}^{2}\mathrm{H}({}^{3}\mathrm{P}){}^{2}\mathrm{I} \end{array}$	3d ⁷ 4s (³ H)4p 3d ⁷ 4s (³ H)4p	15° x ² H x ² H	51185 50903 50703	51233 51048 50828 50573	$-48 \\ -145 \\ -125$	0.941 1.110	0.690 0.982 1.128 1.184
$A^2 D (^3P)^4 P$	1/2 3/2 5/2	$\begin{array}{c} 66+12^2 P(^3P)^4 P \\ 57+17^2 P(^3P)^2 P \\ 73+13^2 P(^3P)^2 P \end{array}$	$3d^74s(^3\mathrm{D})4p$	w ⁴ P	52355 52014 51160	52180 51784 50950	175 230 210	2.304 1.616 1.578	2.414 1.617 1.564
$A^{2}D(^{3}P)^{2}F$	5/2 7/2	$\begin{array}{c} 58+17({}^1\mathrm{G}){}^2\mathrm{F} \\ 75+11{}^2\mathrm{G}({}^3\mathrm{P}){}^2\mathrm{F} \end{array}$		<i>t</i> ² F <i>s</i> ² F	52796 53104	52491 52784	305 320	0.883 1.136	$0.897 \\ 1.149$
$A^2D(^3P)^2D$	3/2 5/2	$\begin{array}{c} 51+21^2 P(^3 P)^2 D \\ 49+18^2 P(^3 P)^2 D \end{array}$		u ² D	53075 53196	52884 53964	191 232	0.823 1.206	0.816 1.180
${}^{2}\mathrm{H}({}^{3}\mathrm{P}){}^{2}\mathrm{G}$	7/2 9/2	$\begin{array}{l} 44+30({}^1G){}^2G+22{}^2G({}^3P){}^2G\\ 44+28({}^1G){}^2G+24{}^2G({}^3P){}^2G \end{array}$	$3d^{8({}^{1}\mathbf{G})}4p$	<i>v</i> ² G	53374 53276	53288 53214	86 62	0.888 1.124	0.889 1.111
$A^2D(^3P)^2P$	$\frac{1/2}{3/2}$	93 87		230	54165	53764 53985	180	1.353	0.750 1.363

TABLE	A.	Observed	and	calculated	levels	of	Сог	(3d	$+4s)^{8}$	4p-	Continued
-------	----	----------	-----	------------	--------	----	-----	-----	------------	-----	-----------

Name	I	Percentage	AEI	L	Obs. Level	Calc. Level	0-C	Obs.	Calc.
	5		Config.	Desig.	(cm ⁻¹)	(cm ⁻¹)		g-Factor	g-Factor
2H(3P)2H	0/2	$91 + 6({}^{1}C){}^{2}H$				54608			0.910
-11(-1-)-11	11/2	$88 + 6({}^{1}G){}^{2}H$		-		54821			1.092
4P(1P)4D	1/2	$82 + 10(5D)^4D^*$				55223			0.094
1(1)D	3/2	$80 + 10(^{5}\text{D})^{4}\text{D}^{*}$				55057		· · · ·	1.224
	5/2	$81 + 11(^{5}D)^{4}D^{*}$				54867			1.377
	7/2	$85 + 12(^{5}D)^{4}D^{*}$				54693			1.427
${}^4P({}^1P){}^4S$	3/2	$58 + 27(^{3}P)^{4}S$				55395			1.961
${}^{4}P({}^{1}P){}^{4}P$	1/2	$70 + 19(^{5}D)^{4}P^{*}$				55825			2.561
- (-) -	3/2	$61 + 17(^{5}\text{D})^{4}\text{P}^{*}$				55792			1.729
	5/2	$70 + 21(^{5}D)^{4}P^{*}$				55421			1.587
${}^{2}G({}^{1}P){}^{2}H$	9/2	93				57733			0.914
0(1)11	11/2	91				57103			1,088
$(^{5}D)^{6}D^{*}$	1/2	99				58371			3.328
(2)2	3/2	99				58244			1.864
	5/2	98				58035			1.655
	7/2	97				57754			1.585
	9/2	99				57426			1.554
${}^{2}G({}^{1}P){}^{2}F$	5/2	$84 + 4(^{1}D)^{2}F$				58878			0.859
	7/2	$80 + 4(^{1}D)^{2}F$				58189			1.138
${}^{2}G({}^{1}P){}^{2}G$	7/2	$74 + 11({}^{1}\text{G}){}^{2}\text{G}$				59402			0.892
0(1)0	9/2	$68 + 13^{2} H(^{1}P)^{2}G$				58698			1.105
${}^{2}P({}^{1}P){}^{2}P$	1/2	$65 + 17 A^2 D (^1P)^2 P$				60923	· .		0.776
- (-) -	3/2	$65 + 13 A^2 D (^1P)^2 D$			2	60947			1.231
(5D)6F*	1/2	99				61723			-0.659
	3/2	98				61647			1.066
	5/2	98				61517			1.312
	7/2	97				61332			1.394
	9/2	96				61091			1.432
	11/2	100		*o.3		00812			1.400
$^{2}\mathrm{P}(^{1}\mathrm{P})^{2}\mathrm{D}$	3/2	$83 + 6^2 P (^1P)^2 P$				61733			0.854
	5/2	$79 + 8A^2D(^1P)^2F$				61014			1.175
${}^{2}F({}^{3}P){}^{4}G$	5/2	94				61635			0.579
	7/2	93				61764			0.990
	9/2	94				61941			1.175
	11/2	95				62174			1.270
$^2F(^3P)^4F$	3/2	94				62192			0.416
	5/2	91				62335			1.035
	7/2	95				62483			1.232
	9/2	$60 + 27^{2} H(^{1}P)^{2}G$				62848			1.250
$^2H(^1P)^2I$	11/2	96				62729			0.929
	13/2	98				62101			1.077

TABLE A. Observed and calculated levels of CoI $(3d+4s)^84p-Continued$

Name	J	Percentage	AE	AEL		Calc. Level	O-C	Obs.	Calc.
			Config.	Desig.	(cm ⁻¹)	(cm ⁻¹)		g-Factor	g-Factor
${}^{2}\mathrm{F}({}^{3}\mathrm{P}){}^{4}\mathrm{D}$	1/2	93				62496			0.002
- ()	3/2	92				62487			1.189
	5/2	89				62485			1.359
	7/2	87				62484			1.436
² P(¹ P) ² S	1/2	$70 + 14^{2}P(^{3}P)^{2}P$				62732			1.816
$A^2D(^1P)^2D$	3/2	$69 + 10^{2} P (^{1}P)^{2} P$				63531			0.862
	5/2	$78 + 8^2 F(^3P)^2D$				62568			1.186
² H(¹ P) ² G	7/2	$60 + 11(^{5}\text{D})^{4}\text{F}^{*}$				63467			0.949
	9/2	$36 + 31^{2}F(^{3}P)^{4}F + 17(^{5}D)^{4}F^{*}$				62864			1.221
(5D)6P*	3/2	97				63870			2.363
	5/2	98				63447			1.878
	7/2	93				62815			1.697
$\Lambda 2D(1D)2E$	5/9	$66 \pm 162 F(3P)^2D$				64160			0 970
A*D(*P)*F	7/2	89				63306			1.141
(5D)4F*	3/2	93				63975			0.427
(2)1	5/2	89				63699			1.054
	7/2	$77 + 8^{2} H(^{1}P)^{2}G$				63330			1.209
	9/2	$77 + 10^{2} H(^{1}P)^{2} G$				62810			1.305
$^{2}\mathrm{F}(^{3}\mathrm{P})^{2}\mathrm{D}$	3/2	$68 + 12(^{5}D)^{4}D^{*}$				64398			0.857
	5/2	$49 + 14(^{5}D)^{4}D^{*}$				64410			1.175
$({}^{5}D){}^{4}D{}^{*}$	1/2	$73 + 9^4 P(^1P)^4 D$				64715			0.055
	3/2	$61 + 13^{2} F(^{3}P)^{2}D$				64573			1.131
	5/2	$53 + 24^{2}F(^{3}P)^{2}D$				64226			1.312
	7/2	$68 + 7(^{5}D)^{4}F^{*}$				63916			1.415
$^{2}H(^{1}P)^{2}H \\$	9/2	$78 + 13^{2}F(^{1}P)^{2}G$				64952			0.937
	11/2	90				64391			1.091
${}^2F({}^3P){}^2G$	7/2	$85 + 10^{2} H (^{1}P)^{2}G$				64832			0.890
	9/2	$78 + 14^{2} H (^{1}P)^{2} H$				64886			1.088
$A^2D(^1P)^2P$	1/2	$66 + 12^2 P(^3P)^2 P$				65449			0.694
	3/2	78				64135			1.347
${}^2F({}^3P){}^2F$	5/2	96				66808			0.859
	7/2	96				66717			1.143
(5D)4P*	1/2	$78 + 20^4 P (^1P)^4 P$				68813			2.662
	3/2	$78 + 20^4 P (^1P)^4 P$				68540			1.732
	5/2	$77 + 21^4 P (^1P)^4 P$				68061			1.599
${}^2F({}^1P){}^2G$	7/2	$87 + 9(^{3}\text{H})^{2}\text{G}^{*}$				75095			0.890
	9/2	$87 + 9(^{3}H)^{2}G^{*}$				75389			1.111
${}^2F({}^1P){}^2D$	3/2	88				75783			0.801
	5/2	$73 \pm 15^{2} F(^{3}P)^{2} F$				75894		1 - 1 - 1 - 2	1 1 4 3

TABLE A. Observed and calculated levels of Co I $(3d+4s)^84p-Continued$

Name	J	Percentage	AEL		Obs.	Calc.	0-0	Ohs	Calo
			Config.	Desig.	(cm ⁻¹)	(cm^{-1})	0-0	g-Factor	g-Factor
${}^2F({}^1P){}^2F$	5/2 7/2	$75 + 15^{2}F(^{1}P)^{2}D$ $90 + 6(^{3}G)^{2}F^{*}$				76244 76512			$0.915 \\ 1.142$
(1S) ² P	1/2 3/2	$\begin{array}{l} 89+9 A^2 D (^1 P)^2 D \\ 88+10 A^2 D (^1 P)^2 D \end{array}$				76561 76836			$0.667 \\ 1.333$
B ² D(³ P) ⁴ P	1/2 3/2 5/2	97 95 96				79901 79919 79977			2.664 1.733 1.599
B2D(3P)4F	3/2 5/2 7/2 9/2	95 95 94 93				80762 80885 81057 81278			$\begin{array}{c} 0.401 \\ 1.028 \\ 1.237 \\ 1.332 \end{array}$
$B^2D(^3P)^2P$	1/2 3/2	$\begin{array}{l} 65+17 B^2 D (^3 P)^4 D+9 (A^3 P)^4 D \\ 79+12 B^2 D (^3 P)^4 D \end{array}$				84473 84186			$0.477 \\ 1.298$
$B^2 D ({}^3\mathrm{P}){}^2\mathrm{F}$	5/2 7/2	$75 + 13B^{2}D(^{3}P)^{4}D$ $75 + 19B^{2}D(^{3}P)^{4}D$				84381 84408			$0.945 \\ 1.199$
$B^2D(^3P)^4D$	1/2 3/2 5/2 7/2	$\begin{array}{l} 71+23 B^2 D(^3 P)^2 P \\ 73+10 B^2 D(^3 P)^2 P \\ 78+12 B^2 D(^3 P)^2 F \\ 45+18 B^2 D(^3 P)^2 F \end{array}$				84201 84393 84538 85100			0.171 1.183 1.297 1.387
$B^2D(^3P)^2D$	3/2 5/2	96 96	1			86758 86672			$0.803 \\ 1.200$
$B^2 D ({}^1 P){}^2 P$	1/2 3/2	56 + 32(³ D) ² P* 55 + 35(³ D) ² P*				93582 93960			$0.669 \\ 1.332$
$B^2 D ({}^1 P){}^2 F$	5/2 7/2	$\begin{array}{l} 41+23({}^3\mathrm{G}){}^2\mathrm{F}^*+20({}^3\mathrm{D}){}^2\mathrm{F}^*\\ 42+22({}^3\mathrm{D}){}^2\mathrm{F}^*+20({}^3\mathrm{G}){}^2\mathrm{F}^* \end{array}$				96929 96971			$0.868 \\ 1.142$
$B^2D(^1P)^2D$	3/2 5/2	$49 + 41({}^{3}\mathbf{D}){}^{2}\mathbf{D}^{*}$ $51 + 36({}^{3}\mathbf{D}){}^{2}\mathbf{D}^{*}$				98049 98457			$0.805 \\ 1.199$

TABLE A. Observed and calculated levels of Co I (3d+4s)⁸4p-Continued

References

- [1] Roth, C., J. Res. Nat. Bur. Stand. (U.S.), 72A (Phys. and
- Chem.), No. 5, 505 (1968). [2] Roth, C., J. Res. Nat. Bur. Stand. (U.S.), **73A** (Phys. and Chem.), No. 2, 125 (1969).
- [3] Roth, C., J. Res. Nat. Bur. Stand. (U.S.), 73A (Phys. and Chem.), No. 2, 159 (1969).
- [4] Roth, C., J. Res. Nat. Bur. Stand. (U.S.), 73A (Phys. and Chem.), No. 6, 599 (1969).
- 5
- Rohrlich, F., Phys. Rev. **74**, 1381 (1948). Smith, G., and Siddall, J., J. Opt. Soc. Am. **59**, 419 (1969). 6
- Martin, W., and Sugar, J., J. Opt. Soc. Am. 59, 1266 (1969). [7]
- [8] Wilson, M., J. Phys. B, Ser. 2, 2, 524 (1969). [9] Roth, C., J. Res. Nat. Bur. Stand. (U.S.), 73A (Phys. and
- Chem.), No. 5, 497 (1969).
- [10] Roth, C., J. Res. Nat. Bur. Stand. (U.S.), 74A (Phys. and Chem.), No. 2, 141 (1970).

- [11] Roth, C., J. Res. Nat. Bur. Stand. (U.S.), 74A (Phys. and Chem.), No. 2, 157 (1970).
- [12] Roth, C., J. Res. Nat. Bur. Stand. (U.S.), 74A (Phys. and Chem.), No. 4, 507 (1970).
- [13] Roth, C., J. Res. Nat. Bur. Stand. (U.S.), 74A (Phys. and
- [19] Rom, O. S. 181, 1970.
 [14] Moore, C. E., Atomic energy levels, Nat. Bur. Stand. (U.S.), Circ. 467, Vol. II (1952). Referred to as AEL.
- [15] Roth, C., J. Math. Phys. 9, No. 5, 686 (1968).
- Racah, G., Phys. Rev. 62, 438 (1942). 16
- [17] Racah, G., and Shadmi, Y., Bull. Res. Counc. Israel 8F, No. 1, 15 (1959).
- Ishidzu, T., and Obi, S., J. Phys. Soc. Japan 5, No. 3, 124 (1950). [18]
- Roth, C., J. Math. Phys. 10, No. 6, 1038 (1969). [19]
- [20] Russell, H. N., King, R. B., and Moore, C. E., Phys. Rev. 58, 407 (1940).

(Paper 74A5-635)